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1. Introduction.

The behaviour of the feed-back physical system is determined by its charac-
teristic equation. In the preceding paper (1), the author has expressed the system with
the characteristic vector which is composed of the coefficients of the characteristic
equation and shown that the stability region [&}], (#=0,1,2,...... , 1) of the n—
dimensional system is related with the stability region [¢272], (v =0,1,2, ...... , T 2)

of the (n—2)-dimensional vector, as follows:
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where B0, 7
And it has also been shown that the stability criteria are introduced by putting
# = 0 in the stable vectors, but no detailed descriptions about the construction of the
stability criteria and the stability regions have been presented there.

In this paper, the geometrical properties and the constructions of the stability
criteria and the stability regions are discussed. Further, the stabilizations by multiple
feed-back are discussed and the theoretical results are ascertained by experiments.

2. [£,-., &,]-stability criterion
From (21) of §6 in the preceding paper (1) (we shall denote it with (L 6.21) and

use such notations in the following), the hypersurface of critical stability of an m~
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dimensional vector is given by the following equations:

Snr =763 — 7%6p-s + 736p g — v ’ } (1)
'Sn = 757%2 - 7’259:-4 + ?‘35n~6 Tt .
By fixing &,-2, &n-3, ..y &1, &, at constant values in (1), the line of critical stability,

e, [E4-1, Enl-curve of stability criterion is obtained.

This curve can be drawn both from [£,-5, &n-.l-curve of stability criterion of
the (n—2)-dimensional vector and from [¢&,.,, €4 ]-curve of stability criterion of
the (#—1)-dimensional vector.

i) Just as (1) has been derived, the hypersurface of critical stability of the (n—2)-

dimensional vector is derived:

Cn-g :.7?7%5 - ?::Cn~7 + 7':%};—9 e > } (2)
Cnm2 = TCn-1 = 7 Cn-¢ + 17 Cp-g — +0- .

By fixing ¢p-4, Cu-ss ..., &y at constant values
Cad = Enays Cams = &nos, ooy Co=2§, (3)

in (2), [€4-3, En-sl-curve of stability criterion is obtained, and from (1), (2) and

(3), we derive

Sac1 =7 (6ncs = L), } (4)

En =7(Epmz = Lu-a) -

Since, in (4), (En-3, En-2) is a given point of the physical system and (&p-s,
Cn-2) is a varying point with 7 on the curve of stability criterion of the (#—2)-
dimensional vector, [&,_1, &, }-curve of stability criterion of the n—dimensional vector
is simply obtained vectorially from the [¢,_s, €n-pl-curve of stability criterion of

the (n—2)-dimensional vector by use of g
n

(4) as shown in Fig. 1, in which

07;2 [€azs, En-21: section of the (#—2)-
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bility (variable),

—
OQ =1[€,_4, énp]: section of the fixed

n—-dimensional vector,

e d —_ .
QR =[¢&,.,, &1 =7 PQ: section of the
m~dimensional vector of critical

stability (variable with P@).
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ii) The equation of the hypersurface of critical stability of the (#-1)-dimensional
vector is given by

Ca-2 = ?'Cn—:z - :f:Cn—s RN > } (5)
Cu-1 =7 Cn-g = T {n-s + =reoee .
Fixing &u-3, En-4, ..., Co at constant values
Cnez = Epogy Cnms = Encys v, Zo ==&
in (5)5 and combining with (1), we get
$n~1:fﬂ—1’ } (6)
$n = (gn—z - Cn—z) s

where (£u-z, En-») 18 @ variable point on the line of critical stability of the (#—1)-

dimensional vector, and &,-, is a given

component of the n-dimensional vector. )
By (6), the [&,.,, &ul—curve of criti-

cal stability of the n-dimensional vector

can be graphically obtained as shown in

Fig. 2, in which

P moving point on the curve of stability

§n—|
St

criterion of the (#—1)-dimensional
vector,
S fixed point (£&,_,, 0,

— —
OX::SQ = En—1 = Ln-1,

—_— —_—
XR=7-QP: &, =76n-s ~ En-2)s
and the locus of the point R is the

(n-1)th criterion

,.S.fgg_?}z 0 3 e

Ea1, Eal-curve of critical stability of Sa-2
the n~dimensional vector. Fig. 2.

ili) As stated above, each line of critical stability of higher dimensions can be
successively derived from either of the lines of critical stability of the 2- and 3-
dimensional vectors shown in Fig. 3.
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As stated in the preceding paper, the stability region can exist only on the right

side of the curve of stability criterion thus obtained.

In Fig. 4 are shown the

curves of stability criterion of vectors of different dimensions which are obtained

successively as well as the stability regions.

Nn=3
8

(Unetzble)

g, =6
( Unstable )

3. [&,, & ]-stability eriterion

5, =4

(Unstuble )

0 5
g” n="7 gg n= 8
( Unstable ) (L[nsfaé[e )
&
- IR
O 5, !
Fig. 4.

By (1.5.14"), the n~dimensional stable vector [£] is derived from the (n—2)-

dimensional vector [¢]} as follows:

Urey Uy
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By putting &, = &./&s, & = &./Cn-z, (T) becomes

o
¢1
(7>
Ca-s
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& r | z
&y g &y
§gl 1 3/ .-' gz/
: = L ) (8)
: 1 - 7 :
én/—l . . .ﬁ, C.nil

€

where 7 =1/y, B =48/r, or

En, f[ 1 ‘; ( Cn’-«z )
&l g1 ek
?95{—3 T/ B/ . . i ;n,-——/} .
| = SR PR (9)
: 7 1 :
él, ‘ B/ ‘ [;,1/

L& /| ol

Consequently, the n~dimensional vector [£'] of critical stability is derived from

the (#~2)-dimensional vector [¢’] by the following equations:

A1 =[Cv]-1¢&3],
[&:5] =[C]-[&:4] } (10)

[0+ =1Cv] - [Caina],

where v=20,1,2,3, ..., and

This is the case of n being odd, but the case of even # can be treated in a quite
similar manner.

Therefore, if we take &, =§&/ ., (u=0,1, 2, ..., n—2), the line of critical
stability of &-vector on the (5;’, &, )-plane is quite alike that of &-vector on the
(Epe1s En-plane, but the directions of increasing 7 in these two lines are reverse to

each other as shown in Fig. 5.
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4. [é'r, §r+1]—stability criterion
We assume that the components of the nm-dimensional characteristic vector [§]
are fixed at constants, excepting &, and &,,,, and resolve this vector into the following

two vectors, of which one is (#-+1)-dimensional and the other, (#—#)-dimensional :

[50’ 51’ 527 ey 57‘—-1: '::‘r/) 57‘—{-1]) [AI]

[57'”: Sr/—!{l) ET+27 revy 571—-2, 51&—-1) S&n]: [A”]

/4

where &/, £/,, &” and &/, are variables.

The stability region of the n-dimensional characteristic vector is given from the
(n—2)-dimensional stable vector [¢], taking 8 >0 and 7 >0 as parameters, by
(1.5.14") as follows:

& (1 : : &o
& B 1_ C1
S 2
SPo0 i e U N I Cro1.,
& | 81 R
S fﬁ ................................. Craa.
$res 7 . Erie
".1 .
é‘n~1 ..19 Ca-2
& ) ; 7.

On the other hand, the stable vectors of [A’] and [A”] are given by
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50 1 g 1
& g1
&, r B -
&/
i ’
41
and
&” 1
A |81
Gors | T B -
: 7
$n~1
S?l
From the relation:
E ” ; : Sr/ l; :/ 57‘” 1
| = ot Lo (11
S / L&) VE

if [£7] and [é7] are stable, [£] is stable.

Consequently, by adding two stable
vectors [£] and [£”] with reference to the
same values of B and 7 on the (&r, &rpy)—
plane, the stability region of [£] and the
stability criterion is obtained as shown in
Fig. 6.

5. [€n-2, &u-1, Enl-stability criterion

Sre

Cr
Cret

CT+2

En-s
Cn-2

(1t a)
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o, \‘5»
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We put 8 =0 in (7), and resolving it into the following two equations:

A
e 01,
& | _lr o

Co
&
Lo

Cn—a

i (12 a)
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and
(én—z} 7 0 1] !{‘:n—‘i\j
i | |
Ién-l =|or OJ : {c . (12b)
& / Lo 0 7, ny )
Then (12b) gives the surface of critical stability when &,, (v»=0,1,2,3, ...,
#—3), are fixed at constant values. When &,, (v = 0,1, 2,3, ..., #—3), are fixed at
constant values, ¢, (v =20,1,2,3, ..., #—3), are obtained as functions of 7 only from

(12a), and the vector of critical stability (12b) has its components &,-,, &, as
functions of 7 and ¢&,.,, and component &,-; as a function of 7 only.

Accordingly, the vector of critical stability (12b) lies on the plane parallel to
&y~ and &,-axes, having the gradient of tan™'y against §,-,-axis, and as &,-,
depends only on the frequency, the oscillating frequency of the system will be de-
termined by &,.,.

If we assume &,—, = 0, equation (12b) becomes:

(&ams) {r 0} (Camu)
| P

i | e
)\énwl} 0 7‘/; N Cn"ﬁl

) (13)

which is the [&,-,, &, -stability criterion of the (#—1)-dimensional vector.

6. [&, &)~ and [§,.,, §,]~ stability eriteria

As (1.6.19) in $6 of Part I, the vector of critical stability is resolved into two
vectors, of which one is a vector which has all zero components in reference to the
odd-number-axes, and the other is a vector which has all zero components referring
to the even-number-axes.

Eliminating &,, and &,,., from the two equations of (1.6.19) respectively, we obtain

Z“‘ (’Dvrvén—(z»ﬂ) =0,
i (14)

E (—1>v7v5n~2v =0.
v

Now, if we fix all the components excepting §r+z.
& and £,., which are obtained only in \
one of (14), for instance the latter, the values
of v will be determined from the other
equation (in this case the former) of (14),
+ which does not contain &, and £,.., . For each
determined value of 7, the latter equation
of (14) represents a straight line on (&,
&,y .)~plane, and the set of these straight
lines determine the stability criterion as

shown in Fig. 7.
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The latter equation of (14) is expressed for one determined value 7, as follows:

é’r~2 = /‘,\(5,.—3\’,\\) B
where
e A f&g! s )M—d&- n\‘?’\‘) . )—vals . ]
Xx =T LA_;< a pean 21 (=T rey [
=1 V=2
with { o=r/2 for even 7, { (=12, ..., n/2 for even #,
o= (r—1)/2 for odd 7, (=12, ..., n—1)/2 for odd n.

Putting especially » = n—2, we obtain [£,-., &, )-stability criterion as follows:

sn - 7’)\(59%2-5‘:)\) »

where
XA :;2};1(—1')“‘%17"\[&&"2(#“!‘1) ,
with A=1,2, ..., p+1
and o= (n-2)/2 for even #,
{ o= n-3)/2 for odd a.

7. Composition of stability criteria

Let [£)], (#=0,1,2,3, ..., n), denote an n~dimensional stable vector and [£.”],
(#=20,1,2, ..., m), an m-dimensional stable vector. When all components of these
vectors excepting &..., &/, &” and &,” are fixed at constant values, [&,_,, &, |-stability
region of the (s#-+m—1)-dimensional characteristic vector [£,], ¢ =0,1,2,3, ...,
n+m—1), is obtained as follows.

By the methods in $2 and §3, the [&..,, &,/ ]-stability region of the [ £, ]-vector
and [§&,”, &, ]-stability region of the [&.”]-vector are readily obtained, and cor-

responding stable vectors are expressed as (15a, b) and (16 a, b) respectively :

CES 1 &
g/ B 1 &’
& | 1B &
= . B-.. . , (15a)
én/—a | / | én/_s
&L, B 1) lol.
o) [ 87 [ G B (151b)
e 0 Loyl len!
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r 50// ] !/ TI/ O g/ CO// \I
0 - l 17 wstt W PN <16 a>
&7 ) A A Y
é‘ol/ 1 B// ;:// \\ CU//
53// 1 B// - < ‘:1”
N ..' ..‘ /;// 1 M
' .B'I " E :
77:/—~1 1 CnZ1
En” L 1 &ty

From (15a, b) and (16a, b), the (#-+m-—1)-dimensional stable vector [§,],
(6=0,1,2, ..., n+m—1), is obtained as follows:

&, =&7 (¢6=0,1,2, ..., n—2),

Ener = 6 + &7,

§n =&+ &7,

£, =&l (6 =n-1, n—~2, n—3, ..., nt+m—1).

When the components £,(6 =0, 1, 2, ..., n+m—1) in the above equations are fixed
at constant values, the stability region of the (m+#n—1)-dimensional characteristic
vector is given by

{ Ci-s |
|
;(énwx} ( 1 | j/éoll 1 f“ B 1 0 % Loz |
j = I = | |
‘ | ; j " wrt !
5 S'P'n J 4 Sn/ : R 51” ’ 0 B” /” ’ ‘; C%ZI é
L&)
, Cn-s
[f/’ g1 ON %Cu—z‘
pramd ; [ iy
(0 7y B 1) | Cut]
|
|
“ Cn

where 4

Cnes =Cimas Cn-1 = 5;0///7‘ , BT =3/7,

Cnme =Cu-zs  Ca=0C"[1T, T/=1/T.
Putting A == 0 in these equations, the stability criterion of the (-1 —1)-dimensional
characteristic vector will be obtained.

For example, we shall show the composition of the stability criterion of the 5-
dimensional vector from the two stability criteria of 3-dimensional vectors [£] and [£"].
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If & = =&, fixed components of the 5-dimensional
& =g/ =§ } ' { vector [£],
& =vey } { [, &,/ ]-stability criterion of the 3-
& =re) : dimensional vector [£7,
&=¢" 7 } i { [&,”, &,”]-stability criterion of the 3-
g =e "y ’ dimensional vector [£7],
§/=¢"=¢&, } ) { fixed components of the 5-dimensional
==& | vector [£1,

the [&,, &,}-stability criterion of the 5-dimensional characteristic vector can be

obtained by the following equations, as shown graphically in Fig. 8,

ITp

2 =

2/ + 50// Py 2/:()/ "l" C()”/?‘ s
S E = 8,

I
D Oy

Ty

3

where all the components of the 5—-dimensional characteristic vector [£] excepting &,

and &,, are fixed at constant values.

g; = 3 g" =3
N ) '
¢
(Uwsfa.“.c)
7 (Unstable )
5 (Stable) e b
7 ¢
v 2
7 3
5,
(3]

Fig. 8.




196 K. TASHIRO

8. 7-scale on the line of critical stability

In order to construct the stability criterion of higher dimensions from those of
lower dimensions, it is necessary to scale the value of ¥ as a function of frequency
on the line .of critical stability. In the following, some properties of 7-scale is
described.

As stated in §7 of the preceding paper, in order that the feed-back physical system
may be stable, it i1s necessary that both equations of the hypersurface of critical
stability have all real roots of 7.

At one point of 7-scale, the characteristic equation has the factor (p°-+7), and
has the roots =+ 7,7 7. Consequently, the oscillating frequency of the system is

given by:
0=y,
The [&,, & ]-line of critical stability has the scale of 7 = 1/7 instead of 7, and
in this case, the oscillating frequency is given by
w=1//7.

In the case of the normalized characteristic vector, &' = &,/(§)", (v =12, ..., ),
the characteristic equation has the factor {(£,p)%-+7}. So the oscillating {requency

is given by

W=y E

9. Stabilization by multiple feed-back

The additional feed-back is often used for stabilizing the feed-back physical system
as shown in Fig. 9, in which the output signal of Z; is fed back to the input of Z,

through the feed-back element Z.

A A - A R A o e
I [ 7.
L Lx
e, .

The characteristic matrix of this system is given as follows: -
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z, K.
’“Kz Zz
[z]= K 2z an
'_'Ks Z‘f
“.Kn .Zn

By expanding the determinant of (17) with respect to the »-th row, the charac-

teristic equation of the system is expressed in the following form :
[Lz]l=1[2]| +|[2]i] =0,

where [Z7],: the characteristic matrix of the system without any additional feed-back,
[Z]1: the feed-back matrix which is produced by substituting Z, for the
(r, s)-element and making zero all other elements of the 7-th row in
[Z71, so that |[Z];] is the co-factor of Z, of |[Z]] multiplied by
Zys, namely :

A K.Y
-K, Z, |
[z, =| & % :
~Ks Z
"“.I(n .Zn '
and
(' Zy KN
i —Kz Zz
(2] = | 0.0 %
i "".I{g ‘Zs
N ~Kp Zp'

Accordingly, the change in the characteristic equation by the additional feed-
back is
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-K, Z,

’“kr—x Zr—1

- Krﬂ Z'r~l~1

20| = (= D™*Z,, K Zen
K,
- Zen
”Ks+2 Z_s+2
"‘Kn Zn
= (= 1) 20 Z Zyerees Zops (= 1) K Koo oo Ko Zg 1 Zs e oo
= (K Kppgreoe K (Z Zpeeeee ZoporZgyyeeeeer Z) Zns .

z, K, |

(18)

Thus, the change of the characteristic vector due to the additional feed-back
depends on all other elements and connection coefficients of the system excepting Z,,
Zpy1y oy Zsy Ky, Ky, ..., K, and K;q, ..., K. This change is called the feed-back

vector and is easily obtained from {[Z7;].

The stabilization by an additional feed-back is actually performed by feeding
back the time rate of change of the manipulator output to the detector input, as

shown in Fig. 10.

Z

Y, Controlled Element , .

.__( Add itional. Feed - Back Civeuit
‘Mo,nipulatar. Zn I Zsn Detector, Z2

' Fig. 10.
The feed-back matrix of the system as shown in Fig. 10, is given by
 Z 0
00 Zoa |
' -K, Z, '
[Z] = >
"Kn—l Zn~1 :
_I{n Zn /
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and since Z,,, = xp = xd/d¢t, the determinant of this matrix becomes:
Hzl = KK, oo KuxpZs,

where x is a proportional constant called the feed-back coefficient. In the case of
Z, =L p-+R,, it becomes :

I[201] = Kx(Lp* + Rip)
where K =K,K, - K,.
Thus, the feed-back vector is obtained as follows:
£, =0, (vw=0,12, ..., u—3, n) ‘{

(L) )
=K
x“?lf J

YTy

-2

§na

pr—

I

Therefore, the characteristic vector is changed in two components only, by the
additional feed-back element connected, that is:

) L
+ Kx I
o %)

.
<
L& 591—1

-1
Thus, the magnitude of the feed-back vector is proportional to this feed-back

coefficient x, and its direction is determined by the time constant T = L,/R, of the

element Z, = L,p+R,, independent of x, as shown in Fig. 11, in which
5; =[&,]o: characteristic vector without
any additional feed-back, Bt

1—65 =[&,]1: feed-back vector,

tanf = 1/T,, i

T,=L,/R,: time constant of the con- ;
i
'

(5 fable )

trolled element.

As will be seen from Fig. 11, the charac- P A
teristic vector 0—-P) of the control system
which is unstable without an additional ( Unstable)
feed-back, can be changed to the stable
vector 5~Q> by adjusting the feed-back 4

coefficient x.

€ n-Z

Fig. 11.

10. Improvement of characteristics by an additional feed-forward

The additional feed-forward which is performed such that through the element
Zs», the output signal of Z, is fed to the input of Z; as shown in Fig. 12, has
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K, K
T

Fig. 12.

similar effects to the additional feed-back and is used to improve the stability and
the response of the control system.
The characteristic matrix of this system is given by

Z, K,
-K, Z,
K, Z,
[z] =
Zsr “I{s Zs
"'Kn—l’Zvrl
K. Zy

So, the characteristic equation becomes :
Izl =21 +1[Z]ul=0,
where [Z], is the characteristic matrix of the system without any feed-forward, and
[Z 1 is the feed-forward matrix, which is produced by substituting Zs, for the (s, 7)

element, and making zero all other elements of the s-th row in [Z7],.
Thus, we have:

Z K,
-K, Z,

"j(rﬂ Zr»l
~K, |
L Zen
I[Z]ul= (=D Zs,, - ~Eriz Zrio

’—: I{/ZSsr(Zr'HZr«'-z """ Zs-1)
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where K’ = K Kyeoror Ky yoee Ky .

Hence, the change of the characteristic vector due to an additional feed-forward
depends upon Z..,, Zprs, ooy Zs—y, Zs,r and K, K,, ..., K,, Ksz1, ..., Ky, This
change is called the “feed-forward vector ”.

If the time rate of change of the output of Z,._; is fed forward to the input of
Zys1, as it is often used, the feed-forward vector is given by:

(Earz | = K'x [LTJ,
En-1 R,

where Z,=L.p+R,.

Thus, quite similarly to the case of the additional feed-back, the stabilization of
the system is performed and the magni-
, 8
tude of the feed-forward vector varies St l)
with the feed-forward coefficient x, and ( oe
the direction is determined by the time Q
constant 7, = L,/R, of the element Z,, as

shown in Fig, 13, in which p I}

—_
OF: characteristic vector without any addi- (Uns%a b e‘)

tional feed-forward, k - . > gﬂuz
Fig. 13

—
PQ : feed-forward vector, and tantl = 1/7T,.

11. Experimental confirmation

i) Experimental apparatus

In order to confirm expérimentally the author’s stability criteria of the feed-back
physical system, the stabilizing experiments of the speed control of a D.C. shunt
motor by means of an additional feed-back (antihunting device) have been carried out.

The experimental apparatus consists of Ward-Leonard system with feed-back
elements, whose connection diagram and elements are given in Fig. 14, and Table I,
respectively.

The speed of the D.C. shunt motor in Ward-Leonard system, that is, the con-
trolled variable, should be kept constant by means of the feed-back, whose mechanism
is as follows. First, the motor speed is detected by a tachometer generator as a speed
voltage, which passing through a filter is compared with the set value of the speed
voltage and difference voltage, after amplified 1400 times as large, is converted into a
shift angle of phase by a phase shifter, and deformed into a peak voltage through the
peak-generating device, and this phase shift of peak voltage, impressed on the grids
of two thyratrons, controls their ignition angles, and their output current excites the
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Table 1
Department |Symbol Element Rating
PM 3 phase induction motor for prime mover 3 HP, 1430rpm, 110V
G Ward-Leonard D.C. generator 2kW, 1500rpm, 110V
Controlled D.C. shunt motor 1kW, 1500rpm, 105V
Controlled
system LG D.C. generator for load 1kW, 1500rpm, 105V
Ra Total resistance of armature circuit of
motor
Leonard {generator
Ry Resistance load (lamp bank)
T Tachometer generator 1000 rpm, 6V, 3 mA
rr Armature resistance of tachometer generator 100 £
Rv Internal resistance of voltmeter 2kQ
Dedt:ggicrég 7y Resistance of choking coil 1.5k2
L, Inductance of choking coil 30H
C, Condenser 3.5 uF
R, Resistance 30k
Vy First step amplifier tube UZ-6C6 n=1500, #»=15M2L
Vs Glow tube for stabilizing voltage VRA 135V/60mA
Vi Glow tube for stabilizing voltage VRA 65V/80mA
Amplifier R, Resistance load of the 1st step amplifier tube 100k 2
C, Condenser 2.46uF
V. Second step amplifier tube UY-76 n==13.8, r»=95k2
Vs Glow tube for stabilizing voltage VRA 150V/30mA
R, Resistance load of the 2nd step amp. tube 30k 2
V. Vacuum tube for variable resistance of UX-2A3
3 phase shifter
Phase
shifter Cs Condenser (phase shifting circuit) 0.76 uF
R, Resistance for phase adjusting 36ke -
Pe~ak gene- Vs Vacuum tube for peak generator UZ-42
rating device R, Resistance load of peak generating tubes
Manipuator Th 200V, 2.5A Peak y5p

Grid glow mercury tube TX-920

load
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Fig. 14. Diagram of the automatic speed control in Ward-Leonard system

R

: Leonard generator
: Controlled motor
: Load-generator

: Tachometer gehera tor
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field of the Ward-Leonard generator so that the motor speed is kept constant.

Since the deviation of the motor speed is very small, the system may be assumed
to be linear, and on this assumption the calculation has been performed.
ii) Characteristic impedance of each element

@) Controlled system

The controlled system consists of a set of Ward-Leonard system with loads and
a tachometer generator as shown in Fig. 15, and the input signal is the deviation in
the field current of Leonard-generator 4I,, while the output signal is the deviation
in the generated voltage of tachometer 4Vs.

If the deviation of field current 47, is small, it may be assumed to be proportional
to the change of generated voltage 4E, of the generator G, that is,

' dEq; = K,dI,. (see Fig. 16)

110k
100}
90 -
30+ No load saturation curve
of Leonard generator
.
g
V) gL
60k
5ot
By
|
4ot , b—
° M 1630 Tpm const.
30r
20+
10+
i
L i 1. L 1 L

3 ek, I} kS i1 1 3 i
0 0.4 02 03 04 0.5 06 0.7 03 09 1.0 41 12 13 L4

Fig. 16.
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The deviation of motor speed A(;, which is induced from the voltage deviation

4L, , is given by the following equation :

J‘W (f+ {,e )40_K1 4E,,
where K, K, are torque coefficient and induced emf coefficient of motor and generator,
because the motor and the generator are of the same structure.
As the speed of motor (7 is proportional to the induced emf V; of the tachometer
generator 7, that is, 6= K.V, hence, if the input signal is the field current divi-
ation dI; of Leonard-generator and the output signal is the deviation of speed emf

4V, the performance equation of controlled system is

7 d""VP v AV = 4,

where
s Kz R
, K R,,-,( K2 Kf)
=E . S0+ 5
f Kf K1 Ra RL
with { J: moment of inertia of motor with loads,
F . friction coefficient of motor with loads,

Thus, the impedance of controlled system is given by
Zy=]p+ f.

The measured values of J” and f’ are as follovx}s (see Fig. 17).

Loads Time constant ; I ] I
no load | 0.258 | 0045 | 0.172
1 load } 0.228 ] 0.0438 ‘ 0.192
2 loads 0.203 ! 0.0440 ; 0.217

b) Detector with filter
The detecting device is a tachometer generator with filter, which converts the
speed signal into the voltage signal. However, as the performance equation of
detector, that is 6 = K;Vg, has been contained in the performance equation of con-
trolled system, it is sufficient here to con-

sider the performance of the filter only, AAAA ATIEE o
The filter is illustrated in Fig. 18, in which % T Tob T
¢, =RS €
¥p . armature resistance of tachometer Vs Ry ! ' »
generator (100 &), £ J'

Ry : internal resistance of voltmeter (2K42), Fig. 18.
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71, Ly resistance and inductance of choking coil (1.5 K&, 30 H),
C, . condenser (3.5 ul),
R, : resistance (30K.2).

The performance equation of this filter is

, |
kVs = L, Lo (% +Cr,) Zeos (B +1)en,

where by = Ry/(#p+Ry) =2/(2+0.1) =0.95.

Hence, the performance relation between the input signal 4Vs and the output

signal de,, of detector is expressed as follows:

B

hidVg = {Llc,p2 + 6%‘ + Cm) p+ <%1- + 1)} degy ,
1 1

or
0.95 4V, = (1.05%x1074p?+6.25 x 107*p + 1.05) dey, .

o) Amplifier
Fig. 19 shows the actual circuit of the two stage amplifier.

Ra Rs Ras
T 4€g3
=¢, |
R3
‘
% VR
:S‘;ﬁp De }.¥5',50 'F%D
O a0y T O %’A%Y—-wé

R,: load resistance of UZ-6C6 (100 K®2),

R,: load resistance of UY-76 (30 K&),

R, : variable resistance (500 K2),

R, : variable resistance (350 K@),

R4y, resistance (500 K2),

R 4;: resistance (250 K@),

C,: condenser (2.45 uF),

deg, : deviation of input signal voltage in the 1st stage,

deg,: deviation of input signal voltage in the 2nd stage,

deg,: deviation of output signal voltage in the amplifier,
u: amplification constant of UZ-6C6,

rps: internal resistance of UZ-6C6,

R,”: resultant resistance of parallel connection of R; and the anode part of R,

Fig. 19.
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The actual circuit of the first stage

of the amplifier is equivalent to the ? W _L 4?)
simple circuit as shown in Fig. 20, for  Hgey, C, R, Aeg,
small deviation of input signal voltage. é T

Thus, we have Fig. 20.

— pdey, = {Cgrpgj) + (1 + 173,2)’2’ )} dey,
2

or
—1260 de,, = (B.7Tp+18.7) de,, . (see Fig. 21)

The performance of the second stage is expressed by
K/ dey, = dey; . (see Fig. 22)

As K, = —11 is obtained by experiment, the performance equation of the whole

set of amplifier is obtained as follows:
C 7 1

d) Manipulator with phase shifter
The manipulator consists of three parts, i.e., phase shifter, impulse generator
and thyratron circuit. The input signal, that is, the output voltage deviation of
amplifier, is converted into the shifténgle of phase by phase shifter, and is deformed
by impulse generator into the phase shift of peak voltage, which is impressed on
the grids of thyratrons, and the output current of the thyratrons controls the field of

Leonard-generator, as shown in Fig. 23.

(Phase shifter) (Impulse generator) (Thyratron circuit)

Fig. 23.
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The performance characteristics of manipulator have been obtained as follows by
oscillographical measurements. The time constants of phase shifter and impulse
generator are estimated to be negligibly small both by measurements and by calcu-
lation (ca. 0.8/1000 sec) from the internal resistance of UX-2A3 (0.8 K£) and the
capacity of condenser C,(1 #F). Thus, the time constant of the whole set depends
only upon that of the field winding of Leonard-generator, and is obtained experi-
mentally. Then, the values of constants »,” and L, are calculated from ez~
characteristics at operating conditions and the measured time constant T = 0.155 sec
of the fleld winding as follows:

o
oe,
e = ( (£

o8, = 24. ! == 24, 155 = 3.8.
mf)l'mm_s 245, Ly =245%0.155 = 3.8

Accordingly, the performance equation of the whole set of manipulator is given by
—dey, = K,dey, = (L/p+r/) Al , (see Fig. 24)

and K, =~-K,/=11.

Thus, Z= L p+ry =38 p+245.

iii) Characteristic vector

The block diagram of this automatic control system is obtained from the above-

mentioned impedances of all elements as follows:

LL'C' p2+(~,%+c.h)p+(-,§+1) 1

—— b (1 E)

Fig. 25,

Hence, the characteristic matrix of this control system is
(Jp+r 1

| - K, L1C1p2+ (él '}"Clr!> P (73 -+ 1) |
[z]= '
| - K, Carmap +(1+ 122

-~ K, Lip+ry)
It gives the characteristic equation of the system as:

[[Zz]]=0,
or

T PR N
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Arranging the equation in descending powers of p, we get
apt+a prraptapttapras =0.

If the characteristic vector [ap/a,], (n=1, 2, 3,4, 5) is transformed by
g, =% (zg)”
=2y ao/ ay) ’

£p1— g?—_"+1/(g§>v
v al ao 3

the following components of the normalized characteristic vector are obtained :

(v=0,1,2)

50:1, gx:ly 52:1,

t=0f%) e =2)%), e= /(%)

Putting numerical values of physical constants at different states of load, we
obtain :

a) No load:

The characteristic equation is given by
6.24 X 107% p°-+4.933 x 1072 p* +7.09 x107* p*+10.38 p*+51.0 p--13483 = O,
and the characteristic vector has the components :

¢ 10.38 % 6.54

& jrscedietiub e eiU e -1 fomd
|2 Loz 700 10T = 0208,
| o _5L9 X 654 .04 _
£ = 2H3 X D00 107 = 000663,

£ — 13483 x 6.54*

§ TS o ~5 = (0,027
% = Lasznrogr X107 = 0.0282.

by One load:
The characteristic equation is
644107 pS+4.9% 1072 pH+ 711 X107 p3+10.58 p*+-54.05 p--13492 = 0,

and the characteristic vector has the components:

(. 1058 X 644 .
J’ $a= 400 % 711 107 = 01955,
5405 x-644 .,
f} g, = 200 2042 10~ = 0,00683,
2
st

{0 4,90 7.11%
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¢) Two loads:

The characteristic equation is
648107 pP4+4.95x 1072 p*+7.17x 107 p*+11.0 p*+58.6 p+ 13504 = 0,

and the characteristic vector has the components:

(o 110 x 648 .
=105 x 7.a7 <1077 = 02005,
g 586 % 648 s

| , e X107 = 00074 ,

2
g, = 12504648 10-5 = 0.0225.

From the above-mentioned calculations, we get the following table of the

characteristic vector components :

Stailégzof £, ‘ & ! & f Stability
no load 0200 |  0.00663 0.0232 unstable
1 load 0.1955 0.00683 0.0223 unstable
2 loads 0.2005 0.00740 | 0.0225 unstable

Thus, the automatic control system in each of the above-mentioned cases a), b)
and c) has been concluded to be unstable as shown with the point P in Fig. 29, and
this instability has also been shown in the experiments in which the remarkable

hunting has appeared.

iv) Feed-back to detector

In order to stabilize the unstable system, the additional feed-back circuit has
been inserted between the output of manipulator Z, and the input of detector Z,.

The additional feed-back circuit Yy.,. is shown in Fig. 26.

= J'p+f': controlled element (Leonard-motor),

Z,= L1C1p2+(%+clri)p+(%+1>:

detector with filter,

—
7z, Zy = CoF po - +( »,, 4 1): amplifier,

Z, = L¢p+ry: manipulator,

Fig, 26. Yr.p.= x2p: feed-back element.
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Cm % = input voltage,
[@ ey = output voltage,
? Cyy = 2,11 puF,
u r’:' Cf e} 01

I :4 Cop = 7.0 uF,

{o____.__.; T ’ Cr = 2.46 uF,

Coz 771, ¥r, = variable resistances (7;,+7r, = 2000 ),

Fig. 27. Cy = Cp1Ca/ (Cyy+Cyp) = 1.62 iF.

With R, = armature resistance of Leonard-generator and R,, = armature resistance of
Leonard-motor (controlled motor), we obtain:

- B
Yf. o == CorﬂKf Rg+ ij) = xp = 0.0562 Tflj) s
and
g z, 1
g—Kl Zg Y/.b.i
Zll = =210+ Y [ 21 =0,
z= Y, | \[21,] + V... | (2]
"‘Ks Z-; ;

where [Z7],: characteristic matrix without any additional feed-back,

Z, |
[Zhl=| -K, Z, =KKZ =KKJp+f).
-K, |

Hence, the feed-back vector is given by

e, 7 T
= K,Kux|” | =0.0562 KKy, |” |-
{JI g f’} 502 Kallary [f')

Then, the characteristic vector of the system, with the additional feed-back ele-
ment Yr.,. (#p, = 10K, has the components:

Load | & | & £ & | & 5
no load | 6.54x10-% | 4.933x10~%] 7.09x 10~ 45.48 187.0 13483
1 load | 644%10-5 | 490%10~3 | 7.11x10-t 45.05 205.5 13492
2 loads | 6.48x10~5 | 495%10-3 | 7.17x10"1 45.80 2296 13504
and is normalized as follows:
Load %4 g g v ) } % Stability
no load 1 1 0.890 f 0.0244 } 0.0232 unstable
1 load 1 1 0.836 1 00257 | 0.0223 unstable
2 loads 1 1 0835 | 0.0290 1 0.0225 stable
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The above-calculated vector-components are illustrated in Fig. 29, and the experi-
ments have quite agreed with these theoretical calculations, showing that the system
is completely stabilized only in the case of two loads. And the measured values of
resistance 7,, for the system being in critical stability are quite consistent with the
author’s theoretical calculations, as follows.

Load ? Theoretical values ] Measured values
no load | 104K | 112K
1 load | 1.01K2 | 110K2
2 loads ' 096 K2 1 0.94KQ

v) Feed-back to amplifier

When the additional feed-back circuit Yy.,, which is shown in Fig. 28, is inserted
between the output of manipulator and the input of amplifier, in order to stabilize
the hunting system, the block diagram of the whole system is given as follows:

Z, = J'p+f’: controlled element (Leonard-motor),

Z, = L,C,p*+ ( 11 Clrl)p—{-( 1 +1> detector with filter,

Z, = czr,,zp+(§.,-,+1) amplifier,

Z,= L¢p+ry: manipulator,

Fig. 28. Zy.p.=2xp: feed-back element.

The characteristic equation is

| T+ S L
| -K LGt ( kc,rl)p+(}r€1 1) |
? -K, Cz_r,,zp+(;?”;, + 1) Yro | >
K, Liprs |
This is expanded as follows:
I[Z]e] +Yrol[2]1]=0
where [Z7],: characteristic matrix without any additional feed-back,
- Z :
l[Z]r!:—§ —-K, Z, ; =K.Z,.Z, = K;(J'p+ f" {L1C1p2+ (% +C1r1)p+ (%14—1)}
|

-K,
= J'LC,K,p* +K3{j'( Liicy, )+f’L1C,}p2

+K, {]( +1)+f( +Cm)}p+ Kf(1+Rl)
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Stability criteria

Py : non feed-back point
{Pl: with feed-back (7y,=1kQ)
R.: resistance for critical stability

0.06¢
No Loa
005 o Load
51/ We s -
%4 0.041 o Rc 1040 n
™

sy
0.03F \,Q\

e 3
0.02F e B —
0.01} Pt

-
] IPO 1 I ! [ 1 ! 1 l i 1
0 01 02 03 04 05 06 07 08 09 10 11 1.2
J— 5—:/
(LO(:" "Q.&)‘ﬁ %3
N
0.05 ’ 1 Load
5 004l Re i 10102
0:93‘ N
0.02F ' —
0.01+ et
R | l
0 ol 02 03 04 05 06 07 08 09 10 1.1 1.2
e &Y
0,05 53
o
T“ 004}
0.03F
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.01t -
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Fig. 29.
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&) (J'L.Cy J/x83%1072 )
| :
i i / L /7 +
& 7(Eren)+ e, J/ X495 £ 8.3x 107
| 1
=K,x L =7z )
4 r 7’
£, T (7; +1>+f<je-‘«+clra) J/ %830+ f'%x4.95
1 . | 1 1
£, f /R + D) £/ %830 )
and it has the following numerical components for 7y, = 1.0KR2.
] 1
Load 1 3 | £ | & £,
no load | 87x10-* 0230 | 3785 143.0
1 load | 3.66x10-4 0.234 | 37.55 159.0
2 loads | 364107 0.236 g 37.48 180.0
So the characteristic vector, with additional feed-back, has the components:
Load & & &, & ! & l 13
no load 6.54x10-° 5.303%x 103 0.939 48.23 ; 1940 13483
1 load 6.44x 108 5.266 X 10-3 0.945 48.13 t 213.0 13492
2 loads 6.48x 105 5.314x10-3 0.953 4848 | 2386 13504
and by normalization, these become :
Load ¢y oy % g | w
no load 1 11 0.603 0.0144 0.0122
1 load 1 1 ! 1 0.626 0.0154 0.0119
2 loads 1 i 1 | 1 0.621 0.0170 0.0118
Next, the feed-back vector for 7,, == 1.5 K& has the following components :
Load | & | & & 3
no load 0555x10-2 | 0.345 56.78 : 2145
1 load 0.549%x10-3 i 0.351 56.33 238.5
2 loads 0.546x10-3 ‘ 0.354 56.22 270.0

So the characteristic vector with additional feed-back is given by the following

components :
Load | b | & e | s | & 5
no load | 654x10-5 | 5.488x10- E 1054 | 6716 | 2655 | 13492
1load | 644x10~° | 5449x107 | 1062 | 66885 | 2025 | 13492
2loads | 648x10-° | 5496x10- | 1017 | 6722 | 3286 | 13504
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By normalization, these components become :

Load [ 6/ s;/ i é/ f él E ;/ g/
no load 1 1| 1 o762 | 00157 000945
1 load 1 1 | 1 . 0740 | 00167 | 000905
2 loads 1 1 1 o738 | 0018 | 000897

By the author’s stability criterion, the characteristic vectors for all cases without
any additional feed-back and for a case with the additional feed-back of ry = 1.0KZ%,
whose components have been calculated above, are theoretically concluded to be
unstable, while the characteristic vectors for cases with the additional feed-back of
77 = LBKL are all theoretically concluded to be stable (see Fig. 30). The experi-

ments have quite agreed with the author’s theoretical conclusions.

vi) Period of hunting
For example, we repeat here the case of no load and feed-back to amplifier. The
characteristic vector in the state of critical stability has the components :

Load i & & [ &, l & i & : &5
no load } 654 10-5 [ 5.488%10-3 [ 1054 | 67.16 [ 265.5 E 13492
which are normalized as follows:
Load & ¢ S A N 4
no load 1 E 1 1 0762 | 00157 1‘ 0.00945

This normalized characteristic vector is represented by a point, scaled 7= 0.016 on
the normalized line of critical stability of the 5-dimensional vector in Fig. 30.
Accordingly, the hunting frequency of this unstable system is given as follows:

=0 _vy_ 1 ‘\/u<52> -1 o 1.054 _
7 = T o AT £, 2n ﬂ/ 0.016 x EEAx10-5 0.58 (1/sec),

or
T =1/F =0.387 (sec).

This theoretical value of hunting frequency may be considered to be quite con-
sistent with the measured value 2.8 (cycles per second), or T = 0.357 (seconds), if we
take into account the non-linearity of elements and the experimental errors.

vii) Straight-line stability criterion
So far we have considered the section of the 5-dimensional vector by (&,, &)-

plane. As described in §7 of the preceding paper, if (&,, &)-plane is considered
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instead of (&,, &)-plane, we obtain a very simple stability criterion which consists

of some straight lines. )
For example, in the case of feed-back to detector, the normalized characteristic

vector has the components:

no load 1 i1 0.890 00244 | 0232
, .

1 load 1 11 0.836 00257 | 0223

2 loads 1 I T 8 00200 0225

Now, cutting the hypersurface of critical stability of the 5-dimensional vector,
54// — «/// (1__7,//> , \’\
55// — 7// (53//_7,//) , J
with a plane §,” = constant (any value of £,” in the above table), we obtain

(&7, £”)-stability criterion which consists of two straight lines as:
&7 =1"¢"-1"), (7,-line)
&7 =7 (&7 ~1"), (7,-line)

" an 1

where 7,” and 7,” are the roots of the equation:
54// — T”(l"“?‘”)

for given value of £,”-component, as shown in the following table:

N
no load | 0.0244 | 0.024 0.976
1load | 00257 0.027 | 0.973
2 loads | 0.0290 0.030 0.970

The stability criteria by these straight lines are illustrated in Fig. 32, and the

-

results are completely in accordance with those of (£,7, &”)-stability criterion.

12. Conclusion

In this paper, the stability of the feed-back physical system, the relations
between the stability regions of the n~dimensional characteristic vector and those of
the (#—1)-dimensional vector and also the relations between those of the #n-dimen-
sional vector and the (#—2)-dimensional vector have first been discussed in detail,

and the methods of constructing the stability criteria of higher dimensions from
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those of lower dimensions have been described. Accordingly, from the simple sta-
bility criteria of the 2~ or 3-dimensional vectors, the stability criteria of the 4- and
5~ and higher dimensional vectors are readily obtained successively.

The stability criteria on any (&,, &.+,)-plane, besides those on (&,-;, n)—plane,
have also been discussed. Moreover, the stability criteria on (&,-2, §,)—-plane, which
consists of some straight lines, have been shown to be very simple and convenient.

It has been shown in §7 that the stability criteria of higher dimensional vectors
are drawn by adding two criteria of lower dimensional vectors. This method makes
also the stability criteria very simple and convenient.

We have also shown that from the 7-scale on the line of critical stability, the
hunting frequency in the case of automatic control system as well as the oscillating
frequency in the case of oscillator is calculated. ‘

It has also been discussed how simply the additional feed-back and the additional
feed-forward, which are commonly used for stabilizing the automatic control system,
can be treated by the author’s vectorial considerations.

Lastly, the experiments on the stabilization of the speed control system have
shown the complete accordance with the theoretical results and thus the confirmation
of the author’s methods has been achieved.

In conclusion the author should like to express his sincere thanks to Prof. L
Takahashi for his helpfull advices and discussions about this paper, and to Prof.
Y. Omoto who has kindly afforded facility to this work.
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