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Abstract

The aim of this article is to give an estimate of linear forms in p-adic loga-
rithms in elliptic case. We define for this estimate a p-adic elliptic logarithmic
function viewed as a local reversed function of the Lutz-Weil p-adic elliptic
function. We also present some Taylor expansion estimates by means of for-
mal groups of elliptic curves, which would be useful to describe arithmetical
behaviors of the function.

1. Introduction

Let K be an algebraic number field of finite degree D over the rational
number field Q. Consider £ an elliptic curve defined over K, which is defined
by the Weierstra§ equation of the following form: y?> = 23 —ax—b (a,b € OK)
with 4a® # 27b%.

Let | - | be an Archimedean valuation on K and p be a rational prime € Q.
For a place v of K over p, we write the valuation | - |, normalized such that
||y = p~°"%(®) for z € Q. Denote K, the completion of K by v, and write
Qp the completion of Q by p. The field K, is a finite extention of Q, of local
degree d, = [K, : Qp]. Put C, the completion of the algebraic closure of K,
(we note that the algebraic closure of K, is not complete). We know that C,
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is algebraically closed complete field of charasteristic 0, in which the algebraic

closure of K, is dense and that there are D distinct embeddings of K into C,.
Put A\, = p—h if p#£2 and Ay = 3. Weset Cp := {2 € Cp : |2] < p 7}

and C, :=Cp N K,. Let B1,--- ,Bx € K with |B;|, <1for any i, 1 <i<k.

2. p-adic elliptic function

We recall the definition of the Lutz-Weil elliptic p-adic function. It is known
that there exists an analytic function ¢ defined on C, — K, satisfying ¢(0) =
0, ¢'(0) = 1 and the differential equation (Y’)? = 1 —aY* —bY®. We may also
enlarge the domain of the definition of this function ¢ to Cp. For the p-adic
Lie-group £(C,) we have the exponential map C, — £(C,) represented by

exp,(2) = (p(2), ¢ (2), ¥°(2))
which is called the Lutz-Weil elliptic p-adic function.

Thus the elliptic curve is written by Y2Z = X3 —aX22-bZ3 for (X,Y,Z) =
(¢, ¢, ¢%). The difference between this p-adic exponential map and the com-
plex one is the fact that ¢ is locally analytic only on Cp, not on C,. Indeed, ¢
is an odd and injective function such that |p(2)]y = |2v, |[¢’(2)]s = 1 for any
z € Cp, then exp, has no period. There are corresponding addition formula
and derivation formula like the Weierstraf§ elliptic function .

For an algebraic number, write h(-) as the absolute logarithmic projective

height.

3. Our p-adic lower bound

Now we present our estimate of linear forms in p-adic logarithms in elliptic
case.

Main Theorem Let & -+, & be elliptic curves defined by y* = z° —a;z—b;
where a;,b; € Og (1 <i < k). Put

h = llgf%(k{h(l,ai,bi), 1}.

For1<i<k, let

0+#u; € {u€el, : expy(u) € &(K)}.
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Y
Define U; = p*

' lui Iv

(> 1) and V; by

log V; > max{h(exp, (us)), %} (1<i<k)

where we may suppose
Uy = max(U;), Vi =max(V;), 1<i<k.
Let By, Br.€ K — {0}, |Bilo <1(1 <i<k) and put

logB 2 lfgf_lfék{l, h{(B:)}.

If  Biui + -+ + Brug # 0, then there exists an effective constant C > 0
depending only on k,p such that

log |B1uy + - - Brurly 2
—C - D?**2 (log B + h + loglog V; + log DU,)

2

k
x (loglog Vi + h + log DU T x TT (h + log V; + log Uy;)
=1

(these log’s mean the usual Archimedean logarithms).

4. p-adic elliptic logarithmic function

The proof of the theorem relies on the usual transcendence machine which
is also settled in p-adic elliptic case (see [Be] [R-U]), as well as p-adic case of
usual logarithmic function (see [Yul] [Yu2]) except our following new point.

Let us present our definition of p-adic elliptic logarithmic function. It is just
defined below as a local reversed function of our injective expp(z) around the
origin, but in practice, since we need everywhere explicit estimates, we define
the function by using the formal group of elliptic curve. We thus have explicit
estimates deduced from Taylor expansion of expp(z) and see that the n-th
Taylor coefficient of p-adic elliptic logarithmic function at the origin has the
denominator 2n, that is indeed analogous to the usual Archimedean logarithmic
function having the denominator n (see [Da-Hil] [Da-Hi2]).

Let us recall the formal group of the elliptic curves as follows. Let us consider
the equation y? = 4z% — ax — b (we may slightly modify the equation by 4).
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We below introduce a local parameter ¢ and define w(t). We see t ~ z around
2z =10. This t is a local uniformizer at the origin of the elliptic curve, and leads
to consider a power series ring in one variable ¢t on £. In fact, in Archimedean
case, it is already known that w(t) is a formal power series in ¢ (Proposition 1.1
(a), Page 111 of [Sil]) and an estimate is given by David and the author [Da-
Hi2]. We note below that the series has a positive radius of convergence around
the origin, namely w(¢) can be identified with its Taylor series. We denote by
z = z(t) = [ Q(t), where Q(2) is a differential form in the local parameter ¢
(see [Sil], Chapter IV, Section 5), then by this 2(t) we have in Lemma 2 our
definition of an elliptic logarithmic function in p-adic case.

Here we present explicit estimates.

Lemma 1  Consider the elliptic curve defined by

=42 —azx—-b, abekK.

2z 2 a b
Lett=——, w(t)= =5 a=-, 8= -1 Then we have
w(t) = ZAnt"
£>3
with
An = ) agla? Bl (n 2 3)

4p+6q=n—3,p,q€Z,p,q>0

where a§,’jﬁ,’ € Z with
I (n) 33. 8n-3

< > > > 0).
ap7ql - n3(p+1)3(q+1)3 (n-—glp—07q_.0)

Moreover, we have
h(Ay) < 51+ nh.

Outline of the proof of Lemma 1 It is known that the coefficient A, is
written in a homogeneous polynomial of degree n — 3 (see Proposition 1.1,
Chap 4 of [Sil])). We put A = ot(w(t))? and B = B(w(t))®. Then we get
w(t) =t>+ A+ B with

A=y XYY dmemiges

n>7 i1+ig=n—1 4p;1+46g1=%1—3 4pr+6ga=iz—3
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and B =
5
n (4s) (%4) (i) . Pa+Pat+ps gqs+qatgs+l
Zt Z Z Z %ps,q3 P4,¢14a‘P5 g /B .
n>9  dizt+igtis=n =3 4p;+6¢;=%;-3 .
We have by induction :

33.8n—3
o)l <
@p,q n3p+ 1)3(g +1)3

(4p+ 69 =n — 3)

by means of }: 313< 3CnGZn>6)
i1+ig=n,i; >3,i2>3 1%
To get the estimate the height of A,,, first we use h(a,(,’,‘g ) < nlog8 for any
integers p, ¢ with 4p 4+ 6g = n — 3 since

33 .8n-3
lP I 3 3 3S8
n3(p+1)%(¢+1)

n

Consider any place v satisfying |A,| > 1. The cardinality of such places is
finite. If v is an infinite place, we have

[Anlo = 2. a{Tyar B
4p+6q=n—3,p,q€Z,p,q20 v
< 3 la{™) [ [af216]2 < 8" x v 2| 8¢
"~ 4p+6q=n—3,p,q€Z,p,q>0 4p+6q=n—3,p,q€Z,p,q >0

< 8"(n — 2) max{1, |o],, |ﬁ|v}n_3'

If v is a finite place, noting the fact a§,’t} € Z, we have

(n) P39 D Aq|. n—3
lA lv 4 +6q < _ 310' af B l =y +I&33% 3'0[ B l’u Sma’x{l"alvaiﬁlv} .

Then we obtain the estimate of h(A,,) by definition of height and deﬁmtlon of
a, . 0O

The following statement gives the definition of our p-adic elliptic logarith-
mic function, showing that the n-th Taylor coefficient of the function has the
denominator 2n. :
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Lemma 2 For z,y satisfying y> =42 —az —b (a,b € K),

utt = — 2% w(t)-——--z— a—_2 p=-0
p - y7 — y: - 47 - 4;
_ti(t
Q=% ;”;m)dt
y RN

and
4 (sto)
z=2z(t) = /Q(t) =/—t—u§—-—dt
BRTIO)
Then 2(t) is defined as a local reversed function of t namely an elliptic loga-
rithmic function whose Taylor expansion is given by

2(t) = Z B,t"
n>1
with
& n
B,=-2",  Cp= > bijert (n21)

4p+6q=n—1,p,q€Z,p,q20

n

where b;,q) € Z with

104n
n?(p+1)3(g+1)3

b < (n>1,p>0,g>0).

Moreover, we have
h(Cp) < 12n+nh.

Outline of the proof of Lemma 2 The function z(t) is by definition an
elliptic logarithmic function, namely the reversed function of ¢(z(t)) around
t=0.
As w(t) is reversible, put
1 1
D,t" = = .
2 P B T T At

n>-3

We have D_3 =1 and

:E: fhlz;ZZO (n;Zl).

i+j=n
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Suppose for —3 < v < n — 4 that we have
D= Y e
4p+6q=v+3
with d%) € Z and |
104(1/-{—3)

13l < P T P TIP

D9

which is true for v = —3. ‘
Using the relation above which implies D,,_3 = —(A4Dp—_4+-- -+ Apn13D_3),
we get by induction hypothesis

ld(n——3)| < 104n
P 1S A DR+ (g + P

We then obtain

z(t):—%/z:t" > (G+1)DjAdt

n>0  i+j=n,i>3

:_-2-1-7;219‘ Y (G+1)DA

n>1  itj=n—1,>3

Consequently, for n > 1 we obtain

> Biers

4p+4+6g=n—1
— : 4 '
= E (J+1) § : oP 31 Z a’§71)7¢11 dz(?z),lh‘
i+j=n—1,i>3 4p+6g=n—1 P1+p2=p,q1+92=¢

For n = 1,we have b§,'fq) = bg}(), = —2. Then the lemma is true. Suppose that
this holds true for n > 2. Then the absolute value of the rational coefficient of
aP 37 above is bounded by <

2333p104(n—1) < 10"
(n—=13(+1)*(¢+1)® = n?(p+1)3(g+1)3

by means of the upper bound of |d§,’f{ %) |. Hence we obtain the upper bound of
Ll

’

The argument to estimate the height of A,, in Lemma 1 gives us the upper
bound of A(C,,). O
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