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ON SHARP DIOPHANTINE INEQUALITIES

HAVING ONLY FINITELY MANY SOLUTIONS

EDWARD B. BURGER

1. CLASSICAL RESULTS: THE LAGRANGE SPECTRUM

Here we begin with a brief overview of some classical diophantine approximation results
in order to place our work in context. We begin with the well-known result of Dirichlet
from 1842 ([5], or see [2]).

Theorem 1. For a $\in \mathbb{R}\backslash \mathbb{Q}$ , there are infinitely many solutions $q\in \mathbb{Z}^{+}$ to

$q||\alpha.q||\leq 1$ , (1.1)

where $||x||$ denotes the distance to the nearest integer function, $||x||= \min\{|x-n|$ : $n\in$

$\mathbb{Z}\}$ .

We remark that if $p$ is the nearest integer to $\alpha q$ , then $q||\acute{\alpha}q||=q|\alpha q-p|=q^{2}|\alpha-$ Eq $|$ ,

and thus (1.1) is equivalent to the inequality

$|$
, – $\frac{p}{q}|\leq\frac{1}{q^{2}}$

A Fundamental Question. Find the largest constant $\mu$ such that for any $\alpha\in \mathbb{R}\backslash \mathbb{Q}$ ,
there are infinitely many solutions $q\in \mathbb{Z}^{+}$ to

$q|| \alpha q||\leq\frac{1}{\mu}$

In 1879 Markoff [8] (see also [7]) showed that the largest such constant is $\mu=\sqrt{5}$ , which
we will denote as $\mu_{1}$ , and this constant is best possible for $\alpha=\alpha_{1}=\underline{-1}\pm L52^{\cdot}$

In fact more is true. We recall that $\alpha\sim\beta$ if $\alpha$ is a linear fractional transformation of
$\beta$ , that is, if there exist integers $A$ , $B$ , $C$ , $D$ satisfying $AD$ $・BC=$ $11$ for which

$\alpha=\frac{A\beta+B}{C\beta+D}$ ,
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or equivalently, if we denote the simple continued fraction expansions of a and $\beta$ as
$\alpha=$ [a0, $a_{1}$ , $\ldots$ ] and $\beta=$ [a0, $b_{1}$ , $\ldots$ ], then $\alpha$ $\sim\beta$ if there exist indices $lVI$ and $N$ such that
$a_{M+l}=b_{N+\ell}$ for all $P=0,1,2$ , $\ldots$ 1 Then Markoff proved that $\mu_{1}$ is best possible for all
$\alpha\sim\alpha_{1}=\underline{-1}+r52^{\cdot}$

For $\alpha$ $\oint$
$\alpha_{1}$ , Markoff showed that the next best constant is $\mu_{2}=\sqrt{8}$ and cannot be

improved for any $\alpha\sim\alpha_{2}=-\mathrm{t}+/2$ . In order to establish the general case, we consider
primitive solutions $(r<s<m)$ to $x^{2}+y^{2}+z^{2}=$ 3xy2, that is, relatively prime integer
solutions. The Markoff numbers are defined to be $m_{1}<m_{2}<m_{3}$ $<\cdots$ . We remark
that the sequence begins 1,2,5,13,29,. . . Markoff proved that if $\mu_{r}$ denotes the rth best
possible constant, then

$\mu_{r}=\frac{\sqrt{9m_{r}^{2}-4}}{m_{r}}$ ,

and it cannot be improved for a $\sim\alpha_{m_{r}}\in \mathbb{Q}(\sqrt{9m_{r}^{2}-4})$ , where the quadratic irrational
$\alpha_{m_{r}}$ has a continued fraction expansion of the form

$\alpha_{m_{r}}=[0,$ $\overline{2,W_{r},1,1,2}]$ ,

where the “word” $W_{r}$ consists of only l’s and 2’s, all the runs are of even length (thus
$W_{r}$ itself is even in length), and $W_{r}$ is a palindrome, that is, $\vec{W_{r}}=W_{r}$ (see [4]).

The numbers $\mu_{1}$ , $\mu_{2}$ , $\mu_{3}$ , $\ldots$ are the smallest values of the Lagrange spectmm and thus
we immediately have the following important consequence.

Corollary 2. The first accumulation point of the Lagrange spectmm is 3.

2. A QUESTION OF DAVENPORT

In 1947, H. Davenport posed the following problem: Given a positive integer $n$ , what
is the best constant $c$ ci (n) such that for any $\alpha\in \mathbb{R}\backslash \mathbb{Q}$ ,

$q|| \alpha q||\leq\frac{1}{c_{1}(n)}$

has at least $n$ solutions $q\in \mathbb{Z}^{+}$ .

Previous Results. In 1948, Prasad [9] answered Davenport’s question and showed that
ci (n) $=1+$-2 $5+ \frac{p_{2n-1}}{q_{2n-1}}$ , where $p\ell/q\ell$ is the Ith convergent of $\alpha_{m_{1}}$ , and $c_{1}(n)$ is best possible
for $\alpha=\alpha_{m_{1}}=\frac{-1+\sqrt{5}}{2}$ .
In 1961, Eggan [6] proved that for at 7 $\alpha_{m_{1}}$ , the constant can be improved to equal
$c_{2}$ $(n)$ $=1+ \sqrt{2}+\frac{p_{2n-1}}{q_{2n-1}}$ , where $p\ell/q_{l}$ is the Ith convergent of $\alpha_{m_{2}}$ . Moreover $c2(n)$ is best
possible for $\alpha=\alpha_{m_{2}}=-1$ $+\sqrt{2}$ .

In 1971, Prasad and Prasad [10] showed that for $\alpha\neq\alpha m_{1}$ , $\alpha_{m_{2}}$ , $c_{3}(n)=11$ $10^{221}$ $+ \frac{p_{4n-1}}{q_{4n-1}}$ ,
convergent of $\alpha_{m_{3}}$ , and established that $c3(n)$ is best possible for
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Open questions.
$\circ$ What is $\mathrm{c}\mathrm{r}(1)$ for an arbitrary $r$? Such a sequence would produce the analogue of the
Lagrange spectrum where only one solution (rather than infinitely many) is desired.
$\circ$ What is $\lim_{rarrow\infty}c_{r}(1)$ ? If the limit exists, then it would produce the first accumulation
point of the “one-solution” spectrum.
$\circ$ Given an arbitrary $r$ and $n$ , what is $c_{r}(n)?$.

3. RECENT RESULTS

We begin by defining the linear recurrence sequence $Zr(n)$ by Zr(0) $=0$ , $Z_{r}(1)=1,$

and for $n>1,$
$Z_{r}(n)=$ 3mrZr(n $-1$)-Zr(n-2)

Given this recurrence sequence, we can now offer answers to the open questions from the
close of the previous section. This result was recently found by the author together with
Folsom, Pekker, Roengpitya, and Snyder [2],

Theorem 3. For any positive integers $n$ and $r_{f}$

$c_{r}(n)= \frac{\sqrt{9m_{r}^{2}-4}}{2m_{r}}+\frac{3}{2}-\frac{Z_{r}(n-1)}{m_{r}Z_{r}(n)}$

That is, for an irrational number ct not $equ$ ivalent to $\alpha_{m_{s}}$ for any $s_{r}s<r,$ the inequality

$q||$ ’q $|| \leq\frac{1}{c_{r}(n)}$

has at least $n$ positive integer solutions $q$ . Moreover, the constant $c_{r}(n)$ is best possible
for $\alpha=\alpha_{m_{r}}$ .

Remark. As it is easy to verify that

$\lim_{narrow\infty}\frac{Z_{r}(n-1)}{Z_{r}(n)}=\frac{3m_{r}-\sqrt{9m_{r}^{2}-4}}{2}$

we see that
$\lim_{narrow\infty}c_{r}(n)=\frac{\sqrt{9m_{r}^{2}-4}}{m_{r}}=\mu_{r}$

Corollary 4. Given the notation of the previous theorem, $c_{r}(1)=\underline{3}+\mathrm{p}_{\mathrm{L}}2$ and thus

$\lim_{rarrow\infty}c_{r}(n)=3$

Thus these observations show that the values $c_{r}(n)$ produce a quantitative refinement of
the Lagrange spectrum. We remark that we also have the following technical result that
provides a generalization in a form in sympathy with the previously known cases.

Theorem 5. Let $r>0$ be an integer. If $r=1$ or 2, then let $L=2.$ For $r\geq 3,$ let $L$ equal
the smallest per $iod$ length of the continued fraction for $\alpha_{m_{r}}$ . Then $cr(n)=- \overline{\alpha_{m_{r}}}+\frac{p_{nL-1}}{q_{\mathfrak{n}L-1}}$ ,
where $\overline{\alpha}$ denotes the conjugate of a and $p\ell/q\ell$ is the $l$ th convergent of $\alpha_{m_{r}}$ .
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4. A SKETCH OF THE PROOF OF THEOREM 4

Given an irrational $\alpha$ , we consider three cases: (i) $\alpha=\alpha_{m_{r}}$ ; (ii) $\alpha\sim\alpha_{m}$ , for $m\geq m_{r}$ ;
(ii) $\alpha$ $\oint$ $\alpha_{m}$ , for any $m$ .
(i) Suppose that $\mathrm{a}=\alpha_{m_{r}}$ . It follows from various properties of the recurrence sequence
Zr(n)that

$pL-1$ $p_{2L-1}$ pnエー 1

$q_{L-1}$ $q_{2L-1}$ $q_{nL-1}$

all satisfy the inequality

$|0m_{r}- \frac{p}{q}|\leq\frac{1}{c_{r}(n)q^{2}}$ , (4.1)

with equality holding fo$\mathrm{r}$ $2q$ $= \frac{p_{n}L-1}{q_{nL-1}}$ .
We now show that no other rational solutions to (4.1). First we note that for all

indices $r$ and $n$ , $cr(n)\geq 2$ . Thus for any rational number $Eq$ $\neq L^{\ell}q\ell$ for any $\ell$ , it follows by
a classical result of Legendre that

$\frac{1}{c_{r}(n)q^{2}}\leq\frac{1}{2q^{2}}<|\alpha",$ $- \frac{p}{q}$

Hence we need only consider best approximates, $p\ell/q_{\ell}$ . Given that the $p_{\ell}/q\ell$ ’s straddle ct

as shown below

together with the fact that $L$ is even, we see that

and hence we have two cases to consider:

The easy case. Suppose that $Rq$ $< \frac{p_{nL-1}}{q_{nL-1}}$ . Then we have that

$\overline{\alpha_{m_{r}}}<0\leq.\frac{p}{q}<\frac{p_{nL-1}}{q_{nL-1}}$
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and hence
$| \overline{\alpha_{m_{\mathrm{r}}}}-\frac{p}{q}|<|\overline{\alpha_{m_{r}}}-\frac{p_{nL-1}}{q_{nL-1}}|=c_{r}(n$

.

If we write

$f_{m_{r}}(x, y)=m_{r}(x-\alpha_{m_{r}}y)(x-\overline{\alpha_{m_{r}}}/)\in \mathbb{Z}[x, y]$

for the mrth Markoff form, then by a well-known result (see [4]) we have

$(ae(\mathrm{x}|11\mathrm{I}111_{0)}^{)_{2}}$

$\{|f_{m_{r}}(x, y)|\}=m_{r}$

Putting these observations together with Theorem 5 reveals that

$\frac{m_{r}}{q^{2}}\leq\frac{|f_{m_{r}}(p_{7}q)|}{q^{2}}=m_{r}|\alpha_{m_{r}}-\frac{p}{q}||\overline{\alpha_{m_{\mathrm{r}}}}-\frac{p}{q}|$

$<m_{r}|$a$mr$
$-$ $\frac{p}{q}|c_{r}(n)$ ,

Putting these observations together with Theorem 5reveals that

$\frac{m_{r}}{q^{2}}\leq\frac{|f_{m_{r}}(p_{7}q)|}{q^{2}}=m_{r}|\alpha_{m_{r}}-\frac{p}{q}||\overline{\alpha_{m_{\mathrm{r}}}}-\frac{p}{q}$

$<m_{r}| \alpha_{m_{r}}-\frac{p}{q}|c_{r}(n)$ ,

which establishes the easy case.
The difficult case. Suppose that $\epsilon q$ $> \frac{p_{nL-1}}{qnL-1}$ . Thus we must have $Eq$ $= \frac{plL-k}{q\ell L-h}$ , for some
odd integer $k$ satisfying $3\leq k\leq L-1.$ The proof of this case immediately follows from
the next theorem which appears to be of some independent interest.

Theorem 6. For $r\geq 3_{f}$ let $L$ denote the smallest per$r\cdot od$ length of the continued fraction
expansion for $\alpha_{m_{r}}$ . Then the convergent $p\ell/q\ell$ of $\alpha_{m_{r}}$ satisfies

$\frac{1}{\mu_{r}q_{\ell}^{2}}<|$
,

$mr-$ $\frac{p_{\ell}}{q_{\ell}}$

if and only if the index $l$ $>0$ and $\ell\not\equiv-1$ mod $L$ .if and only if the index $l$ $>0$ and $\ell\not\equiv-1\mathrm{m}\mathrm{o}\mathrm{d} L$ .

An aside. Thus, while it is well-known that there are infinitely many solutions to

$\alpha_{m_{r}}-\frac{p\ell}{q\ell}|\mathrm{S}$ $\frac{1}{\mu_{r}q_{\ell}^{2}}$ ,

the previous theorem implies that those solutions are precisely those $p\ell/q\ell$ for which
$\mathrm{e}$ $\equiv-1$ mod $L$ .
Some remarks on the proof of Theorem 6. The proof has the same structure as
the easy case $(_{q}^{\rho}< \frac{pnL-1}{q_{nL-1}})$ . We first construct auxiliary numbers

$\lambda_{r}(\ell)=\frac{p_{\ell L-3}-p_{\ell L-1}\alpha_{m_{r}}}{q_{\ell L-3}-q_{\ell L-1}\alpha_{m_{r}}}\sim\alpha_{m_{r}}$
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Next we establish the delicate inequality

$\alpha_{m_{r}}<\frac{p\ell L-1}{q_{\ell L-1}}<$ $\overline{\mathrm{k}_{r}(l)}<\frac{p_{\ell L-k}}{q_{\ell L-k}}<\lambda_{r}(\ell)$

We then replace the Markoff forms with a new class of quadratic forms and proceed as in
the easy case. Thus we have just established our main result in the case when $\alpha=\alpha_{m_{r}}$ .
(ii) If $\alpha\sim\alpha_{m}$ , for some $m\geq m_{r}$ , then we use the structure of the continued fraction
$\alpha_{m}=[0,\overline{2,W,1,1,2}]$ and consider a large but finite number of sub-cases individually.
(ii) If a $\oint$ $\alpha_{m}$ , for any $m$ , then the result is trivial by classical well-known inequalities
involving continued fractions. (See [2] for the technical details.)

5. A DUAL RESULT FOR ARBITRARY REAL QUADRATIC IRRATIONALS

For an irrational real number $\alpha$ , the Lagrange constant for $\alpha$ , $\mathrm{u}(\mathrm{a})$ , is defined by

$\mu(\alpha)=\lim_{qarrow}$inf $q||\alpha q||$

Thus for any $c$ , $0<c<\mu(\alpha)$ , it follows that there are only finitely many positive integer
solutions $q$ to the inequality

$q||\alpha q||<c$ (5.1)

We define $\lambda(\alpha)$ by $\nu(\alpha)=\inf_{q>0}q||\alpha q||$ .
In view of our previous discussion, given an $\alpha$ , two natural and fundamental problems

are to compute $\nu(\alpha)$ , and for a fixed $c$ , $\nu(\alpha)<c<$ X(a), to explicitly determine the
complete set of solutions to (5.1).

Here in this concluding section we offer an overview these issues for reduced, real qua-
dratic irrationals; that is, for real numbers that have purely periodic continued ffaction
expansions. The general theory for arbitrary real quadratic irrationals was given by the
author and Todd [3].

If $\alpha=[\overline{a_{0},a_{1},}\ldots, a_{T-1}]$ , then for each $t$ , $0\leq t\leq T$ – 1,

$p_{Tn+t}=\omega(\alpha)p_{T(n-}1)+t$ $+(-1)^{T+1}p_{T(n-2)+t}$

$q_{Tn+t}=\omega(\alpha)q_{T(n-1)+t}+(-1)^{T+1}q_{T(n-2)+t}$ ,

for all $n$ $=2,3$ , $\ldots$ , where the constant $\mathrm{u}(\mathrm{a})=p_{T-1}+q_{T-2}$ , and $p_{n}/q_{n}$ denotes the $n\mathrm{t}\mathrm{h}$

convergent of a (see Theorem 3 of [3]). Furthermore, for each fixed $t$ , $0\leq t\leq T-$ 1,
there exist real numbers $uti$ $v_{t}$ , $r_{t}$ , $s_{t}$ , with $r_{t}>0,$ such that

$p_{Tn+t}=u_{t}\alpha^{n}+v_{t}\overline{\alpha}^{n}$ and $q_{Tn+t}=r_{t}\alpha^{n}+s_{t}\overline{\alpha}^{n}$ ,

for all $n=0,1$ , 2, . . . (see [3]).
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We now define several new but natural constants that will allow us to explicitly deter-
mine $\nu(\alpha)$ . For each $t$ , $0\leq t\leq T-1,$ we let $d_{t}=r_{t}v_{t}-s_{t}u_{t}$ and define

$s_{t}<0$

$s_{t}>0$ and $T$ even
$s_{t}>0$ and $T$ odd

Given the above notation we have the following.

Theorem 7. Suppose that $\alpha=[\overline{a_{0},a_{1},}\ldots, a_{T-1}];r_{t}$ and $s_{t}$ , $d_{t}$ , and $\nu_{t}(\alpha)$ are as defined
above. Then $\nu(\alpha)=\min\{\nu_{t}(\alpha) : 0\leq t\leq T-1\}$ . Moreover, for any $c$ , $\nu(\alpha)<c<\mu(\alpha)$ ,
an integer $q>0$ is a solution to

$q||\alpha q||<c$

if anti only if $q=q_{Tn+t}$ , where $0\leq t\leq T-$ $1$ , (-1)$Tns_{t}\leq 0_{f}$ At (a) $<c,$ and $n\geq 0$

satisfies
$\frac{r_{t}}{|s_{t}|}(1-\frac{c}{|d_{t}|})<\overline{\alpha}^{2n}$

As a final remark we note that upon first inspection it may appear undesirable to have
$n$ occur in the bound (-1) $Tnst\leq 0.$ However as $T$ and $t$ are known, it is only the parity
of $n$ that is necessary in computing the previous inequality. Hence given $c$ and $t$ , one
needs to find all even integers $n$ that satisfy the conditions of the theorem and then all
such odd integers. That is, implicit in the inequalities of the theorem are the cases of $n$

even and $n$ odd. The proof of this result and its generalizations can be found in [3].
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