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1. Introduction and summary

Theoretical studies on the two-dimensional supersonic free jet of
a perfect gas were made by Prandtl (1) in 1904, and the ratio of the
breadth of jet to the wave-length of the wavy motion has been obtained
as a function of the Mach number associated with the mean-stream velo-
city. In his paper, however, the deformations of the free-gtreamline
boundaries from the straight lines were neglected. Later, Riabouchinsky
(2) treated the same problem by a different method under a similar
assumption that the flow is almost uniform, and obtained the stream-
lines and the isobars. The approximation of his analysis is considered
to be better than that of Prandtl. However, a hypothetical gas employed
by bim is essentinlly of the same approximate nature as Karman-Tsien’s
hypothetical gas (3) whose pressure-density curve has a common tangent
but different curvature with the adiabatic pressure-density curve.

In the present paper, a certain appropriate equation of state-change
of gas is assumed so that the fundamental equations for the stream
function and the velocity potential might easily be solved exactly.
A hypothetical gas such introduced can approximate in fact the real
gas obeying the adiabatic law better than Karméan-Tsien’s hypothetical
gas, since its pregsure-density curve can be made to coincide up to its
curvature with the corresponding curve for the real gas. Of course,
the validity of the present theory is limited to some range of speeds
over which both our hypothetical gas and the real gas have similar
properties. But, in this range, once the fundamental equations of motion
for our hypothetical gas be solved exactly, it will be possible to infer,
from the results obtained, more reliably the general behaviours of the
corresponding real gas flow, rather than from the approximate solutions

* Communicated by Professor S. Tomotika.
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of the exact equations of motion of the real gas which obeys the adia-
batic law,

It is shown that the fundamental equation for the stream function
governing the flow of our hypothetical gas has a family of exact solu-
tions of simple form, and combing some of appropriate solutions we can
construct the solution for the supersonic free jet. In this case, we meet
with a problem how to join two hodograph solutions on a certain curve,
This is done, in our problem, on a characteristics of the fundamental
hodograph equations. The special characteristics on which the hodo-
graph solution branches are called the branch-line, When two solutions
are joined on the branch-line, there occur in general digcontinuities of
the curvature of the streamline and of the velocity gradient in the
physical plane. In the present paper, two solutions are joined on the
branch-line in such a way that at least the curvature of the streamline
and the velocity gradient are continuous there. It will be one of the
important future problems to discuss how we must join two hodograph
solutions so that they represent a perfectly regular flow in the physical
plane.

A detailed numerical disccussion hag been made in a special case,
giving the Mach lines networks, the isobars and the curves of the con-
stant direction of velocity vectors in the physical plane. In the appendix,
a general relationship between the breadth, the wave-length, the flow
quantity of jet and the Mach number of the mean-flow is given for a
group of solutions representing the supersonic free jet. This relation
is consgidered to be an extension of Prandtl’s formula “and, ‘when the
deformation of the free-streamline boundaries is neglected, it degenerates
into his formula,

The writer wishes to express his cordial thanks to Professor Dr. S.
Tomotika for his continued interest throughout this work, and also to
Dr. K. Tamada for his kind suggestions.

2. Fundamental equations

It is well known that when the magnitnde, ¢, and the angle of in-
clination, €, of the velocity vector are taken as independent variables,
the equations of steady irrotational motion of a perfect gas in two-
dimensions are given by

, d p0>? 00q
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where @ and ¥ are the velocity potential and the stream function for

the flow respectively, and p and g, are the density at any point and

at the stagnation point jin the flow field respectively. Suffixes ¢, &

in @y, ¥y, @y, ¥y denote partial differentiation with respect to ¢ or 6.
Instead of ¢, we introduce a new variable 7 defined by

q , 0

'r=—~f (— K2 gy, {2.9)
pog

with Ke— 079 (~"-‘3> (2. 3)
o dg\oq

Now, let us assume that the pressure, p, of the gas is a function of
the density o only. Then, by making use of Bernoulli’s equation in
differential form: gdg + dp/p = 0, we get dp/dg = — pg/c’, where
¢ = vVdp/dp is the local speed of sound. Thus, K is written as

K = (1 — -‘Z-) (:Z-“) . (2. 4)

If o certain equation of state of the gas is assumed, K becomes a definite
function of ¢ (and therefore, of 7) only.
Ecquations (2. 1) are now transformed into
(j}T: - 12W07, ¢0:"— - quf'r;
' } (2.8)
1= (— K.

Further, in place of @ and ¥, we use, with Professor I. Imai (4),
¢ and 4 as dependent variables which are connected with @ and ¥ as:

O =1p, W=7y, (2. 6)
Then equations (2. 5) become
A
¢'r'r—‘ ¢DO= Z"—g“¢, (2. 7)
dr
dX
"1{/'77_'11!"00=x 1&;’5‘;’"- (2. 8)

As far as we confine ourselves to the adiabatic gas flow, no simple
exact solutions can be obtained in general, Therefore, we now introduce
such a hypothetical gas that cnables the above equations to be solved
simply. Thus, we assume that

2=oc17 + ¢ (2.9
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where ¢, ¢2 are, for the present, arbitrary constants. Then, the equa-
tion for « takes the form:
‘l’f’r - "I/‘OB =0 ’

and the general solution of this equation is given by
Y=Ff(r+6)+ gl —0)

where f, ¢ are both arbitrary functions. Thus the expression for the
function ¥ becomes

V=Y flr + 8) + glr — 0)}, (2. 10)
while the corresponding expression for @ takes the form:

@ =1{— flr + 0) + g(r — 0}
-mf?f(»r +6) + glr — 0)}db . (2.11)

3. Equations of state of our hypothetical gas

The equation of state-change of our hypothctical gas can be obtained
by a method used by Imai (5).

Now we put ¥ = @(g) cos8, where @(g) is a function of ¢ only.
Then, the equation for determining @ becomes finear and has two in-
dependent solutions: 1/¢ and p/qg, where p is the pressure. Hence, if
we write ¥ = 7(7) cos8, cach of the two functions 1/¢ and p/g must
be expressed as a linear combination of the solutions of the equation
for determining 7'(r), namely :

e Tl S e (B 3.1
For convenience’s sake, we use, instead of 7, another new variable ¢
defined as:

t=7+££. 3.2
€1

Then, the general solution of equation (3. 1) is given by At 'sin(t + ¢),
where 4 and e are arbitrary constants of integration. Hence, we get

q A 12 q t

B and 8 being also congtants.
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Assuming that p =p:, t =4, 7 =71 at ¢ = ¢, we get

g _t sin (¢ + e_) P _ sin(¢; + e)sin(¢ + 82 3. 4)
@1 tisin@ +e)’  pi sinG + e)sin(¢ + 8)’ o

with

th=m + “‘CE . (3 5)
C1

The density o can be obtained from (2. 2) as follows:

p _tsin(® + e)sin(t: + €) — ticos(ti + e) 3.6)
o1 tsin(h + e)sin@ + e) — ¢ cost + €)’ o

where we have assumed that p = py at ¢ = ¢1.
Finally, the local Mach number M, defined as ¢/c, is glven by

. oot . -
M =1 + {—meee———p | 3.
. {1 — ¢t cot(t + e)} (3.7)

4. Determination of constants r,, ¢, ¢., €, 8

For our hypothetical gas, ¥ and 7 arc related by (2.9), while for
the real gas obeying the adiabatic law, the corresponding quantitics,
denoted by X, and 7, respectively, are related indirectly by the two
equations :

Ta= (@@ — 1) FC P pd g2 4 2
Te = tan~t¢ — atan”lg“, . 1)’
oz — 1\: e , T +1
where §~—< 1= > ) z="§1{€m, =

Quax being the theorctically attainable maximum value of ¢, and 7
the ratio of the specific heats of the real gas subject to the adiabatic
law. ' ‘

Now, we choose the curve of the state-change for our hypothetical
gas as follows,  First, we assume that 7 is cqual to 7, at ¢ = g1,
namely : -

¢ o’z — 1N\E q,
1= tan" & — atan™! 2, & = | s zlz——]—;;‘ . 4.2)
L . a o\ Jmax
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Further, we assume that at the point T = 71 the X-7 curve coincides with
the corresponding X475 curve for the real gas up to their tangents;
i, e., we assume that

dX,

(L)ggmr, = €171+ €2 ("*’ =gy .
fTa=m ’ d'Ta Tg=Ty

Then we get

1 .y w k@
1= — —a’(@®— 1) *

“‘g‘ a e SCEESS) 2\ 0
7 & Taf + &) 1+ &),

(4.3)

o —tar-1y L sy (@2 =1)
co=(a”— 1) * )glz(a + Ci)& T T,

and ¢ can be determined by (3. 5).

Next, we proceed to the determination of € and 8. Since p, ¢ and
p must obey Bernoulli’s equation in differential form: ¢dg + dp/p = 0,
if we substitute (3. 3), (3.4) and (3. 6) in this equation and put p and
2} qul{bl' to the corresponding quantities for the real gas respectively,
we get following relation :
ar . 2z sin( + 8)

si — 8 + ==
gin(e ) 11— m .

X {s‘iﬁ(h + &) — tyeos(t + e)} =0. (4. 4)

Further, let the tangent to the p-¢ curve for our hypothetical gas
at the point ¢ = ¢q1, p = p1, be coincident with the tangent to the p-¢
curve for the real gas. Then it follows that

t1 # 2 21
= - 1. 4.
{1 — ¢ cot{ty + e)} 7 — 11—z 1 (4.9)

It will be seen that this condition is equivalent to assuming that for
both our hypothetical gas and the real gas the respective Mach num-
bers at ¢ = ¢1 coincide with each other.

The five equations (4. 2)—(4. 5) enable us to determine five constants
Ti, €1, €2, €, © involved in the equations of state of our hypothetical
gas. Since we have assamed that at ¢ = ¢ the X-r curve coincides with
the X1, curve up to their tangents, it is readily proved that the p-p
curves for both gases coincide with each other up to their curvatures.
Therefore, our present hypothetical gas is a better approximation to
the real gas near the point ¢ = ¢1 than Kéarman-Tsien’s hypothetical
gas. Fig. 1 shows the curve of p/p: plotted against p1/p in a special
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case when J; = v/5 . Tt will be seen that our hypothetical gas approxi-
mates excellently the real gas.

3
\
a \
A \\
!
u
]
2
\ —— Present hypoth., Qas
Ny | Real ¢ds (adieb. change)
' - Karman-Tsiens hypoth. gas
1
0 1 2 3 3

Fig. 1.

5. Solution for the supersonic free gas jet

The streamlines in the two-dimensional wavy flow of supersonic free
jet are expressed, in the hodograph plane, as a family of closed curves
round a point which corresponds to the mean velocity. It is well known
that if a streamline touches one of the characteristics of the fundamental
equation (2. 8), therc appears in general a turn back of the streamline
in the physical plane and a limit line is formed. It has been found,
however, that when the envelope of the family of the streamlines in the
hodograph plane coincides with one of the characteristics, the limit line
does not appear in the physical plane. Therefore, we now search for
a family of closed streamlines in the hodograph plane which satisfy the
above condition.

For convenience, we introduce new variables &, # in place of =, €
as follows:

¢ = {ﬁ+a—(7+‘5)}; "7='l{71+“"“<7“9)}' 6. 1)

20

=



200 Zird Hasimoto.

As will be scen presently, ¢ is a constant which is connected with the
deviation of the velocity vector from that of the mean-flow. The charac-
teristics of the equation (2. 8) are expressed by the equations 7 = 6 =
const and accordingly also by & = const and 5 = const. Now, we
consider in the hodograph plane a square region with centre at the
point 7 =17y, § = 0 whose sides are given by 7=+ 6 =7m1# 6 and
7~ 6 =7 g, namely by £ = 0,1 and 5= 0,1 (Fig. 2). We assume
that all the streamlines in the hodograph plane are simply closed curves
touching the sides of the square as shown in Fig. 3. Also we suppose

@
~3

[ i}

T=T1+0 T

Fig. 2. Fig. 3.

that these closed streamlines are transformed into the streamlines in a
wavy flow of jet in the physical plane. Figs. 4 (a) and 4 (b) represent
the correspondence between two planes. The origin of the physical plane
is taken at the mid-point of the narrowest portion of the jet, and the
2- and y-axes are taken parallel and perpendicular to the main-stream
respectively. The line ABCD denotes the free-streamline boundary on
which ¢ = ¢1, and it corresponds to the segment ABCD in the hodo-
graph plane on which 7 = ;. If we denote the points of the minimum
and maximum velocities on the w-axis by O and O’ respectively, these
correspond to the points 7= 7% ¢, @ = 0 in the hodograph plane.
The lines OB and BO’ in the ay-plane are the particular Mach lines
passing through O and O, and they correspond to the sides OB, BO’
of the square region in the 78-plane. The regions denoted by 1,2, 3,
4 in the ay-plane correspond respectively to the triangular regions:
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OBD(¢ + <1, £20, n=0), OBO'(¢ < », £=0, n<1), BOD
(E+ 921, EX1, 1) and ODO(E= 1, €1, n=0) in the
hodograph plane. We denote the velocity potentials and -the stream
functions in these regions by @1, ¥1; @o, ¥o; @y, ¥s; @4, ¥y respec-
tively.

8

ol

vy}

Fig. 4. (b)

To determine #;(i = 1,2, 3,4) we shall take account of the physical
conditions that the flow in the physical plane is symmetrical with respect
to both the a-, y-axes and that the flow is bounded by two free-stream-
lines. These conditions, together with the continuity of the stream-
lines, are stated as follows:
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(i) yfl(é: 77) = gfl(’]: 5)7 qf1<€:1 - é) = const, ?I/I(an) = O;\\

(11) yfil(o, 77) = W1(09 "7): gf‘:(f: 5) = O, ’ L(5 2)
(iii) qu(é:, l)xwe(f, 1), qf:;(étyl‘“ §)=?ﬂ1(§,1—' 5); '( .
(J:V) ?If_,_(l, 7}) = ?I/s‘(l: ’7), W‘l(f’ S) =0. !

These conditions determine ¥’s as follows:
V= 1THF(E) + F(y}, Ve=27{=F(& + F(n}, | (5.5)
Vo= 27— F(&) — F(y + 2k}, U= 77T{F(§) — F(n)}, / '
where
F(+0)=0, FE+FI1—§=cmst=F%t OLEZ. (5.4)

Also, @/’s are obtained in the forms:
£ n .
Gy= L{— F(&) + F(n)} — sz F(E)dE + QClafF(n)dn,
0 o

£ 7
Gy = 1{F(E) + Flp)} + 2(:17f F(g)dE + 2010fﬁ’(77)dn,

; ; ¢ .
Po=L{F(E) — F(p} + 261ﬂf F(g)dE — 2cmj F(n)dn (5. 5)

B 2(510‘]&(§ —_ ’l]) + Qk((}]’T] + C;:),

£ 7
@y = 1{— F(§) — F)} — 2ei0 [ F(&)dE — 200 [ Fndn

+ erok + 4L (e + €s) ./

6. Conditions for F

Asg for the conditions on the branch-lines which are the Mach lines
passing through O and O', we have only assumed that the stream func-
tion and the velocity potential are continuous. Therefore, although the

~velocity vector and accordingly the tangent to the stream-line are both

continuous near the branch-line, it is not yet certain whether the velo-
city gradient and the curvature of the streamline are continuous or not,
and whether the turn back of the streamline occurs or not.

If we denote the line element of a streamline by ds, the velocity
gradient along the streamline and the curvature of the streamline are
expressed respectively by
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dg 1 dg 1W,— ¥,

ds 2% ar BT,

a 1 1T+,
= 0 s
ds 2 /: ?]fgflf,,

Substituting (5. 3) in these equations, we get, on the branch-line & = 0,

(ﬁ) - id< i.‘_l) (Kt [F () = "(+0)]
ds £ 40 2 7 dr ) [(510'1’7(77) + (Z)gsolﬂ/(’fl)] [Cﬂ’lﬂ(\??) =+ (Z)§=ol'”<+o)] ’

(@ﬁ) R 1o F(n) + (Do F' (1) = F'(+0)]
ds V=06 F () + (Dgeo I ()] [c10F () %= (L)oo B (+0)] 7

=40 2

where the upper of the double signs denotes the limit from the region I,
while the lower the limit from the region 2.  Accordingly, in order
that the velocity gradient and the curvaturc of the streamline may be
continuous, it must be that )

F(+0)=0 or F'(+ 0) =00,

The same conditions are also obtained when we consgider the other branch-
lines: =1, &=1 and » =0,
Next, along a streamline we get

dx cos B\ ) N ]
(dglﬂm—-2< " lwuﬂdﬂn)i(zkﬂz (+ 0)],

the double signs being of the same meaning as before. Thusg, when
F'(4+ 0) =0, dx/dE is finite and of equal amount when approached
to & =0 from cither region, and thercfore the streamline turns back
in the physical plane. On the other hand, when F/(+ 0) = + 00, we
have (da/d&)s,w— T 00, and therefore the streamline docs not turn
back and a smooth flow is obtained. Hence, we impoge upon the func-
tion I the following conditions :

F(4+0)=0, I'(+0)=+o0c, F(+F1— &=k (0D, (6.1)

If we adopt an appropriate one-valued, continuous and smooth function
F(§) satisfying these conditions, we get, by starting with the strcam
functions 7)’s given in (5. 3), a supersonic free jet flow which is con-
tinuous up to the velocity gradient and the curvature of the stream-
Hine. k
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7. An example

As an example, we assume that
FE=vVE—-V1I—E+1, (7.1)

which satisfies the conditions (6.1). Substituting this into (5. 3) and
(5. 5), we obtain the expressions for ¥s and@/’s. Transformation into
the physical plane is made by integrating the following equations:

do = 1 cos 8 4@ — Lo ing qw R
: q °q

dy = 1 sinf d@ + fo cosg d¥ .
q °q
It is found that the flow thus obtained expresses in fact a super-
sonic free jet changing its state of motion periodically in the direction
of the p-axiz. We denote the wave length of the jet, its mean breadth,
the deviation of the breadth from its mean value by N, b and 4 re-
spectively. Then, they are defined by

)\’:2()_/‘”,’ b:?IA +:1/(,’ A::{/C"?/A’ (?-2)

where suffixes O’, A, C denote the points at which the values of the
coordinates arc to be taken (Fig. 4 (a)). For the fow deduced from
(7. 1), it follows that when ¢ is small,

26 1 TG A ML . } )

o V- 1{ 1200z —1) * T O l{
(7.3)

24 1 — 1

e DI e / — (93 / — 3 5

X 3 2v'2 1)17+815(.,m 2— 1) e +O(0‘),j

M, being the Mach number associated with the free-streamline on which

g=q-
Numerical calculations have been worked out for a particular case

when -

My =15 with 7T =14,

i. c., when

1 -
L= 2, a= and a=16.
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[n this case, constants 7; etc. are obtained as follows:

™= — Q.570077 , ty= — 0533333,
o= — 6.306724, o= — 0.231732,
e = — 0.095463, § = 0.973171.

The constant ¢, which is a measure of the deviation of the velocity
from the mean velocity, has been chosen as

=102,

when the speed of flow wvaries in the range 0.884 < ¢/q:1< 1.097.

s [
e
* 97 \
0.
o . £ g !
W@ o 2 ) 4
A Zeo oY '
Y p :
«f N eSS
0 < 7
N $ > '
3 Q5 ) o 1
“ ()G O S ‘
os S )
& o) h
o 93 ot !
2 S :
o1 '
~ XL
0 Q
Fig. 5. Two families of Mach lines.
Ll o
oss

Fig. 6. Curves of 7 ==const and 0 == const.

Fig. 5 shows the two familics of the Mach lines. The Mach lines
marked with & = 0 and » = 1 represent the branch-lines, Fig. 6 shows
the curves of the constant speed (r = const) and those of the constant
direction (8 = const). These two families contact with each other on
the branch-lines, ‘

8. Appendix
Starting with the solution obtained in § 5, we get the relations
between A, b and 4 as follows:
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26 1 0+ DMt &8

x VI — ] (ME— DY & — 468’

gé N 4 aC

A Lk — 468’ (8.1)

where

S ::ij(E) sing (1 —28)dE, O =fjlf’(§) cosa (1 —2E)dE.

Also, we denote by @ the quantity of mass carried by the jet in unit
time, which may be defined by @ = 2p,% 4 with the value ¥4 of the
stream function on the free streamline ABCD. Then we obtain, after
some reductions,

4(M7— 1) —(r + 1) M#( W__>
=b 1- : e L S 8.2
¢ q"ol{ G+ DM I —1 \26 | (8.2)

When ¢ tends to zero, it follows that

24 A T
”7;*—~>O, Q—bgpr, é“gu?v/Mf—l,

which are the well-known results of Prandtl,
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