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ON SHARP DIOPHANTINE INEQUALITIES
HAVING ONLY FINITELY MANY SOLUTIONS

EpwaRrD B. BURGER

1. CLASSICAL RESULTS: THE LAGRANGE SPECTRUM

Here we begin with a brief overview of some classical diophantine approximation results
in order to place our work in context. We begin with the well-known result of Dirichlet
from 1842 ([5], or see [2]).

Theorem 1. For a € R\ Q, there are infinitely many solutions q € Z* to

qllaglf <1, (1.1)

where ||z|| denotes the distance to the nearest integer function, ||z|| = min {jz —n|:n €
Z}.

We remark that if p is the nearest integer to ag, then g|lag| = qlag — p| = ¢* Ia - f;—i,
and thus (1.1) is equivalent to the inequality

1
ek
q aq
A Fundamental Question. Find the largest constant u such that for any a € R\ Q,

there are infinitely many solutions g € Z* to

1
qllagll £ = .
I

In 1879 Markoff (8] (see also [7]) showed that the largest such constant is p = /5, which
we will denote as 1, and this constant is best possible for o = o1 = :—1?@

In fact more is true. We recall that o ~ 3 if a is a linear fractional transformation of
3, that is, if there exist integers A, B, C, D satisfying AD — BC = =+1 for which

L _AB+B
T CA+D’

This article is based on a plenary lecture delivered at The Conference on Analytic Number Theory
and Surrounding Areas held at the Research Institute of Mathematical Sciences, Kyoto University, on
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or equivalently, if we denote the simple continued fraction expansions of o and § as
a = [ag,ai,...] and 8 = [bg, b1, ...}, then a ~ J if there exist indices M and N such that
ap+e = bnye for all £ =0,1,2,.... Then Markoff proved that y; is best possible for all
o~y = —1; 3 )

For a % a;, Markoff showed that the next best constant is y; = /8 and cannot be
improved for any & ~ a3 = —1 4+ v/2. In order to establish the general case, we consider
primitive solutions (r < s < m) to z® + y% + 22 = 3zyz, that is, relatively prime integer
solutions. The Markoff numbers are defined to be m; < my < ms < ---. We remark
that the sequence begins 1,2,5,13,29,... . Markoff proved that if u, denotes the rth best

possible constant, then
VIm2 —4

Hr = =,
My

and it cannot be improved for oo ~ oy, € Q(\/ng —4), where the quadratic irrational
o, has a continued fraction expansion of the form

Um, = [0,2’ WT711112] )

where the “word” W, consists of only 1’s and 2’s, all the runs are of even length (thus
W, itself is even in length), and W, is a palindrome, that is, W, = W, (see [4]).

The numbers p;, pog, 43, . .. are the smallest values of the Lagrange spectrum and thus
we immediately have the following important consequence.

Corollary 2. The first accumulation point of the Lagrange spectrum is 3.

2. A QUESTION OF DAVENPORT

In 1947, H. Davenport posed the following problem: Given a positive integer n, what
is the best constant c;(n) such that for any a € R\ Q,

1
gllag|l < 'c“l"(n—)

has at least n solutions ¢ € Z™.

Previous Results. In 1948, Prasad [9] answered Davenport’s question and showed that
ci1(n) = 5—'235 + -’:—:_"—ll, where pg/qq is the £th convergent of a.,, , and ¢; (n) is best possible

for @ = ap, = =148,

In 1961, Eggan [6] proved that for o # aym,, the constant can be improved to equal
c2(n) =1++2+ f;:—::f, where pg/qq is the £th convergent of ay,,. Moreover cz(n) is best

possible for & = oy, = -1 + V2.

In 1971, Prasad and Prasad (10] showed that for o # oy, , tm,, c3(n) = 11522 4 Panci

dan—1 )
where py/qe is the /th convergent of ayn,, and established that c3(n) is best possible for

O = O, = LV

10
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Open questions.

e What is ¢,(1) for an arbitrary r? Such a sequence would produce the analogue of the
Lagrange spectrum where only one solution (rather than infinitely many) is desired.

e What is lim,_,, ¢,(1)? If the limit exists, then it would produce the first accumulation
point of the “one-solution” spectrum. A

e Given an arbitrary » and n, what is ¢.(n)?

3. RECENT RESULTS

We begin by defining the linear recurrerice sequence Z.(n) by Z.(0) = 0, 2.(1) = 1,
and for n > 1,
Z(n)=3mZ.(n-1)—Z,(n-2) .
Given this recurrence sequence, we can now offer answers to the open questions from the
close of the previous section. This result was recently found by the author together with
Folsom, Pekker, Roengpitya, and Snyder [2].

Theorem 3. For any positive integers n and r,

VImZ=4 3 Z.(n-1)

cr(n) = ———+ - — .
r(n) 2m., + 2 myZ.(n)
That is, for an irrational number o not equivalent to an,, for any s, s < r, the inequality
agll <
qllag] < P

has at least n positive integer solutions q. Moreover, the constant c,(n) is best possible
fora=aon, .

Remark. As it is easy to verify that

lim Zr(n—1) 3my—4/9m2 -4

n—oo  Z.(n) 2 '
we see that
I (n) = 9mZ -4
e orln) = T =

Corollary 4. Given the notation of the previous theorem, c.(1) = -3—"'5"—’ and thus

lim ¢.(n) =3 .
T —00
Thus these observations show that the values c¢.(n) produce a quantitative refinement of

the Lagrange spectrum. We remark that we also have the following technical result that
provides a generalization in a form in sympathy with the previously known cases.

Theorem 5. Letr > 0 be an integer. Ifr =1 or2, thenlet L = 2. Forr > 3, let L equal
the smallest period length of the continued fraction for oy, . Then c.(n) = —Gm, + ’q%i‘—:—i-,
where @ denotes the conjugate of o and pe/qe is the £th convergent of Q...
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4. A SKETCH OF THE PROOF OF THEOREM 4

Given an irrational o, we consider three cases: (i) & = am,; (i) @ ~ o, for m > m,;
(111) & % am, for any m. |
(1) Suppose that o = ay,.. It follows from various properties of the recurrence sequence
Z,.(n) that

PL-1 bar-1 PnrL—1
qL-1 ' QeL—1 * GnL—1
all satisfy the inequality
p 1
Yl = 4.1
‘am’ Q‘ = cr(n)g?’ (1)
with equality holding for £ = z:z:i.

We now show that no other rational solutions to (4.1). First we note that for all
indices r and n, ¢,(n) > 2. Thus for any rational number § # {;—j for any ¢, it follows by
a classical result of Legendre that

<

Om,.

1 p
—_— I
cr(n)g® ~ 2¢% q}
Hence we need only consider best approximates, py/q,. Given that the p,/qge’s straddle o
as shown below

o
<4 } +—t—t ; >
Po P, Py P5 D3 by
qo q2 94 95 93 q1

together with the fact that L is even, we see that

a PnL-1 P2r-1 PL-1
Tn-'r e —— LY TR SE————
QnL—l 92p-1 4L-1

and hence we have two cases to consider:

Infinitely many ps/qe ’s Only finitely many pe/qe’s

D " _a X N -}II PN 12 ], . 4 Lt :
-~ L | ] LIS LR LI | LI N N B § L
o DPnr-1 P21 PL-1
me
dnL-1 g2L-1 49rL-1
easy case difficult case

b4 PnL—1
The easy case. Suppose that ¢ < 2=, Then we have that

q dnL—1
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and hence
PnL-1

dnL-1

=cr(n) .

O,

If we write

fme (2, ) = Mr (T — Qm, Y) (T — T, ) € Z[z,Y)

for the m,th Markoff form, then by a well-known result (see [4]) we have

min_ {|fm, (@,y)|} =mr .
(z,y)ez?
(=,¥)#(0,0)

Putting these observations together with Theorem 5 reveals that

lfm,( q)|
qz" q?

p

O, — =

= m,

g

O,

< My

Gy = g’-lcr(n) ,

which establishes the easy case.
The difficult case. Suppose that 2 > p"z L. Thus we must have B = f;:l’: £, for some
odd integer k satisfying 3 < k< L — 1 The proof of this case 1mmed1ate1y follows from

the next theorem which appears to be of some independent interest.

Theorem 6. Forr > 3, let L denote the smallest period length of the continued fraction
expansion for a., . Then the convergent pe/qe of o, satisfies

De

qe

<

Am,.

Hr Q¢2

if and only if the index £ > 0 and £ # —1 mod L.

An aside. Thus, while it is well-known that there are infinitely many solutions to

-
qe

1
lJ"r Qe

the previous theorem implies that those solutions are precisely those pg/qe for which
£=-1mod L.
Some remarks on the proof of Theorem 6. The proof has the same structure as

the easy case (2 < Z"I’: _‘) We first construct auxiliary numbers

i\ (é - Der~3 — PeL—10m,

~ am
qeL—3 — QeL—1Cm,

r o
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Next we establish the delicate inequality

U, < PeL-1 <M < DeL—k <M (0) .
Ger-1 qeL—k

We then replace the Markoff forms with a new class of quadratic forms and proceed as in
the easy case. Thus we have just established our main result in the case when o = ayy,,..
(i) If a ~ oyy, for some m > m,, then we use the structure of the continued fraction
om = [0,2,W,1,1,2] and consider a large but finite number of sub-cases individually.
(iit) If @ o¢ o, for any m, then the result is trivial by classical well-known inequalities
involving continued fractions. (See [2] for the technical details.)

5. A DUAL RESULT FOR ARBITRARY REAL QUADRATIC IRRATIONALS

For an irrational real number a, the Lagrange constant for o, u(a), is defined by
w(a) = lim inf ¢l|ag]| .

Thus for any ¢, 0 < ¢ < u(a), it follows that there are only finitely many pos1t1ve integer
solutions g to the inequality

qllagll < c. (5.1)

We define AM(a) by v(a) = infg>q gllag]|.

In view of our previous discussion, given an «, two natural and fundamental problems
are to compute v(a), and for a fixed ¢, v(a) < ¢ < pa), to explicitly determine the
complete set of solutions to (5.1).

Here in this concluding section we offer an overview these issues for reduced, real qua-
dratic irrationals; that is, for real numbers that have purely periodic continued fraction

expansions. The general theory for arbitrary real quadratic irrationals was given by the
author and Todd {3]. v
If o = [@g,a1,..-,87-1), then foreach t, 0 < ¢t < T — 1,

Prott = W(Q)PT(n-l)-{-t + (“1)T+1PT(n—2)+t
Tn+t = w(a)QT(n~1)+t + (‘1)T+14T(n~2)+t )
for all n = 2,3,..., where the constant w(a) = pr—; + gr—2, and p,/q, denotes the nth

convergent of o (see Theorem 3 of [3]). Furthermore, for each fixed t, 0 < t < T -1,
there exist real numbers u¢, v¢, 74, St, With 7, > 0, such that

—n e
DT+t = W + 00 and  grpy: = r:a” + s.@”,

foralln=0,1,2,... (see [3]).
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We now define several new but natural constants that will allow us to explicitly deter-
mine v(a). Foreach t,0 <t < T — 1, we let d; = 7;v; — s;u; and define

il (1+ %) s<0
vi(a) = |di ' s: > 0 and T even
EX (1 - ;562) s >0 and T odd

Given the above notation we have the following.

Theorem 7. Suppose that o = [ag, a1,... ;07-1); Tt and s3, dt, and v¢(a) are as defined
above. Then v(a) = min{v(a):0<t < T —1}. Moreover, for any ¢, v(a) < ¢ < p(a),
an integer ¢ > 0 is a solution to

qllag| < c

if and only if ¢ = qrnrt, where 0 <t < T —1, (-1)T"s, €0, M(a) < ¢, andn >0

satisfies :
Tt c —2n
—ll—-— ) <a@“".
|s¢l ( ldt|>

As a final remark we note that upon first inspection it may appear undesirable to have
n occur in the bound (—I)T”st < 0. However as T" and ¢ are known, it is only the parity
of n that is necessary in computing the previous inequality. Hence given c and ¢, one
needs to find all even integers n that satisfy the conditions of the theorem and then all
such odd integers. That is, implicit in the inequalities of the theorem are the cases of n
even and n odd. The proof of this result and its generalizations can be found in [3].
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