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1. Introduction and Summary

As is well known, when a body like a bullet moves through the air
at speeds greater than that of sound, a shock wave is formed in front
of the body, and if the velocity of the body is constant, the position
of the wave relative to the body remains unaltered. The formation of
such a shock wave implies that there is an abrupt change of density
and velocity. Ahead of this surface of discontinuity the flow of air
is stationary and behind it there is a continuous field of fuid How
which may contain further shock waves,

The equations governing the propagation of the shock wave were
established by Rankine (1) and his equations determine the relationship
between the conditions both in front of and behind a plane shock wave.
Meyer has developed Rankine’s relations (2) and studied the flow in
the neighbourhood of an inclined plane or a wedge moving at high
supersonic speeds. Later, his analysis was reproduced by Ackeret (3),
who gave a photograph of the flow in the neighbourhood of a wedge
showing that the régime postulated by Meyer in which a shock wave
attaches the tip of the body does in fact occur. The limitations of the
solutions given by these writers were studied by Bourquard and G. L
Taylor (4). Taylor has shown that for a given two-dimensional bullet
with semi-vertical angle less than a certain critical value, the necessary
condition for the existence of Meyer’s régime is that the Mach number
of the undisturbed stream should exceed a certain critical value. He
has obtained a series of these critical Mach numbers for two-dimensional
bullets with various semi-vertical angles, and gave a curve showing the
relationship between the semi-vertical angle of the builet and the said
critical Mach number.
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Recent developments of the high-speed acroplanes have stimulated
the studies on supersonic aerodynamics and various important investi-
gations have been carried out. Almost all of them, however, arc con-
cerned with Meyer’s régime, and owing to great mathematical difficulties,
no complete theoretical investigations have yet been made so far on
the régime in which a detached shock wave is formed in front of an
obstacle.

The relationship between the stagnation pressure at the nose of a
body and the undisturbed flow ahead of the normal shock wave was
discussed by Lord Rayleigh (5) and his result is widely used in experi-
mental researches. 4

Some time ago, interesting wind tunnel experiments and shooting
tests were made by M. Sugimoto (6) and several excellent photographs
showing detached shock wave in front of a circular cylinder and a
sphere were obtained. Some of them are reproduced on Plate 1 of the
present paper for the sake of reference., He also deduced a formula of
somewhat empirical nature to locate the detached shock waves, by
assuming that the flow hehind the shock is equivalent to the subsonic
flow of an incompressible fluid subject to appropriate boundary condi-
tions. Thus, assuming a usual potential flow for the subsonic region,
be calculated the pressure distribution on the surface of the body, and
then comparing the values thus calcnlated with his own experimental
data, he determined the Mach number of the subsonic flow in such a
way that the point at which the local speed of sound is first attained
is the same in the two cases, Thus, the velocity or pressure distribution
in the subsonic region was uniquely determined, and the location of
the shock wave wag then determined by Rankine’s shock wave equations.
However, Sugimoto’s formula requires empirical data and therefore the
scope of its application is lmited.

In a recent note, E. V. Laitone (7) has also attacked the problem.
He has assumed that the flow behind a shock wave is a part of an
incompressible potential flow with the appropriate boundary conditions.
The undisturbed velocity of such a potential flow has been taken to
be equal to that of the actual stream, while the flow pattern has been
assumed to be the same as the potential flow pattern. This assumption
determines the complete velocity distributions in the field of flow, while
Rankine’s relations determine the velocity drop immediately behind the
normal portion of the shock wave for a given Mach number of the
actual stream, and these conditions locate the normal portion of the detach-
ed shock wave. In Laitone’s theory no empirical data are needed, but
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the assumed flow is not self-consistent, because the flow pattern is assumed
to be the same as in the case of subsonic potential flow, notwithstand-
ing that in conformity with the state of affairs in the actual flow the
fluid flows with a supersonic speed at infinity upstream. These draw-
backs restrict the scope of application of Laitone’s theory, and especially
it cannot be applied to the case when the Mach number of the actual
flow is considerably great.

Quite recently, K. Tamada (8) has also discussed a detached shock
wave in front of a circular cylinder and a sphere. He has assumed
that a curved shock wave is composed of an infinite number of infinite-
simal line-segments and that Rankine’s relations should be satisfied at
any portion of the curved shock wave. Generally speaking, the curved
shock wave will give rige to different amounts of deflection to different
streamlines as they pass through it and consequently a certain amount
of vorticity will necessarily be generated behind the shock wave. In
the close vicinity of the normal portion of the shock wave, however,
deflections of the streamlines are small in magnitude and the generated
vorticity may be small, too. Thus, if we confine our attentions to the
close neighbourhood of the normal portion, the subsonic region behind
the shock wave may be approximated by a potential How. In Tamada’s
analysis, no unreasonable agsumptions have been made on the flow behind
the shock wave, because the Mach number of the undisturbed subsonic
flow could be determined by means of Rankine’s relations.

In the present paper an attempt is made to the discussion of a
detached shock wave in front of a body, such as a circular cylinder,
a sphere, and a two-dimensional bullet from somewhat different point
of view. The flow behind, the detached shock wave is approximated
by a potential flow as in the papers of previous writers and the effect
of the curvature of the shock is considered. In accordance with the
results of observations, the shape of the detached shock wave is approxi-
mated by a kind of quadratic curve.

Strictly speaking, the application of the present theory is also
restricted to the clogse vicinity of the normal portion, because the equa-
tion of continuity is not satisfied exactly. Nevertheless the numerical
values given by the present theory are in fairly good agreement with
the experimental evidences, and some interesting results are also obtained.
Comparing the calculated shape of the detached shock waves in front of
a circular cylinder and a sphere with the corresponding observed shock
waves it is found that the present theory gives a satisfactory approxi-
mation to the actual state of affairs,



210 T. Kawamura.

The theory is then extended to locate a detached shock wave in front
of a two-dimensional bullet. The boundary conditions of the bullet are
approximated by Bobyleff’s discontinnouns flow impinging symmetrically
upon a bent lamina. Thus, the head of the bullet is approximated by
the bent lamina, while its parallel portion is approximated by the
region bounded by two free streamlines starting from the ends of the
lamina.

It is found that when the semi-vertical angle of the bullet is greater
than 67°48.9, the shock wave can never attach the nosc of the bullet
but remains always detached for any value of the Mach number of the
undisturbed stream. For a bullet with smaller semi-vertical angle than
67°48.9, a detached shock wave is formed in front of the bullet, if
the Mach number of the oncoming stream is smaller than a certain
critical value, which itself depends upon the value of the semi-vertical
angle of the bullet. These results are in good qualitative agreement
with Taylor’s resultg,

The present problem has been suggested by Professor S. Tomotika,
to whom the writer wishes to express his cordial thanks for his sugges-
tion and continued interest throughout the work., The writer’s thanks
are also due to Dr. K. Tamada for his inwvaluable discussions.

2. Assumptions

Referring to Fig. 1, let U be the velocity of the oncoming undisturbed
stream and let ¢ and (u, v) be the magnitude of the velocity at any point
and its rectangular components respectively. We denote the pressure,
the density of the fluid and the velocity of sound in the undisturbed
stream by pi1, pr and ¢ respectively. As is well known, these three
uantities are connected by the relation ¢, = 7pi/p: where 7 is the ratio
of the two specific heats of the fluid and takes the value 1.405 for air.
Also, we denote by p. and p. the pressure and the density of the fluid
immediately behind the shock wave, and by po, po the pressure and the
density at zero velocity for the stream defined by (U, pi, p1). Further,
let a denote the angle between the normal to the shock wave and the
streamlines ahead of it and let « denote the angle of deflection from
the undisturbed stream of the streamlines immediately behind the shock
wave,

In the present paper, a simple assumption is made to the solution
of the equation of fluid motion near a solid body. We shall confine
our attentions to the case when the body has an axis of symmetry and
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the direction of the undisturbed stream is paralle]l to it. In this case,
a shock wave formed in front of the body, either attached or detached,
is symmetrical with respect to the axis of symmetry. A particular
streamline coinciding with the axis of symmetry experiences no deflection,
while the deflection of streamlines from the undisturbed stream becomes
greater as the inclination of the shock wave becomes greater. As a
consequence of the deflection of streamlines, certain amount of vorticities
will be generated in reality behind the curved shock wave and the flow
behind the shock wave is no more irrotational. But, if we confine our
attentions to the close vicinity of the axis of symmetry, the deflection
of streamlines from the undisturbed stream is small and the gencrated
vorticity behind the shock wave may be neglected, and therefore, the
flow behind the curved shock wave may be approximated by a potential
flow subject to suitable boundary conditions.

u
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Fig. 1.

If, then, the velocity potential for such an irrotational How be
determined, the velocity distributions behind the shock wave is uniquely
determined, and the angle of deflection from the undisturbed stream of
the streamlines immediately behind the shock wave is determined by
the relation :

tan & = v/u. (1)

3. The shock wave equations
Meyer’s equations governing the conditions on the two Qlde‘% of an
oblique shock wave are given by
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e AT =D A+ T+ Dpe/p} 1)
cos"a = 47{(270/201)(7*1)/7__ 1} s

(r — 1) + (7 -+ 1)P2/P1
T —=Dp/pr+ G+ 1)

(2)

tan(a + 8) =

tana . (3)

If we denote the Mach number of the undisturbed stream M so that
M = U/¢:, Bernoulli’s theorem gives immediately

a2 (BT _
ﬂvl_?’—l{(p:) 1}. (4)

Making use of this and eliminating a and p./p: from the above two
equations (2) and (3), we obtain an equation- for determining the angle
of deflection, &, of the streamlines as they pass through the shock wave,
namely :

2 Q17 — 1) tan®6, —1
tan 0; (7 —1) MPtan®6; + (7 + 1M+ 2 + 2 tan*6;’

tan 6 =

(5)

where ¢ is the angle which a tang@t to the shock wave on its arbi-
trary point makes with the direction of the undisturbed stream and
is evidently connccted with « by the relation 6; + « = /2.

Our present purpose is to find out whether a curved shock wave
in front of an obstacle is capable of changing the uniform stream into
a potential flow whose direction immediately behind the wave is given
by equation (1).

In conformity with the results of observations, the detached shock
wave ahead of a body can be approximated by a surface of simple form.
Since the shape of the section of the detached shock wave by a plane
containing the axis of symmetry is similar to a parabola, we shall
assume that it can be expressed as:

g/gz(z(:z:—f-t), (6)

where the coordinates ,y have been chosen as shown in Fig. 1. The
two parameters ¢ and ¢ in this equation are determined by Meyer’s .
equations (2) and (3) above referred to. As will readily be seen, the
latter parameter ¢ represents the distance of the normal portion of the
shock wave from the origin of .the coordinate-axes.

The coordinates of the normal portion of the shock wave at the
intersection of the wave and the axis of symmetry are given by (— ¢, 0).
In the close vicinity of this normal portion, the coordinates of a point
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on the shock wave are (— ¢ + 4z, dy). A simple calculation gives
immediately

a

243/.

tan 81 =

(7)

Substituting this in equation (5), tané can be expressed in the form
of a series in powers of dy as:

(dyy

2 Wt
s — LQC =1 dy { 47+ 1)

A — DI+ 2} O —D{(r — 1) M* + 2}
+ O[(Ay)*j}. (8)

Equation (1) can also be expressed in the form of a series similar
to (8), but the coefficients in the series are different according to the
form of the obstacle. Comparing the two series expansions for tand
and equating the coefficients of 4y and (4y)? we obtain two equations
for determining the two paramecters @ and ¢ in equation (6).

A constant factor U; in the expression for the velocity potential
is determined such that another Rankine’s relation connecting the
magnitade of the velocities in front of and immediately behind the
shock wave is satisfied. If we denote by ¢. the magnitude of the velo-
city immediately behind the shock wave, the said Rankine’s relation
may be written as:

M(‘];_r — Sin91 (T - 1) pg/pl + (7’ + 1) (())
U sin(0:— 8) (T + Dps/pr + (7 — 1) |
with
Pa 27 I 77— 1
S = M0 — .
po T T
At the normal portion of the shock wave we have
ginf, = sin(6;— 1) =1 ‘
and cquation (9) is reduced to
o 1 2
L2 M — 1) + ot 10
v r+1 {< ) M‘} (10)

which is identical with one of the conditions used by Laitone (7).
The practical examples will be illustrated in the following sections.
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4. The detached shock wave in front of a circular cylinder

We choose the coordinate-axes as shown in the ingset of Fig., 2
For convenience, we take the radiug of the circular cylinder as unity.
The velocity potential ¢ for the continuous irrotational flow past the
circular cylinder is given by

¢ =—U, <q- + ~~) —— (11

where »° = 27 + 4.
The rectangular components of velocity at any point are <rlven by

vl 7/} o . 27y
’Z&hU]Il (), +7/ )_ y Ul(), +J) . (12)

Substituting these in (1) we have

— 2oy

tan o = S L
(@ + )" — 2+ 4

(13)
At o point ((dy)*/a — t, dy) on the shock wave near its normal portion,
tan & can be expanded in powers of 4y in the form:

24y | @+ Da—368+1

tan & == e :Vl) '1 — (’M"’Zt'" oy (dy)’ + O [(dyy ]} , (14)

Comparing this with (8) and equating the coefficients of 4y and
(dy)?, we obtain, after some calculations,

a =

20—t (F—1) ¢ {O(r + A

r—0Dmr+2 Tog+ 1) - % + 83— 1}, (15)

and these two equations determine the values of the two parameters «
and ¢.
Eliminating « from these equations, we get

BT =DM+ 4
s —-1)

o T (T — 227 + 1T — 3377 — 35) M
S(M o {( 17YM (B1*— 427 + 35) W

1
— 40(7 — B)M* — 8()}2, (16)
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and by this equation we can calculate the value of the distance of the
normal portion of the shock wave from the centre of the circular cylinder.

If the value of ¢ thus determined is substituted in either of the
two equations (15), the value of a can be found, and further, if use is
made of the value of « thus obtained, the whole shape of the detached
shock wave can be found.

Before proceeding to the numerical discussions, we shall consider
two limiting cases, In the first place, when the Mach number, 2, of
the undisturbed stream increases to infinity, equations (15) are reduced
to

2t — 1) ¢BE+ 27+ 1)
a = =

r—1  2f+1 (17
and equation (16) takes a simple form as:
s STl —1 2
¢ = T 17— 227 + 17, (18)

which gives the minimum wvalue of ¢. .

In the case of Hlow of the air for which 7 = 1.405, it can readily
be shown that this minimum value of ¢ is greater than unity, and this
implies that even when the Mach number increases to infinity, the shock
wave does never attach the circular cylinder and remains always detached.

In the other limiting case when the Mach number M of the undis-
turbed stream tends to unity, equations (15) give immediately the results
that ¢ = 0 and £—00, Thus, in this case the detached shock wave
recedes to infinity upstream and its shape becomes a straight line per-
pendicular to the direction of the undisturbed stream.

Numerical values of the distance, £, of the normal portion of the
detached shock wave from the centre of the cylinder have been calculated
by the formula (16) for various values of M and are shown in Table I,
where Sugimoto’s experimental values and Laitone’s theoretical values
are also given for comparison. Laitone’s values have been calculated
by the present writer with the aid of his formula. The results are also
shown in Fig. 2, where a dotted-line curve gives Laitone’s theoretical
values and the crosses show Sugimoto’s experimental values. It will
be seen that the present theory gives a better approximation to the
results of observation than ILaitone’s theory.

Fig. 3 shows the shape of the detached shock wave in two cases in
which M is equal to 2.04 and 2.83 respectively. Observed shock waves
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are shown by dotted-line curve for comparison (cf. Plate 1). It is to
be noted that although the approximation of the present theory is fairy
good only in the close vicinity of the normal portion of the shock wave
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Fig. 2. Case of a circular cylinder.

~—— Present theory
~~~~~~ Laitone’s theory
X  Experiments (Sugimoto)

M=2.04 M=2.83
Fig. 3. Case of a circular cylinder.
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but not so good at a finite distance from the normal portion, yet the
agreement between the results of the present theory and those of observa-
tion is fairy satisfactory. '

TABLE I. Values of (t—1)/2

Mach number 1.00 | 1.10 | 1.34 | 2.04 | 241 | 2.83 | 3.00 co

Present theory co | 2.099] 0.760} 0.283| 0.221| 0.182] 0.172 07097
Laitone’s theory co 1 0.816] 0.324| 0.129] 0.103| 0.086| 0.082| 0.048
Sugimoto’s experiments | —— | — | 0.622] 0.261| 0.219] 0.191| —— | —

5. The detached shock wave in front of a sphere

In this section a similar discussion will be made on the location
of a detached shock wave in front of a sphere. Taking the centre of
the sphere of unit radius as the origin of the coordinate-axes, let the
cylindrical coordinates be denoted by z,y and &, instead of usual z,
r and @, the axis of » being taken parallel to the positive direction
of the undisturbed stream as shown in the inset of Fig. 4.

In this case the flow is evidently symmetrical about the axis of =,
so that the flow pattern is independent of ¢ and it is sufficient to
discuss the matter in the wy-plane only. Since the shape of a detached
shock wave is approximated by a paraboloid of revolution about the
axis of o and hence the section of the wave in the wy-plane is approxi-
mated by equation (6).

The wvelocity potential for the continuous irrotational flow of an
incompressible fluid past a sphere is given by '

$ = — U ( + —1—)1 (19)

where »* = o + 3",
The components of velocity at any point are

Uy, 4 s . 3U;,
o e—— R H - e O
=55 @r°— 22"+ 4%, v 5,57 1 (20)

and therefore the angle of deflection,’ 8, of a streamline at any point
from the undisturbed stream is given by

Sy

B TN 21
29— 927 + Yy (21)

tand = —
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‘When the point under consideration lies on the shock wave, x and 5
must satisfy the relation (6). In the close vicinity of the normal portion
of the shock wave, tand can be expanded in a power series of dy in
the form:

3 dy 5t 4 — 8t* 4+ 9
tand = — Y {1—~( Da f

2t — 1) 2at(E — 1) (dy)* + O[My)*]}. (22)

Thus, comparing the two expansions (8) and (22) for tand and equat-
ing the coefficients of 4y and (4y)®, we get, after some calculations,

8 -1 -1 %3(7 + DA

= 5 = 5 5 f—ar. (23
@ 3{(r— DM+ 2} B+ 1 (M — 1) + 8¢ } (23)

Eliminating « from these equations, we have
e @r+ DM+ 2
10(M*— 1)
I 3
10v2 (M~ 1

7 {(71r*— 27 + 3)M° — 2(? — 1) (r — 8)M*
— 6(r — b5)M* — 12}, (24)

and the distance, ¢, of the normal portion of the shock wave from the
centre of the sphere can be calculated by this equation.

In a limiting case when the Mach number of the undisturbed stream
tends to infinity, equations (23) and (24) are reduced respectively to

8t —1) (8 + 37+ 1)

== = 25
CERr = 56 +1 (25)
and
3T+ 1 3 .
== + — (772 —27 + 3)*, (26)
10 100 2 7=

the latter giving the minimum value of ¢.

In the case of flow of the air for which the value of 7 is 1.405,
the minimum value of ¢ as given by (26) is easily found to be larger
than unity. Thus, it is found that as in the case of a circular cylinder,
the detached shock wave is always formed in front of the sphere for
any value of the Mach number M of the undisturbed stream.

Numerical values of the distance, ¢, of the normal portion of the
detached shock wave have been calculated and are shown in Table IT.
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The similar values have also been calculated on the basis of Laitone’s
theory, and they, together with Sugimoto’s C‘{perlment‘tl values, are
shown in the table for comparlson

3.]
y
t-1
2
I U 1
> X
i t 0
2-
i
i
4
i
l

O | ]

Fig. 4. Case of a sphere. —— Present theory
~~~~~~ Laitone’s theory
+ Experiments (Sugimoto)

TABLE I Value of (¢—1)/2.

Mach number 1.00 | 1.10 | 1.32 ! 1.78 1 2.08 | 240 | 2.83 co

Present theory. co | 0.835 0.359! 0.171) 0.131| 0.107 | 0.088| 0.048
Laitone’s theory co | 0.453 0.207‘ 0.103| 0.080| 0.067 | 0.056| 0.032
Sugimoto’s eXperiments | —— | —— O.433i 0.206+ 0.150 | 0.130| 0.103 | -~

The results are also shown in Fig. 4. It will be seen that the results
of the present theory are in good agreement with those of &u(rimoto 3
observation, :
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Making use of the value of a as calculated by either of the two
equations (23), the form of the detached shock wave has been calculated
in two cases in which the value of the Mach number 3 is 2.08 and
2.63 respectively. They are shown in Fig. 5, where the dotted curves
indicate the location of the shock waves found experimentally.

M=2.08 M=2.63
Fig. 5. Case of a sphere.

6. The shock wave in front of a two-dimensional bullet

In the present section the writer will discuss a detached shock wave
in front of a two-dimensional bullet. The similar problem has been
discussed by ILaitone and Taylor. Laitone has approximated a bullet
by an appropriate distribution of line sources along the axis of the bullet,
while Taylor has approximated a bullet by a two-dimensional wedge.

The writer now approximates the tip portion of a two-dimensional
bullet by a bent lamina and the parallel portion of it by a pair of free
streamlines starting from the two edges of the lamina and extending
to infinity downstream. Such a discontinuous flow past a bent lamina
was discussed by Bobyleff as early as 1881 and short account of his
theory is given several text-books on hydrodynamics (9). Recently, a
detailed discussion on Bobyleff’s problem has been made by 8. Tomotika
and Z. Hasimoto (10). Before proceeding further, we shall recapitulate
here the essential part of Bobyleff’s theory for the sake of later use.

We assume that a uniform flow impinges symmetrically upon a bent
lamina A;C A, whose section consists of two equal straight lines form-
ing an angle (Fig. 6 (a)). Let 28 be the angle measured on the down-
stream side, and also let Ay and A denote a pair of free streamlines
starting from the two edges A; and A, of the lamina and extending to
infinity downstream. Taking the plane of fluid motion as the z-plane,
we take the @- and y-axes as shown in Fig. 6 (a). k

‘
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Fig. 6. (a) z-plane.

Let f= ¢ + iy be the complex velocity potential for the discon-
tinuous flow under consideration. The f-plane is shown in Fig. 6 (b).

k4
A M
AW - - 4)
C A, Ay

As A, C A Ay

-b 0 b
Fig. 6. (¢) s-plane.
C

A‘ \)\.\ A.l

o e e i o o e e e 2

0
Fig. 6. (d) ¢-plane.

This f~plane is transformed into the upper-half of an s-plane by the

transformation :
f=4. (27)

The two points A; and A. corresponding to the two edges of the lamina
are then transformed into the points on the real axis of the s-plane
whose coordinates are (b,0) and (— b, 0) respectively.

The upper-half of the s-plane is transformed into the interior of a
semi-circle of unit radiug in a {-plane by the equation:

§= — —g-(g + —?) (28)
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The bent lamina is transformed into the circumference of the semi-
circle, while the free streamlines are transformed into a diameter which
coincides with the real axis of the ¢-plane,

The conjugate complex velocity at any point in the flow is given

by
af _ e
,,,,,, = T 29
A (29)
with 2 =28+ ilogg, (30)

where & denotes the inclination to the axis of @ of a streamline at
any point and ¢ is the magnitude of the velocity there,

If we can find £ as a function of §, we can completely determine
df/dz or the velocity distributions in the stream. The conditions which
should be satistied by the function 2 () are as follows: (i) it must
be an analytic function of { regular in the interior of the semi-circle
A;C A.; (ii) on.the circumference of the semi-circle the real part of
£ (&) must satisty the conditions:

RLO)=— pO<I<r/2),

(31)
= B (r/28<m);

and lastly, (iii) the imaginary part of £ (£) must vanish on the diameter
A1O A;’:.

Such a function can be determined by Poisson’s formula. Omitting
the details of analysis for brevity, the final results only will be given.
We have

2 7+
Q(é’)zfﬁ‘log“"_ § (32)
in i—¢

If we eliminate s and f from equations (27), (28), (29) and (32),
we obtain

U Wﬂ/”‘( . _1_.>,1, 5

and integration of this equation would give z as a function of §.
Since, however, the analytical integration is almost hopeless, we have
carried out numerical integration.

The half-length L of the bent lamina is given by
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B B‘w(fz — B/vr)
2

N

where Yr(w) = ~—10<yF (x). When the value of L is given, the value

L= AC ——26{

of the pammetel b in equation (28) can be determined by equation (34).

Next, we shall proceed to the discussion of the location of a detached
shock wave in front of a two-dimensional bullet, by applying the above
results, In the close vicinity of the axis of @, the direction of a stream-
line is approximated as:

tan 6 = 5+%83+ ...... , (35)

with §=R[L ®)]. ( (36)

Referring to the coordinate-axes in Fig. 6 (a), let the coordinates
of the normal portion of the shock wave be denoted by (—¢,0). In
the close vicinity of this normal portion, the coordinates of a point
on the shock wave are given by (— ¢ + 4z, 4y), and since z and y
must satisfy (6), 4o = (dy)*/a.  Thus, if we write 4z = Ao + idy,
we have

1 2
dz = ‘a‘(dg/)“ + idy. (87

It is readily found that the coordinates of a point in the &-plane
which corresponds to the normal portion of the shock wave are given
by (0,i7:). The increment 4 corresponding to 4z given by (87) is

_(d¢ a’¢ a’ s
"C‘(dz)mf' * (da ) (42" + e(da Lf"z) *

(Y [ 4 L(D ) e
- (dzl?u[dg M 2 (df dz)'im(AJ

1 [(d° dg\ (dE d gy’ SR
6 {(d{" dz)i,,l(dz>i,,1+<d§ dz)i,,l}uz) + ] (38)

The inclination & of a streamline passing through a point in the
close vicinity of the normal portion is given, by means of (36), in
the form:
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5= &R{(ﬁlﬁ)mac + -~(£‘3> (48 + (M ) (4L + e } (39)

ag ), ag® ast

Thus, if use is made of (37) and (38), we easily obtain the series ex-
pansion of 8 in powers of 4y, and if the series for & thus obtained

be inserted in the right-hand side of (36), tand can be expressed in
the form of a series in powers of dy as:

dQ) dé‘) [ { (d dé‘) 2 (dé’)
5 = =) ayl1+ — = (2
fan Z(dg L7l1(\d“ iy Y dg dz in (L(l - 77i) dz i
L] L (ed) )
B3A — 9D \dz)m, 1 — 9i\d¢ dz )i\ d2 in,
i(_gii d__,C) (@ﬁ) _ __1_<£ gi_f)
6 dé“z dz N dz iny 6 dé‘ dz iny

S o). o

Various terms in the coefficients of 4y and (dy)* can be evaluated
immediately. Thus, writing ¢ = 28/=7 for shortness, we have

e LW
At Jiny 1— i’ dz )y U\L+ ) 1— i’
(d df) 2 (1 — 771)‘T 7i <___ 2o L 3 -+ 771‘)
dfdgn,l B\l + 5/ 1 — ni 1—af 1-—-91)

(£ Qg) _ 22(1 — 771) 7
g dz)m, NI+ ) 1 —ni

" [(_ 2o 201+ vzf))(__ 2om1 , 3+ nf)
1= 1—m 1—9 1—mn

2om( + 7 Tt
_ Zoml . ;71) T "71‘1 2] (41)
(1 — 771) (1 - ’71)
Finally, comparing the above series for tand with (8) and equating
the cocfficients of 4y and (dy)®, we obtain, after some reductions,

M—1  b*((1— m){_ 7} "}”‘
GRS Y L(1 ey ey gy SRR

and
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16 (M — 1) + 4(r + HM*
3 &{(r — )M+ 2} S — D{(r — )M+ 2}

= e i(l - 771)‘7‘ mn
S ab®\1 + 51) (1 — 91

{3 + 29 + 391 — 20 (1 — 77%)}
2 1 )
3 ~b‘“’<l n m) 1 — )

X {15 + 209} + 4991 + 2098 + 1595 + So™ni(1 + 9i)*

— 8om(L + ) (3 + 20} + 39D}, (43)
These two equations determine the values of the two parameters %1, a.
In the close vicinity of the tip of the bullet, : can be written as:
m = 1—ce¢ y (44)
where € is an infinitesimal quantity. Equations (42) and (48) are then
reduced respectively to

8v°(M° — 1)
q= =2 )

-1 Z2~g o
SG—nmr+2° ¢ 2 (45)

and

4(M + 2M° — 1) , { 128(M° — 1) + 48}0
(MF — 1) TV =DM F 2

9 ~1)
(7—1)M‘~‘+2‘O' (46)

These two equations determine a certain critical Mach number, M,
for a bullet with a given semi-vertical angle less than a certain value,
such that when the Mach number of the undisturbed stream is greater
than M the shock wave attaches the tip of the bullet.

If, however, the semi-vertical angle of a bullet becomes greater than
a certain critical value, the shock wave does never attach the tip of
the bullet for any large value of the Mach number, and there is formed
a detached shock wave in front of the bullet. Such a critical semi-
vertical angle B (= 27 duwny) can be found by solving an equation
to which equation (46) is reduced i the limit M — o0, namely :

128 119 .
r—1 ) r—1 D

24762+ <——- + 480w — == = 0. 7
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For the case of air (¥ = 1.405), we have found that
Gunx= 0.7535 , Buax= 67°48.9", : (48)

Numerical values of the critical Mach number Mc. for bullets with
various values of ¢ have been calculated and they are tabulated in
Table ITI. Similar values of M for wedges are given in Table IV
for comparison. These latter values for wedges have been calculated
by the present writer with the aid of the following two equations,
which have been given by D. C. Pack in his recent paper (11).

2tan’m tan’a + tan B tan’a {(7 + 1) + (7 + 3) tan®m}

— 2tana + tan B {(r — 1) + (7 + 1) tan®m} = 0, (49)
and ‘

(r + 1) tan B tan*a — 4tan’a + 2(7 — 3) tan B tan®a

— 4tan’B tana + (7 + D tan 8 = 0, (50)

where cosecm = M and 8 denotes the semi-vertical angle of the wedge.

These equations are the analytical expressions for Taylor-Maccoll’s
analysis (12) where they have obtained their results by a graphical
method.

TABLE III. Values of Mcit for our bullets.

8 2°7.8"| 5°8.27|11°24.9 | 24°24.9 | 29°29.77 | 33°44.7' | 45°44.3' | 67°48.9'

Merse | - 1.050 1.100 1.200 1.400 1.500 1.600 | 2.000 oo

TABLE IV. Values of Meit for wedge.

B 5° 10° 15° 20° 30° 40° 45° 23/ E

Merit 1.240 1.417 1.616 1.843 2.530 4.520 ©0

The results for both our bullet and wedge are shown in Fig. 7.
It will be seen that our results for the two-dimensional bullet are in
good qualitative agreement with those for the wedge.
 Numerical values of 71, which specifies the location of the normal
portion of the detached shock wave, have been calculated by the formulae
(45) and (486) for various values of M, and the corresponding values
of the distance, ¢, of the normal portion of the shock wave from the
tip of the bullet have been obtained by a graphical method.
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The results are shown in Fig. 8 in four cases in which the semi-
vertical angle B of the bullet is equal to 15°, 30°, 60° and 67°38.9’
respectively. In this figure are also shown Laitone’s values for com-
_parison, which have been calculated by the present writer by means
of Laitone’s formula. The two series of curves deviate considerably
from cach other especially in the close vicinity of the horizontal axis.

]'O T T T T T T
| -
Mcrit

08T Present theory 1

061} i

O4r Pack’s theory ]

[wedge]
09} ]

O . i 2 )
o 20° 40° g 60°
Fig. 7. Values of the critical Mach number plotted against
the semi-vertical angle of a bullet or a wedge.

When the semi-vertical angle of the bullet is smaller than 67°48.9/,
each of our curves cuts the horizontal axis at a finite angle, On the
other band, any of Laitone’s curves can never touch the horizontal axis
and the least value of the distance of the normal portion of the detached
shock wave from the tip of the bullet is always different from zero.
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This implies evidently that according to his theory the shock wave
remains always detached for any values of the semi-vertical angle and
of the Mach number of the undisturbed flow, In fact, we cannot
determine the critical values of Mo and Buax on the basis of Laitone’s
theory. These results are not only in contradiction to Taylor’s theo-

retical results but also to experimental evidences.

o &

Q-5

0

1

Fig. 8. Case of two-dimensional bullets.  Thick-line curves
give the values obtained by the present theory, while
thin-line curves give the corresponding values obtained
by Laitone’s theory.

Fig. 9 is a reproduction of a figure in Kdarman’s recent paper (13),
which shows the experimental wvalues of the ratio of the distance of the
detached shock wave from the tip of a bullet to its diameter as a
function of the Mach number of the undisturbed flow. These experi-
mental data have been obtained by shooting tests of a conical headed
three-dimensional bullet with semi-vertical angle of 20°.

In Fig. 10 is given a similar curve showing our theoretical results
for a two-dimensional bullet with semi-vertical angle of 15°, and this
may be compared with Fig. 9. It will be seen that there is a good
qualitative agreement between two figures.
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Fig. 9. Experimental values of ¢/D plotted against M, for a
projectile with semi-vertical angle of 20° (Karman (13)).
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Fig. 10. Calculated values of 7/D for a two-dimensional
bullel with semi-vertical angle of 15°.
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