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1. Introduction

  We have measured the variation of transmission of ultrasonic sound beam through
a solid plate immersed in liquid, when either the thickness of the piate or the incident

angle is changed. From the above data, we have determined the velocities of two
elastic waves, longitudinal and transversal, in the solid, applying the results developed
from the theory of Rayleigh(1) and that of Reissner(2). From these sound ve!ocities,
we have calculated the e!astic constants of the soiid, using the well-known fomiulae.
  In order to measure the variation of transmission of ultrasonic sound beam, we
used the method utilizing the ultrasonic light diffraction phenomena found by Debye
and Sears. In the light diffraction generated in the liquid by an ultrasonic sound beam
which has passed through the solid plate, the number of the highest order of diffraction
which can be observed, is proportional to the intensity of ultrasonic sound at the point
passed by light beam. By observing the variation of the number of the highest order,
we can determine the incident aRgles, at which the intensity of ultrasonic sound which
has passed through the solid plate, becomes maximum or minimum.
  From the experimental results which we have got about aluminium, applying the
above method, we have determined the two sound velocities and the elastic constants
of alumiRium.

 2. The results developed from the theory of Rayleigh and that of Reissner

A. The results from the theory of Rayleiglz

  Ray!eigh has studied the velocity petentia! of the reflected wave, when the !ongi-
tudiRal elastic wave is incident to the plane parallel rnedium [1] of density pi and
thickness d, from the medium [O] of density p. From this result, we get the following
formulae :
   a) The conditions for transmission to be maximum or minimum in the case of
normal incidence are :

                       Yp -- VL,oi, for maximum only, (l)
where V and VL are longitudinal velocities in both media, and

                           d=m2);t for maximum,)/

                                  `LJ 1/ (.g,)
                                        Xx di"l                           el -- (27?i + 1)i for minimLim, ;
                                                         x

.
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where m is e or a positive integer, and XL is the longitudinal wavelength in the midium
[1].

   b) The conditions for transmission to be maximum or minimum in the case of
 oblique incldence are:

                      (ilS'..2- vY.2.,.,)cot2e, -- vVi, -i for maximum oniy, (3)

where 0i is the intromitting angle as Rayleigh named, at which the whole wave
energy can pags through the medium [!], and this ahgle is indepeRdent of the thick-
ness of the medium [1] and

                    sin2er(Y.1)2-(ttS'X)2S, for maximum, (4)

and ,                    sin2G--(ilil.1)2-(2"Z2+ i)2(mX2)2tt.• for minimum. (4')

CB. The results from the theory of Reissner
  Reissner has c.alculated the transmission on the assdiT}ption that the longitudinal

'and transversal waves are induced in tke solid p!ite by the longitudinal wave in the
surrounding liquid. From thls result, we get the following cond!tions, for the trans-

mission to be maximum '' '                    '                        sin2e -- -5(i]ll.1)2, (s)

                        sin2e--([ll;.)2-(21'#ZX)2tt., (6)

'and

                        sin2e =: (Zl'ISZX)2S,, (7)

where V, 2 are respectively the souRd ve!ocity and wavelength in the !iquid and VT
is the transversal velocity in the -solid.
  It is interesting that the condition (4) in the case of longitudinal wave has the same
form as the condition (6) in the case of transversal wave. In practice, it is diMcult
to determ2ne the number of order m of the observed maximum corresponding to (4).
In Reissner's case, we have, besides (6),'the condition (7) which is helpful to determine
m. And moreover, we can find the angle e which satisfies equations (5), (6) and (7)
s!multaneous!y and detetmine the transversal wave velocity V.

  3. Experimental proeedure

  The experimental arrangement is shown in Fig. 1. An ultrasonic sound beam is
generated by a quartz crystal in the vessel fi11ed with water. A solid plate can be
rotated about the axis perpendicular to the plane of the figure. The number of the
highest order of diffraction and the intensity of each spectral line vary with the
thickness of the Slate and the inci.dent angle.
  Relations between the sound intensity at the point passed by light on one hand,

'
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                        FiG. 1. Experimental arrangement.
atid the number of the highest order of diffraction and the intensity of each spectral

!ine on the other, are the following:
   1. The stronger the sound intensity is, the higher order appears.
   2. The stronger the lntensity of the highest order is, tke !arger is the sound intensity.

Accordlng to the above princip!e, wheB we observe the transmission intensity of
ultrasonic beam, by rotating- the solid plat.e whose th2cl<ness is constant, we can find
that the jRtensity of the transmitted beam changes periodicaliy with the angle rotated.
The positions of maximum and minimum which appear at that time, can be determined
within the error of O.1". In the case of a!uminium, we get the transmissioR patterns
as shown in Fig. 2. The ordinate of this diagram is the highest order of diffraction
which shows the measure of the sound intenslty.
  A. Deteptmination of longitz{dinal velocity
   We have found the thickness, at wh!ch the transmission becomes maximum or
minimum for norma! incidence, by changing continuously the thickness of the Al-plate
by means of roller pressing. From these data, we can determine, us!ng formula (2)
the longitudlnal ve!ocity VL, as shown in Table 1.

            TABLE 1. Longitudinal wavelength for notma! incidence
                         (freqkiency 3940Kc, temp. 25.8 tl.5Åé)

o

EyePtice

thickness d
i

I
1.g2 = -il- 2L

wavelength 2L 1.53

1.63 = al i.ig -=gzx I O.85 = -S- 7,L

1.63 1.59 ].70

meanvalue of RL: h == 1.61mm

From IL, we get
                       'V -nv Xif -ww 63t50 Å} 350 [m/sec] .

For ob!ique incidence, we calculated lt from the first maximum or minimum iR
2, using formula <4) or <4'). The result is shown in Table 2.

. •, 'TABm 2. Longitud!nai wavelength fer oblique incidence'

Fig.

thickness d

1.92

1.63

1.i9

e.85

incident angie e 'order nz Rx [rrim] l li'i [m/sec]

E

8.4

10.2

le.3

 9.4
.

F
i

F

max• I•

min• I

max..I
min.
     1

zE

I

l54 i
      i
i.53

1.58

.l.93

6070

6o3e

6230

7550

i t/s
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of aluminium.

The values of RL and VL in the first three rows show rough coi;icidence, but the values
in the !ast row is considerably apart from others.
  •We have calculated the total reflectlon angle 0c":13.40, according to sinecm VIVL,
using the values VL "= 6350 [mfsec] and Y== 15ee [mfsec]. This angle is shown by brok'en

line in Fig. 2. We get two regions Ri and Re on one side separated by this line. And
in R2, longitudinal wave and transversai oRe coexist, but in R2 only transversal wave
exists. We have expected that the transmission minimum will appear at the angie
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0c for any thickRess, because this angle is independeRt of the thickness. 'But in our
experiment about aluminium, the transmission minimum has not appeared at this
angle. From this fact, we have deduced that in region Ri the transversal wave is
coexisting.
   B. Detemination of transversal velocity
   The determination of the transversai velocity can be performed by finding such 0
which satisfies (5), (6) and (7), by using maximum points in R2 . Applying formulae (5),
<6) and <7) to these points summarized in Table 3, we determine the transversal velocity
diagrammatically. If we take sin2e as ordinate, 11de as abscissa and m as parameter
in Fig. 3, the formula (6) corresponds to a group of straight lines passing through a
common point on the ordinate axis, and the formula (7) to a group of straight lines
passing through the origin.
   We plot on this graph the measured peints shown in Table 3, and, selecting adequate
                                      useveral points, we draw such straight lines as pass through a common point on the
ordinate axis, which are ca!led (ai, a2,•••,as), corresponding to m =1, 2,•••6 and as
the who!e group (a). Straight lines of group(a) satisfy the formula (6). Next,A
in formula (7) can be computed to O.381mm, from the sound velocity in water and
the frequency. Giving m integral values (1, 2,•••6) successively in (7), we get a group
of straight lines b(bi, bg,••-b6), corresponding to m==1, 2, ••• , 6, which satisfies formuia
(7). In the third place, we must find the angle e independent of the thickness. As
eas21y seen from the forms of the formulae (5), (6) and (7), such0 ought to be on the
intersections (Pi, Pe,•••P6) of two straight lines of (a) and (b) with the same suMx.
In practice, we get sin20 == e.169 as the mean value of ordinates of these points. We

TABLE 3. Maxlmum points in region Rg

d [mm]
E
: e

lllll llii'llii

e

sine

l

  O.2773
  O.3305
  O.3907
  O.4305
  e.2773
  O.3746
  e.4524
  O.2351
  O.2807
  O.3746
  e.2521

  O.3567
  e.s06o
:'  O.3090

  e.3971
  O.5030

  O.2756
  O.4879
  O.2419
  O.4818 '

sinee

lll,`

1/de

illi
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        FiG. 3. Diagrammatical determination of transversal veleeity.

Calculation of elastic constants

order to calcu!ate the elastic constants, we use fo!lowing formu!ae :

                      V. = V)kj rl;J2Fb ,

                      ..ww-Vtb,

                         - pa (3X + 2pa) .,
                       E- ,                             x+ pa

(8)

(9)

(IO)

and o ==
N

where ?,

  Our
Table 4.

and pt
results,

are Lame'
together

constants,
with those

"9 (X + pa) '

E Young's
obtained

 modulus
by other

and a
writers,

(11) ,

Poisson's ratio.

 are sumrnar!zed in
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vL[m/secl I

         '
YT [m/sec] I EÅ~ lO-ri [dyne/ cme]

t

pt Å~ 10-ii [dyne/ cmg]l a e: perlmenter

CB50 fr, 350 i 258e +
    li
l4•O li• 5.00

I
l.78

7050

5104

2S20 6.45 2.14

e.4oo
l

Present authors

O.400
W
C

C. Schneider
  &
J. Burton

I Masson
I' (Handbook)

   It will be seen that there is a great difference between the value of Vr.
Schneider and Burton (3) and the corresponding value obtained by Masson
our value lies between these two.
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