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1. Introduction

We have measured the variation of transmission of ultrasonic sound beam through
a solid plate immersed in liquid, when either the thickness of the plate or the incident
angle is changed. From the above data, we have determined the velocities of two
elastic waves, longitudinal and transversal, in the solid, applying the results developed
from the theory of Rayleigh(1) and that of Reissner(2). From these sound velocities,
we have calculated the elastic constants of the solid, using the well-known formulae.

In order to measure the variation of transmission of ultrasonic sound beam, we
used the method utilizing the ultrasonic light diffraction phenomena found by Debye
and Sears. In the light diffraction generated in the liquid by an ultrasonic sound beam
which has passed through the solid plate, the number of the highest order of diffraction
which can be observed, is proportional to the intensity of ultrasonic sound at the point
passed by light beam. By observing the variation of the number of the highest order,
we can determine the incident angles, at which the intensity of ultrasonic sound which
has passed through the solid plate, becomes maximum or minimum.

From the experimental results which we have got about aluminium, applying the
above method, we have determined the two sound velocities and the elastic constants
of aluminium.

2. The results developed from the theory of Rayleigh and that of Reissner

A. The results from the theory of Rayleigh

Rayleigh has studied the velocity potential of the reflected wave, when the longi-
tudinal elastic wave is incident to the plane parallel medium [1] of density p, and
thickness d, from the medium [0] of density p. From this result, we get the following
formulae:

a) The conditions for transmission to be maximum or minimum in the case of
normal incidence are:

Vo=Vio, for maximum only, (1)
where V and Vi are longitudinal velocities in both media, and

M . }
=m for maximum,

I

4 {
. (2)
d = 2m + 1)-;;E for minimum, }
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where m is 0 or a positive integer, and Az is the longitudinal wavelength in the midium
[11.
b) The conditions for transmission to be maximum or minimum in the case of
oblique incidence are:

o

2 2

p_ VN e VP :
<,02 VL._,>cot a4, v 1 for maximum only, (3)

where 6; is the intromitting angle as Rayleigh named, at which the whole wave
energy can pass through the medium [1], and this angle is independent of the thick-
ness of the medium [1] and

copg (V. : @'2_1_ :
sin” 6 = (Vz) < 5 ) 7 for maximum, (4)

and

e _____I_/_'_g_ 2m+1‘?’}2’l . ,
sin 0;—— <'VL> <*—-—2 ><2> S for minimum. (4)

‘B. The results from the theory of Reissner

Reissner has calculated the transmission on the assumption that the longitudinal
and transversal waves are induced in the solid plate by the longitudinal wave in the
surrounding liquid. From this result, we get the following conditions, for the trans-
mission to be maximum,

o L ; .
sm(9—2<VT> , - : (5)
g (VY _ (maV 1 |
§1n9~<VT> <2>d2’ ‘ (8)
and
o A\
sin'9=<%—>§-2, (7)

where V, 4 are respectively the sound velocity and wavelength in the liquid and Vr
is the transversal velocity in the solid.

It is interesting that the condition (4) in the case of longitudinal wave has the same
form as the condition (6) in the case of transversal wave. In practice, it is difficult
to determine the number of order m of the observed maximum corresponding to (4).
In Reissner’s case, we have, besides (6), the condition (7) which is helpful to determine
m. And moreover, we can find the angle § which satisfies equations (5), (6) and (7)
simultaneously and determine the transversal wave velocity V.

3. Experimental procedure

The experimental arrangement is shown in Fig. 1. An ultrasonic sound beam is
generated by a quartz crystal in the vessel filled with water. A solid plate can be
rotated about the axis perpendicular to the plane of the figure. The number of the
highest order of diffraction and the intensity of each spectral line vary with the
thickness of the plate and the incident angle.

Relations between the sound intensity at the point passed by light on one hand,
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Frc. 1. Experimental arrangement.

and the number of the highest order of diffraction and the intensity of each spectral
line on the other, are the following:

1. The stronger the sound intensity is, the higher order appears.

2. The stronger the intensity of the highest order is, the larger is the sound intensity.
According to the above principle, when we observe the transmission intensity of
ultrasonic beam, by rotating the solid plate whose thickness is constant, we can find
that the intensity of the transmitted beam changes periodically with the angle rotated.
The positions of maximum and minimum which appear at that time, can be determined
within the error of 0.1°. In the case of aluminium, we get the transmission patterns
as shown in Fig. 2. The ordinate of this diagram is the highest order of diffraction
which shows the measure of the sound intensity.

A. Determination of longitudinal velocity

We have found the thickness, at which the transmission becomes maximum or
minimum for normal incidence, by changing continuously the thickness of the Al-plate
by means of roller pressing. From these data, we can determine, using formula (2)
the longitudinal velocity V., as shown in Table 1.

Tasre 1. Longitudinal wavelength for normal incidence
{(frequency 3940 Kc, temp. 25.8+1.5°C)

thickness d L2 =21z | 163=Ar | LI9=21r | 085=4u

wavelength 1z 153 1.63 | 159 170

mean value of Az: 4z = 1.61lmm

From Az, we get
V = Apf = 6350 = 350 [m/sec].
For oblique incidence, we calculated Vi from the first maximum or minimum in Fig.
2, using formula (4) or (4). The result is shown in Table 2.
Tasre 2. Longitudinal wavelength for oblique incidence

thickness d | incident angle 6 ! ‘order m 1 Az [mm] | Vz [m/sec]
i
1.92 8.4 | max. 2 | 154 6070
163 10.2 ' min, | 1 | 153 6030
1.19 10.3 . max. | 1 1.58 . 6230
0.85 9.4 min. | 0 1.93 7550
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Fia. 2. Transmission patterns of aluminium.

The values of Az and Vi in the first three rows show rough coincidence, but the values
in the last row is considerably apart from others.

‘We have calculated the total reflection angle f¢c = 13.4°, according to sinfc=V/Vy,
using the values Vi =6350[m/sec] and V=1500 [m/sec]. This angle is shown by broken
line in Fig. 2. We get two regions R; and R, on one side separated by this line. And
in R., longitudinal wave and transversal one coexist, but in R, only transversal wave
exists. We have expected that the transmission minimum will appear at the angle
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f¢ for any thickness, because this angle is independent of the thickness. But in our
experiment about aluminium, the transmission minimum has not appeared at this
angle. From this fact, we have deduced that in region R, the transversal wave is
co-existing.

B. Detemination of transversal velocity

The determination of the transversal velocity can be performed by finding such 6
which satisfies (5), (6) and (7), by using maximum points in R.. Applying formulae (5),
(6) and (7) to these points summarized in Table 3, we determine the transversal velocity
diagrammatically. If we take sin®*f as ordinate, 1/d® as abscissa and s as parameter
in Fig. 3, the formula (6) corresponds to a group of straight lines passing through a
common point on the ordinate axis, and the formula (7) to a group of straight lines
passing through the origin.

We plot on this graph the measured points shown in Table 3, and, selecting adequate
several points, we draw such straight lines as pass through a common point on the
ordinate axis, which are called (a,, a., -, a¢), corresponding to m=1, 2,---6 and as
the whole group (a). Straight lines of group (a) satisfy the formula (6). Next, A
in formula (7) can be computed to 0.381mm, from the sound velocity in water and
the frequency. Giving m integral values (1, 2,:--6) successively in (7), we get a group
of straight lines b (b, b.,-:-bg), corresponding to m=1,2, ---, 6, which satisfies formula
(7). In the third place, we must find the angle  independent of the thickness. As
easily seen from the forms of the formulae (5), (6) and (7), such 6 ought to be on the
intersections (P, P.,---Ps) of two straight lines of (a) and (b) with the same suffix.
In practice, we get sin®f =0.169 as the mean value of ordinates of these points. We

Tapre 3. Maximum points in region R,

d [mm] i 0 sing sin? 1/d
3.016 16.1 0.2773 0.077 0.11
3.016 : 19.3 0.3305 0.109 0.11
3.016 23.0 0.3907 0.152 0.11
3.016 255 0.4305 0.185 0.11
1.92 16.1 0.2773 0.077 0.271
1.92 22.0 0.3746 0.140 0.271
1.92 26.9 0.4524 0.204 0.271
1.63 13.6 0.2351 0.055 0.377
1.63 16.3 0.2807 0.079 0.377
1.63 22.0 0.3746 0.140 0.377
1.19 14.6 0.2521 0.063 0.708
1.19 20.9 0.3567 0.127 0.708
1.19 304 ,-| 05060 0.256 0.708
1.035 18.0 ¥ 0.3000 0.095 0.935
1.035 23.4 0.3971 0.157 0.935
1.035 30.2 0.5030 0.252 0.935
0.85 16.0 0.2756 0.076 1.39
0.85 202 0.4879 0.237 1.39
0.72 14.0 | 0.2419 0.058 1.94
0.72 28.8 04818 0.230 1.94
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use this value and the sound velocity in water ¥V =1500[m/sec] in formula (5), We
get .

V = 2580 == 140 [m/sec]

as the transversal velocity.

Group a smé@

- (- (%)
7

Group b sim6 =

® 10 5 20 25 %0

Fad

Fic. 3. Diagrammatical determination of transversal velocity.

4. Calculation of elastic constants
In order to calculate the elastic constants, we use following formulae:

VL__.A/*»_L%&, (8)
P
i
V’l"z,\/“’ (9)
P
E:M . (10)
AAp
and A (11)

[ A —
20 + )’

where 1 and g are Lamé constants, £ Young's modulus and ¢ Poisson’s ratio.

Our results, together with those obtained by other writers, are summarized in
Table 4.
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TapLe 4. Elastic constants of aluminium
Vi [m/sec] % Vr [m/sec] ! Ex10~1t [dyne/cm?] I #x 10~ [dyne/cm*] § '3 experimenter
6350 = 350 = 2580 + 140 5.00 178 0.400 | Present authors
W. C. Schneider
7050 2820 6.45 2.14 0.400 &
C. J. Burton
- Masson
5104 (Handbook)

It will be seen that there is a great difference between the value

of V5. found by

Schneider and Burton (3) and the corresponding value obtained by Masson and that
our value lies between these two.
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