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1. Differential polynomials. Let z be the independent complex vari-
able and %1, «*+, ¥, the indeterminate analytic functions of 2. We denote
by y:; the j th derivative of 4, (i =1, -, n; 7 =0,1,2, ---). The algebraic
properties of the following two kinds of differenticl polynomials of yi, -+
-++, 9, ave important in the theory of systems of ordinary differential equa-
tions in the unknown functions gy, =<, yn:

1°) Let $§ be an arbitrary ficld which is constituted of functions, mero-
morphic in a fixed open domain D of the a-plane, and which is closed
with respect to the differentiation. Any polynomial of 9, (i=1, -, n;
F=0,1,2, ) with coefficients from F is called an «lgedbraic differential
polynomial. We shall denote by P, the totality of all such polynomials.

2°) Let 20 be the totality of all functions of , y1, **-, ¥, which are
analytic at (z, y1, ==, y2) = (0,0, .-+, 0).  Any polynomial of y;; (i=1, -+
<oy §=1,2,--+) with coefficients in U will be called a differentinl
psendopolynomial. The totality of all such polynomials will be denoted
by .

Both Py, P are integral domaing which arc closed with respect to the
differentiation.’

2. Basis-theorem. Onc of the first results, concerning these rings Ty
and B, is the basis-theorem of Ritt.

Let X be any subset of P (B,). A finite subset @ of X is called
a busis of X if and only il there exists, for every clement ¢ of X, a positive
integer p such that G7 is a linear combination of the elements of @ and

1. The introductory monograph on these subjects : Ritt, J. F., Differential Equations
from the Algebraic Standpoint, Amer. Math. Soc. Colloq. Publ,, vol. 14, New York, 1952.
Also see his paper: Riti, Algebraic aspects of the theory of differential equations,
Semicent. Publ., Amer. Math. Soc.. vol. IT (1938). Our paper concerns directly with Ritt,
Systems of differential equations, I. Theory of ideals, Amer. Journ. of Math., 60 (1938).
535—548; this paper will be quoted by RII in the following lines.
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their derivatives of various orders, where the coefficients of the linear
combination are clements of B (Py) and p may vary in accordance with
the clement G.

The basis-theorem asserts that any subset of L (Bo) has a basis.

In the algebraic proofs® of the theorem, assumption is made of the
existence of the ““incomplete system ", which turns out not to exist, and
certain lemmas are established under this assumption and led to a con-
tradiction. In this paper, we shall try a direct proof of the theorem.

In what follows, the descriptions will be limited to P ; but, similar
discussions could be done concerning P and in this case the discus-
sions would be much simpler, becanse we should not have to deal with
elements which are not polynomials (in the ordinary sense) of w1, -+, ya."

3. Reduction of the proof. In order to prove the basis-theorem,
looking upon z as another dependent variable, it is sufficient {0 prove it
in the ring which is the totality of all differential polynomials that do
not contain x effectively.

Let 2 be the totality of all functions of w1, -+, ¥, which are analytic
at (y1, ==, ya) = (0, -+, 0). Let P’ be the totality of all polynomials of
vy l=1,-,n; 5=1,2, ) with coefficients from 9, then P is an in-
tegral domain which is closed with respect to the differentiation. We
hawve only to prove the existence of the basis for every subset X of PB'. Let
(Z) be the ideal® which is generated by X in . We can sce that the
existence of the basis (in the sense of § 2) of the ideal (X) leads us to that of
the set .

Now, let us fix an ordering of the elements of %’ by means of the
method in RII, and call an ideal reguler if it i3 regulor as a subset
of " in the sense of RII. Then we sce that, in order to prove the ewistence
of the basis for the ideal, it is sufficient to prove it for the regular ideal
of P,

4. Ranking of regular ideals. We can prove that every regular
non-zero ideal of P has a basic set, i. e., any one of the ascending sels
of minimal rank in the ideal. Let 2, 2’ be two regular non-zero ideals
of . If a basic set of X is of lower rank (as an ascending set) than
a basic set of X/, we call X of lower rank than X’. This definition of

2. Raudenbush, 1. W., Ideal theory and algebraic differential equations. Trans.
Amer. Math, Soc., 36 (1934), 361—368 ; Riti, the last paper of the footnote 1.

3. Under the restriction of the space, we shall use the concepts in RII without
repeating their definitions; also, we describe only the ouilines of our proofs.

4. In this paper, we mean by “ideal” one that is closed with respect to the differenti-
ation.
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the rank is independent of the choice of a basic set from a regular ideal.
If the index of X is smaller than that of X', then X is necessarily of
lower rank than 2’. In this ordering of the regnlar ideals, the minimal
condition is satisfied. Thercfore, in order to prove the caistence of the
basis for regular ideals, we can vely on the induction wwith respect to this
ranking. The unit-ideal, which is the regular ideal of the lowest rank,
has plainly the basis 1.

- Now, let X be a regular ideal of P’ of the index 7, and assume that
every rvegular ideal of lower index or of lower vank than X has tle basis.
In § 6 we shall prove, under this agsumption, that X must have the basis.
If this would be established, then by induction, the proof of the basis-
theorem would be completed. Meanwhile, let (4) = (44, ++-,4;) be a basic
set of X, and denote by 8, I; the separant and the initial of A;(i =1,
2, -+,8). Then, both S;, I; are nccessarily reduced vith respect to the
aseending set (A).

Under our assumption, we can prove that the ideals (X, 8y, (2, 1,),
which are generated by X and 8;, by 2 and I, respectively, and which
are not necessarily regular, must have the bases (¢=1, -+, 5).

5. A lemma. Applying a lemma of Raudenbush,” we can prove:

Lemma. Liet X be an ideal of P, and let @, H two clements of
such that the ideals (2, ), (2, H) have the bases. And, let their bases be

(1) -Bl: “';Bm; G:
Bie ZG=1,,m))
(2) Bl)"',Bm; II)

respectively (where we can assume that By, -, B,, in (1), (2) are common
to both sets). Then the set

By, o, B, GH

is a basis of the ideal (X2, GH).

6. The proof of the basis-theorem. I.ct X be a regular non-zero
ideal of P’ of the index 7, and let (1) = (4;, -+, 4;) be a basic set of
2% Put

T o= S1 Ss ]1 ].9)

5. See fooinote 2. The lemma asserts that, if the product GH of two differential
polynomials G, £I' is a linear combination of a set Py, -+, P, of differential polynomials
and their derivatives, so are the sufficiently large powers of (dG/dx) I1.

6. We can take () such that the first n — j elements 4, ---, dy—; are regular series
of the classes j -+ 1,--,n respectively and that «; is a polynomial in yj41, -+ yj+¢ for
every i(1<i<n—j).
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where 8;, I; are the separant and the initial of 4; (i=1,---,s). Now, as
it was mentioned in §4, we assume that all regular ideals of the in-
dices < § or of lower ranks than X have the bases, and deduce that X
itself must have the basis.

It was already remarked in §4 that all ideals (X, §) and (2, I,)
(=1, ---,5) have the bases. Hence, according to the lemma of § 5, the
ideal (X, T) has the basis. Let

Bh Y Bm; r
be a basis of (X, 7). Then, it can be shown that

Agy ey Ay Bl, -, By,

is a basis of 2,
(Proof) Let I be any element of X. Write F as a polynomial in
ysi=1,-,m; j=1,2,--) with scries as its coefficients :

A
7= §3 (‘!I.:)Ilc)
k=1
where Y)’s are distinct monomials of y,; (6 =1,,n; f=1,2,-) which
are cffectively contained in £ and cocfficients @, are scries. Applying
to ¢, Spiith’s theorem and algebraic division by A4;, we arrive af the
equalities :

(o= Hopydy 4 - + Hydy + G <L~1,u,~-»,x>,<p=n—j>,

where A4, -+, 4, are those clements of the basic set (A4) of X that are
regular series of the classes j + 1, -, n vespectively, and where f4,,, -+

, T, G ave sevies of B, and (5, (k==1,9, -+, ) arc polynomialg in
Yist, 0 Yne  Lherefore, we have

F=H,d,+ - + HA + T,

where Hy, -, H,, I7 arc elements of P and 7 is a polynomial of 1.1,
sin and g (=1,2, - 05 b=1,2,-) from X
Since I is an clement of (X, 7), there exists a positive integer g
such that

(F)T = Py (d'B, /2"y +>7 0 (477 da") (1)
h=0

l,h

(Pih,, Ore S/B/\
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While, let " be the remainder of I’ with respect to the ascending
set (4), then

T F' =TF"(4),

where 7 is a power product of 8, L;(i=1, -+, 5) and F” is an clement
of & reduced with respect to the ascending set (A4); the congruence
means modulo the ideal generated by Ai, -+, 4. If F” were not zero,
2 would have an ascending set of lower rank than the basic set (A);
this would be a contradiction. Thus, 74F’ must be a linear combination
of the elements of (4) and their derivatives. Hence, for sufficiently large
integer ¢, (TF')" must be a linear combination of the elements of (4) and
their derivatives. ' i

Therefore, by the lemma of Raundenbush, there is a positive integer
v such that

(I 1), (B AT/ de)), (B (@2 da®), -+, (B (& T/ da’)?

are linear combinations of the clements of (A) and their derivatives.

Now, multiplying (1) by " and taking the {(+ + 1) (v — 1) +1} th
power of it, we see that ((F/)™*1)+DO=D* ig o lincar combination of the
clements of (A) and their derivatives.




