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1. Introduction

In two recent papers (1, 2) we have obtained the exact analytical
golution of Oseen’s linecarized equations of motion for the case of a
circular cylinder moving through an incompressible viscous fluid at
small Reynolds numbers, and with the aid of this exact solution we
have derived the gencral expression for the drag experienced by the
cylinder, making special reference to the pressure drag and frictional
drag separately. The valaes of the drag coefficient for several small
Reynolds numbers have been computed numerically and it has been
found that the calculated values are in good agreement with the experi-
mental values. In calculating the values of the drag coefficient,
however, a system of simultaneous linear algebraic equations has to
be solved numerically so that the work is rather cumbersome. It is
therefore desirable to derive, if possible, an approximate formula which
may be conveniently used for computing the values of the drag, namely
an expansion formula in powers of the Reynolds number®. — Suck sn
expansion formula has recently been obtained by us, starting from our
general expression for the drag of the circular cylinder, though the
result is unpublished yet.

Quite recently Sidrak (4) has made, on the basis of Oseen’s linearized
equations of motion as in our calculation, a similar investigation on
the drag on a circular ¢ylinder in a stream of viscous liquid at small
Reynolds numbers, and has also derived an expansion formuls for the
drag. Although his analysis is slightly different from ours, it is natu-
rally expected that the expansion formula derived by him should be

* As is well known, a corresponding expansion formula in powers of the Reynolds
number for the drag of a sphere was obtained by Goldstein as early as 1929 (3).
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coincident with our formula. No agreement can be found between the
two formulae, however. We have therefore examined carefully Sidrak’s
analysis and have found out that there are unfortunately some mistakes
in the course of his analysis, which give rise to an erroneous result.

The object of the present note lies in the derivation of a correct
expansion formula by starting from the general expression given by
Sidrak himself for the drag on a circular cylinder.

2. Sidrak’s general expression for the drag on a circular cylinder

For convenience of reference we first reproduce briefly, without change
in notations, the general expression for the drag on a circular cylinder
which bhas been obtained by Sidrak by applying Filon’s general analy-.
sis (5) directly to the motion of the circular cylinder.

We assume that a circular cylinder moves with constant velocity U
in the positive direction of the axis of @, and let » and v denote the
rectangnlar components of the perturbation velocity. In terms of the
polar coordinates (r, 6), these components arc given by
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where & = U/2v, v being the kinematic coefficient of viscosity of the
fluid, and K, is the modified Bessel function. The constants of inte-
gration &, a, and &, are to be determined by the boundary conditions
at the surface of the cylinder. If we denote the radius of the cylinder
by «, the said conditions are

w=—U, v=20

at » = a. These conditions give the relations between the constants
8, a, and &,, and further it is found that the «,’s can be determined
3 b
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by solving the following equations*:
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where

an,m = Iin -Zn—m + Kn+1 n+m+l g

the argument of both the modified Bessel functions K, and I, being ka.
As is well known, Filon (5) has discussed the forces on a cylinder
of any shape and has shown that the drag is associated with a parti-
cular term in the solution of Oseen’s equations, which corresponds to
an inward flow along the tail and a compensating outward flow across
a large contour surrounding the cylinder. In the case of the circular
cylinder now under consideration, the drag on the cylinder is given by"

D= —dmpSa, . | (3)
n=0

where g is the coefficient of viscosity of the fluid. The constants a.'s
are determined by solving the above system of simultaneous algebraic
cquations (2) and the general expression for the drag on the circular
cylinder can thus be obtained.

3. Derivation of an expansion formula for the drag

‘We now proceed to the derivation of an expansion formula, starting
from the general expression (3) for the drag on the cylinder. As men-
tioned above, the drag is given by (3) in terms of the a,’s which are
to be found by solving (2). Theoretically, the solution of (2) is to be
achieved by means of infinite determinants ; practically, however, to find
the solution numerically for any given value of %a, we solve a finite
number of equations. Thus, for the first approximation, we put a:, a.,
ag, and so on, equal to zero, and solve the first equation for aq,. For
the second approximation, we put as, as, and so on, equal to zero, and
solve the first two equations for a, and a1, and so on.

For our present purpose of deriving an expansion formula for the
drag, we have first to express the coefficients ,,’s in power scries of

* These equalions should be compared with the similar equations (37) in our previous
paper (1).

t It will be seen that this general expression: for the drag is of a similar form to ours.
See, formula (47) in our previous paper (1).
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ka by using the expansions of the modified Bessel functions K, and 7,*.
Writing
2 =7 + log(}ka)

for the moment where 7 = 0,57721--- is Euler’s constant, we get the
following results:*
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#* Throughout our calculations the series definitions for the modified Bessel functions
Kpn, In are those adopted by G.N. Watson’s ‘Theory of Bessel Functions’ (Cambridge,
1922).

t The corresponding expressions are not given in Sidrak’s paper (4).
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oy = Kol + Kyl

Assuming ka to be small we can easily sce that the orders of o, ar,
@z, -+ are 1, (ka)®, (ka)', --- respectively. Therefore our method of
approximation is justified.
As usual we introduce here the non-dimensional drag coefficient
Cp defined by
Up = D
D= ‘OIJ_) d ’

(4)

where o is the density of the fluid and d the diameter of the cylinder
s0 that d = 2a. Then, the general expression for Op becomes
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where R = 4ka = Ud/v is the Reynolds number.
We have obtained the first, second and third approximate expres-
sions for Op respectively. The first approximation gives

49 ‘
OD—,[iA’ (6)

where we have written 4 for & — £ so that
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Formula (6) is nothing but the well-known result obtained by Lamb.

Next, the second approximation yields an expansion formula of

the form:
47 1/, 1 5\ B°
OD“RA[I“A<A 2A+16>32]' (8)

Further, the third approximation gives™

* Sidrak has gone as far as the fourth approximation, but it will be seen in the sub-
sequent section that the third approximation is quite sufficient for computing the
values of Cp provided that the Reynolds number R is less than 4.
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It is found that this formula is in accordance with that obtained by
us previously from our general expression (47) for the drag in our
former paper (1).*

4. Numerical computations

It will be imbortant to estimate the range of values of the Reynolds
number in which our expansion formula (9) just obtained is applicable.
Such an estimation can be made by examining the convergency of the
expansion formula and also by comparing the values of the drag co-
efficient calcnlated by the expansion formula (9) with those calculated
numerically with the aid of the general expression (5).

Ag for the convergency of our formula, it is first seen that in the
neighbourhood of £ = 7.4 at which 4 becomes zero, our formula is
evidently divergent. In Table I the numerical values of the three terms
in the square brackets in the formula (9) are given for various values

P

of the Reynolds number /72 less than 7. The third column gives the

values of the second term:

L Ly, BV
~—A<A A+)

while the fourth column gives the values of the third term:

(A‘ Lar Tao 25>Hf.
3
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# The corresponding expression obtained by Sidrak will be given here, for comparison,
though it is not correct. Thus,

vy = A0 R Ly
Oo=7311— (8) (2““ A"l)
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7 =0.57721--- being as before Euler’s constant.
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It will be seen that our formula (9) begins to diverge at /2 = 4, below
which, however, our formula converges rather rapidly.

TABLE 1
R Ist term ’ 2nd term 3rd term
04 1 - 0.01 — 0.00
0.6 1 — 0.02 ~ 0.00
0.8 1 — 0.04 — 0.00
1 1 — 0.05 — 0.00
2 1 — 0.13 — 0.02
3 1 — 0.21 — 0.04
4 1 - 031 — 0.02
"5 1 — 0.54 0.22
6 1 — 134 2.24
7 1 — 7.82 68.21

The values of the drag coefficient calculated respectively by the first,
second and third approximate formulae are given in Table IT and arc
shown graphically in Fig. 1. In the last column of this table are also
shown the valnes of the drag coefficient calculated numerically by the
general formula (5).* It will be scen that for the values of the Reynolds
number less than 4, our third approximate expansion formula (9) gives,
with sufficient accuracy, the values of the drag coefficient of the circular

cylinder.”
TABLE II Values of Cp

> Ca ]:
R 1st approx. 2nd approx. 3rd approx. ll)(;u (ét)ed
04 10.76 10.63 10.63 10.63
0.6 8.33 813 8.13 8.13
0.8 7.06 6.80 6.78 6.78
1 6.28 5.95 5.93 5.93
2 4.80 417 4.07 . 4.04
3 4.64 3.66 3.47 3.39
4 — 3.51 3.42 2.92

B

# The values of the drag coeflicient calculated numerically by the general formula (5)
are exactly the same as those calculated by formula (48) in our previous paper (I).
See Table I there.

t It is merely accidental that the values of the drag coeflicient computed by Sidrak by
his own expansion formula differ only slightly from those calculated by our third
approximate formula. See Table I in his paper (4).
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Fig. 1.

5. Summary and conclusicn

In the present note an expansion formula correct to the fourth power
of the Reynolds number 72 ig derived by starting from the general
expression for the drag on a circular cylinder obtained recently by Sidralk,
and it is found that the formula thus obtained agrees with that obtained
by us previously, which is not yet published.

Sidrak himself has also derived a similar expansion formula for
the drag coefficient by making use of his general formula.  Notwith-
standing that our analysis is developed along the same lines ag Sidral’s,
no agreement is found between our expansion formula and the corre-
sponding Sidrak’s formula. By careful examination of Sidral’s analysis,
it has been found that his result is unfortunately erroncous. It secms
that the source of crror lies in his use of incorrect expansions for the
modified Bessel function K.

Some numerical discussions are made on the values of the drag co-
efficient by using our expansion formula, and the range of values of
the Reynolds number 72 is estimated in which our expansion formula
is applicable. It is thus found that our expansion formula correct to
the order of I2* can be used with sufficient accuracy, provided that
the Reynolds number asgumes the values less than 4.
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