On a Property of the Conjugate Net in Connexion with Generalized Projective Deformation

By

Joyo Kanitani

(Received August 6, 1947)

Consider a non-ruled surface S in a three-dimensional projective space. Associate to a generic point E of S a moving frame of reference $\left[E, E_{1}, E_{2}, E_{3}\right]$, of which the vertices E_{1}, E_{2} lie on the tangent plane of S at E and the vertex E_{3} is outside of this tangent plane. The movement of this frame is defined by the system of the equations of the form:

$$
\begin{aligned}
& d E=d w_{0}^{o} E+d w_{0}^{i} E_{i} \\
& d E_{i}=d w_{i}^{o} E+d w_{i}^{2} E_{l}+d w_{i}^{3} E_{3},(i=1,2) \\
& d E_{3}=d w_{3}^{0} E+d w_{3}^{l} E_{l}+d w_{3}^{3} E_{3} .
\end{aligned}
$$

Choosing the vertices E_{1}, E_{2} properly, we can make

$$
d w w_{o}^{o}=0, \quad d w_{o}^{1}=d x^{1}, \quad d w w_{o}^{2}=d x^{2}
$$

where x^{1}, x^{2} are the parameters on which the generic point E depends. Take the point E_{3} so that the frame $\left[E, E_{1}, E_{2}, E_{3}\right]$ becomes a frame of Darboux, namely, the surface S referred to the frame $\left[E, E_{1}, E_{2}, E_{3}\right.$] is defined by the equation:

$$
z^{3}=\frac{1}{2} \dot{H}_{i j} z^{i} z^{j}-\frac{1}{3} K_{i j l} z^{i} z^{j} z^{2}+\cdots \cdots \cdots \cdots,
$$

where

$$
H_{i j} z^{i} z^{j}=0
$$

gives the asymptotic tangents, while

$$
K_{i j l} z^{i} z^{j} z^{l}=0
$$

gives the tangents of Darboux so that

$$
H^{i j} K_{i j l}=0
$$

Then, by choosing properly the common factor of the coordinates of the point E_{8}, we can make

$$
\begin{aligned}
& d w_{i}^{3}=H_{i j} d y^{j}, \quad d w_{3}^{3}=0 \\
& d w_{i}^{l}=\left(K_{i j}^{l}+\Gamma_{i j}^{l}\right) d w^{j}
\end{aligned}
$$

where $\Gamma_{i j l}(i, j, l=1,2)$ are Christoffel's symbols with respect to the quadric from $H_{i j} d x^{i} d x^{j}$.

We now regard the surface S as the space R_{2} with the connexion $d z w_{\alpha}^{\beta}(a, \beta=0,1,2)$. If we develop any curve drawn from a point A on S into the tangent plane at A, defining the moving frame $[A$, $\left.A_{1}, A_{2}\right]$ by means of the equations

$$
d A_{\infty}=d w_{\alpha}^{\beta} A_{\beta}\left(A_{0} \equiv A ; a=0,1,2\right)
$$

and giving to A, A_{1}, A_{2} the same initial values as those of E, E_{1}, E_{0}, then the infinitely small variations of E, E_{1}, E_{0} are obtained by projecting the homologous variations of A, A_{1}, A_{2} from the point E_{3}.

If we take as the point E_{0} another point satisfying the abovementioned condition, namely, a point on the line $E E_{3}$, the space corresponding to the new center of projection is projectively deformable ${ }^{1}$ to the original space.

Now suppose that the parameter curves upon S form a conjugate net. Then, by choosing the common factor of the coordinates of the point E, we can make

$$
K_{1 i}^{3}+\Gamma_{1 i}^{2}=0
$$

so that the point E_{3} becomes a point on the plane osculating at E to the curve $a^{2}=$ const passing through this point.

Thus, we get

$$
\begin{aligned}
& d E=d x^{i} E_{t} \\
& d E_{1}=d w_{1}^{o} E+d w_{1}^{1} E_{1}+\left(K_{1}^{2}+\Gamma_{1 \underline{2}}^{\frac{2}{2}}\right) d x^{2} E_{2}
\end{aligned}
$$

The Laplace transform on the line $E E_{1}$ is expressed by

$$
E_{1}-\left(K_{1 \frac{2}{2}}+\Gamma_{1 \frac{\mathrm{~g}}{\mathrm{~g}}}\right) E .
$$

[^0]We have, therefore, the following proposition.
Let S be a non-ruled surface in a three-dimensional projective space, and A be a generic point of this surface. Consider a family of non-asymptotic curves upon S. Denote by l the tangent at A to the curve L passing through A and belonging to this family. Associate to S a projective connexion obtained by the projection from a point on the osculating plane of L at A. Then, the curves under consideration become geodesic lines for the space $\boldsymbol{R}_{\mathbf{2}}$ with the connexion thus determined and consequently, this space can be so plunged ${ }^{2}$ into a fourdimensional projective space that it becomes a ruled surface whose generating lines correspond to these geodesic lines and that, at a particular position of A, the characteristic of the envelope of the tangent hyperplane along generating line intersects the axis of projection. The stationary point corresponding to this position of A, coincides zuith the Laplace transform of A on l with respect to the conjugate net of which the framily under consideration forms a part.

[^1]
[^0]: 1. J. Kanitani: On a generalisation of the projective deformation, This Memoirs, Vol. 25, p. 23.
[^1]: 2. J. Kanitani: loc. cit.
