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ABSTRACT

The diffraction of electromagnetic plane waves by a circular cylinder of infinite
length is discussed in case when the wave is incident normally to the axis of the
cylinder and the magnetic and the electric fields are parallel and perpendicular to
the cylinder-axis respectively.

1.. Introduction

The problems on the diffraction of electromagnetic waves by a circular cylinder
have been treated by several authors. Recently, C. H. Papas (1) has calculated the
total scattering cross section of a circular cylinder of infinite length for the plane
wave incident normally to the cylinder-axis, in case when the electric field of the
incident wave is parallel to the cylinder-axis and the magnetic field perpendicular to
it. In this paper, the authors discuss a case in which the magnetic field is parallel
to the cylinder-axis and the electric field perpendicular to it. While Papas calculated
the cross section at high frequencies only to the zeroth approximation for his case, we
shall here perform the calculation to the first approximation for our present case.

2. Fundamental equations

We assume that (1) a circular cylinder of radius « is perfectly conducting, (2)
the external medium is vacuum with constants ¢, and u,, and (3) the wave incident
normally to the cylinder-axis has its H-vector parallel to the axis and its E-vector
perpendicular to it. Taking the z-axis along the cylinder-axis, the fundamental

equations in the cylindrical coordinates g, ¢, 2 are given by

, 1 9H,
—iwe, = > 5o :
[ (1
. 0H, (1
—fwe By = — T

* Read at the annual meeting of the Physical Society of Japan, November 2, 1950. Some of
the results here given are quoted from our manuscript, which was sent to Dr. Papas in
1951, in F. E. Borgnis and C. H. Papas’s book entitled * Randwertprobleme der Mikrowellen-

physik™ (Springer Verlag, 1955), pp. 59-60.
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: 10 _10E,
iwpH, = > 9o (pEy) , (2)

where we have assumed E.=H,=H,=0 since the state of polarization of the incident
wave and the infinite length of the circular cylinder justify this assumption, and the
time dependence of E and H is expressed by et
Writing Hy=¢, F2=gou,w? we obtain, from (1) and (2),
(A +E)¢ =0, (3)

where A, is the two-dimensional Laplacian.
Further, introducing two-dimensional Green’s function G defined by
/ ’ 6 —0 N ’
BtK)6, 93 0, 9 = —X D gp— ), (4

we have, by Green’s theorem,
[ {600, ¢5 0, oD@+, ) =000, @Y AHIIG, 05 7, 90 v’

Ssyys2
where v is the volume of the hollow cylinder of unit length formed by the conducting
cylinder surface S, of radius ¢ and the cylindrical surface S, of radius ¢’ (Ca). A
solution of (4) is

Glo, ¢; 0, @) = HP (k) , (5)
with

x={0*+0"~200 cos (p—¢)}! .
In the limit @’—co, by (3), (4), the second equation of (1) and the boundary condi-
tion on the conducting cylinder surface, the above relation from Green’s theorem is

rewritten as:

a 4 e ’
W0, 0y == | 60 560 5 o, ¢S

6 R ’ ’
57 Clo, 03 0/, 9}as’.

(6)
Since the induced current on the conducting surface is proportional to H., namely to
¢, the first term of (6) can be anticipated to represent the scattered waves and

+1im SSZ{G(p, ¢; 0, 90’)56;1—,90(.0’, o) —¢(o, ¢

a’ o

accordingly, if so, the second term must represent the incident wave. In fact, if we
assume the incident wave to be

¢ o ez‘kp cos (@—-@> s ( 7)

and put it for ¢ in the second term of (6), we can demonstrate
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H 4 / a ’ ’ 4 s / 4 '/
al}inmgsz{G(p, 950, 95,40 ¢)—¢ (0 ¢ )-a%,G(p, ;0,9 )}-dS

= gikp cos (¢=91> s

when we utilize the relations:

)

Go, ¢; 0, ¢ "—7}” € Ju(lo) HF (ko) cos n(o—¢") , (p<p")

and

-
gitip cos @7 =91) .3_3 eni"Ju(ke") cos n(e’—¢y) ,

He=

th e — {1 (n=0)
with e, = ), (n==1)
Thus we obtain, instead of (6),
Glo, @) = — Ssld)(n’, 40’)5%, G(p, @; 0, @ )AS -+ gike cos @=¢p) | (8)

Considering that the value of 9¢(o, ¢)/0p at p=a vanishes because of the second
equation of (1) and the boundary condition, and that &/0n’=: —8/8p’, the following

equation can be shown to hold:
27
—ik cos (¢ —¢,) exp [ika cos (p—¢)]= aSO d(a, ¢Ngle—¢"Hdy’, (9)

where

4o =) = {5,560, 03 0, ) }pma - (10)

p/ =a

If we can solve the integral equation (9) with respect to ¢(a, ¢’) i.e. H, on the
conducting surface, we can obtain, by putting ¢(a, ¢’) into (8), the general H;, ie.

(o, ©).

3. Secattering cross section

The scattered field term of (8) is:
pseat(p, ¢>~ag ¢(a, (p){a G0, @5 0, so’)},~ de’.
p=a

We shall find its asymptotic representation at g->oo. Since

2i\%

nko) exp [ik{o—p  cos (¢ —¢")}]

G(o, ¢; 0, ¢)~—-(

holds at o’€ p—> oo, we obtain

gbscat(p’ gp) _5—( purh )% El_—ﬂ exp (zk{))A(Gl?, @1) ’ (11>

V0

where
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Alp, ) =a Szﬂd«a, (@, ¢") cos (¢—¢’) exp { —ika cos (¢ —¢") }d¢’, (12)

and the subscript ¢, of ¢y, means that the corresponding incident wave propagates
in the ¢, direction. Then, from the geometrical symmetry with respect to two incident

angles ¢, and ¢,, there follows ‘
A@+¢y, @) = A@+¢z, @) . 13)
From (12) and the integral equation (9), we obtain
ik _ ik
Alm+e,, ¢)  A@+ey, ¢2)
Szngzﬂdco%l(a, ¢ glo—¢) e, (a, @)de

("9, cos (9 —01) exp {ika cos (o= Yo | "cos (9—0,) exp {ika cos (9 —¢) ude
(1)

From (14), (12) and (9) we can derive the stationarity condition of
A=A@+¢;, ¢2) = A@+¢,, ¢,),

against the variation of ¢y, and ¢y,, that is, the condition for dA=0.
We shall now concern ourselves with the total scattering cross section defined by

__The time average scattered power per unit length of cylinder-axis

7= The time average incident power through unit area
o Isscat/ginc .
Since
,Sinc e lRe(EincxHinc*> o k
2 2we, ’

and

5 1 2 *

Pt = Re( B3 (a, O HE" (0, p)ady,
we have

o= —ReA(p,, ¢)). (15)

4. Approximation of ¢ at low frequencies
If, in (14), we put ¢,=0, ¢,=n and ¢(a, ¢)=¢.(a, ¢)=1 to the zeroth approxi-

mation, we can obtain

4 Jy(ka)

A(r, ) = -“k—”HéW s

and therefore, from (15), we have

_4 {J Gha) }? :
T k) Y ANy k) } 6
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Now, in order to improve the approximation, we assume

= 51 A, cos n(p—g.), an

where A,’s are unknown coefficients, From (17) and (14)

: 31 S A4, Cnds
ik — __m=0n=0 , (18)
Al ™ (3 AuB)?
n=0
where
Bn = 2( - Z) n]n, (ka} »
_1ym, (19)
Con = 0 SRR 1) H () }

If we give variations to A,’s in (18) there follows by virtue of the stationarity
of A(m, n),

mmﬁ; ”-— A Cmn = m I‘>_J AﬂB ne <2O>

Further, to calculate after the method of Schwinger (2), we introduce D,, defined
by

=

S Cmn = B, , m=0,1,2, ).

By multiplying (20) by D,, and summing up with respect to m, we obtain

A<f}; Tl') jnzj {(% Ancmn)Dm} = ( % DmBm> ( 2;.1 Aan) ,
which gives

AQ@m) _
i 3 DuBn =~ Tn .

Therefore, we obtain finally

S (], (ko) }? o1
¥ T e (NG T @1
As will be shown in Appendix I, this result can also be derived from the results of
Ignatowsky (8).
In order to compare, at low frequencies, our result with that of Papas, we denote
our ¢ by o, and Papas’s ¢ by ;. Papas has given the results that
PSR A0V
"k {Joka) Y {Ny(Ra) }2
B ST A1
= " {Jn(ka) }2+ { Np(la)

which correspond respectively to (16) and (21) in our present case. Then, if we
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retain only the first term in each expansion of cylindrical functions for ka1, we
have

or [ Cka)® \? 2
oy {Zln (ka)} ’ (22)
and

— > as ka—0.

T

5. Approximation of ¢ at high frequencies

In this case, we can approximate the distribution of ¢ (@, ¢) such that

do, (@, @) = i]o by cos (@ — ;) exp {tkacos (¢ —.)}
‘/Jfl’l(ar §0) =0

on the illuminated side,

on the shadow side.
To the zeroth approximation, we put

Yo, (a, ¢) =exp {ika cos (¢p—¢))}

on the illuminated side,
d)‘ﬂl (d, @) =0

on the shadow side, (23)
that is, we assume Kirchhoff’s approximation.

For the sake of convenience, we consider ¢ = and ¢sz as given by
2z 2

¢=(a, ¢) =exp (ikasin @),

(r=9=2m) }
-_-.0’

24)
O£esm
¢se(a, ¢) =exp (—ikasing), (O=g<mn)
: } @)
=0. (T = 2m) :
Applying these to (14), we have
ik = i . .
——— = S dy S exp { —tka(sin ¢ —sin ¢") } gl — ¢ )dy’ . (26)
A (£ i) 4 Jo T
2 2
If we change the integration variables from ¢, ¢’ to «, # by the relations
@—@ 42 =2a, @+¢ ~2rn =28, @2n
(26) becomes
T
ik E2 @ g .
NI ZSO g2a) da SO exp(—2ika sin a sin B)df . (28)
(5. %)

Carrying out the integration with respect to- 8 for ke »1 by the method of stationary
phase, we have

1 k4

»ﬁ_ﬂ_w(é{)’f B exp (—2ika sin &)

) Do, e
2’3
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where

—ip? ,
gCr) = ;k' { o (Zkg sin @) Sin"’a——kl-cz H® (2ka sin @)

cos?a }

2sin w. (30)

Now, =0 is a singular point of the integrand of (29). If 2kasin a»1, however,
it can be proved that the second term of g(2a) gives only imaginary contribution to
A and thus no contribution to «.

In order to secure the convergency of the integral, we replace the lower limit 0
by «, such that Zkasina,pl. In this case, we write A, (7/2, 7/2) in place of
A(r/2, m/2) and (29) becomes

x
ik K
w37

when the second term of the integrand is conveniently neglected. Thus the corres-

—ik . ik
=1 Swosm ada = ~ g €08 o 3D

ponding cross section is

_ da
%e0 = Cos aty ” (82)

The dependence of 04, On ka is roughly considered as follows. For example, if
we put 2ka sin a,=10, Hankel’'s function can be asymptotically expanded to a good
approximation. Then, we have

4a 1/5\2
S e 1]
-
ka
which enables us to anticipate the high frequency behaviour of ¢, Especially it gives
lim o4, =4a,
kayoo
which coincides with the cross section in the geometrical optics.
For a better approximation of ¢ calculation, we take, instead of (23), the first
two terms in the expansion of ¢y, and thus we put

¢g, = {1-+bcos (p—¢)} exp {ikacos (¢p—¢,)} on the illuminated side,

=0 on the shadow side. (34)
Then,
g/z% == (1+Dbsin ¢) exp (Gka sin ¢) , (r< oL 2m)
=0, O=e=sm)
dia_zzt_: (1—bsin @) exp (—ikasing), OZLoe<m)
=0, (<9< 2m)

which correspond respectively to (24) and (25). If we introduce these into (14),

we obtain
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ik P+2Q+PR
T w\ P +2bQ°+bR’
A("z" ‘2“)

(35)

P= Sﬂexp (ika sin ¢")dy’ S glo—¢’) exp (—ikasin ¢)de ,

sin ¢” exp (tka sin ¢")d¢’ S:g(go~ga’) exp (—ifea sin ¢)de

exp (tka sin ¢’)do’ S:g(qp»— ¢") sin g exp (—ika sin ¢)dy,

R~ [Tsin o/ exp (ikasin dy | g9 sin g exp (—ikasinp)dp, ) (36)
S

27

1 (" 1" o
Q= S sinede S sin pdp — = S sin ¢de S sinpde ,
2 Jo " 2 Jo z

= N 27 .
R = S sin®pde S sinfpde .
0 4

Further, (35) can be transformed into

ik beP+ohbQbeR ,,?130 2 “ n
A ( _72[ ’ g_ ) b2P” -+ 200, Q"+ b,2R’ mé‘o "2:( b, Nmnb
where
by=1, My, =P, Ny = P7,
b, =0, My, =M,,=@Q, Noy=Nyp=q’, (38)
M,=R, N, =R".

When we give variation to b,, in (37) corresponding to the variation of ¢y, we have
from the stationarity of A,

i

A% 2) 2 Mnba = ik 33 Ny (39
Then, multiplying (39) with an indeterminate quantity E,, and summing up with

respect to m, we obtain

b w %} 27;-“ EmNmnbn 40
A5 5) = e g, “0

The above E,, can be defined by
E Nmn >_J an (77 = 0: 1) . (4”1>

m

that is,
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(Noo‘“)kMoo)Eo‘J'“ (Nlo“')\Mw)Ex =0, }

417
(Now—AMo) Ey+ (No— AMi) By = 0, 9

where A is an undetermined constant.
In order that a nontrivial solution of E,, may exist, the following equation must
be satisfied :

Nog~— AMy, Nm"XMm =0,
Nm_AM(n Nu”“KMu
that is,

| PP—iP  @-1Q|=0, 42)
J Q-2 R —IR]
which determines the value of 2. Accordingly, E,, (m=0, 1) can also be determined,
but for the determination of A which in turn gives ¢ by (15), it suffices only to know
the value of A, because from (40) and (41), we have
T o .
P 3
AT, 2) =i (43)
For ka>1 and 2kasin ay»1, the elements of the determinantal equation (42)
become :

— ik
P=Tcosa0,

dk(m 3_13296_)
Q= 2a ( 5@ty ’
ik cosiay,
= ——lcos @y ——5—, (36"
Pr=4,
Q/ = —T,
71'2
/ —
R T
whose derivation is shown in Appendix II. With these values, the solution of (42)
is given by
1 2 use T .
a 4(cos =5 cosaa%) +T cos wo———2~+mxo—~2~ sin 2a,
A= i .\ i/= T .\ “
cos a'o(cos @y — 3 COS ao) —Z(?_a°+§ sin 2010)

To get a rough estimation, we put for example

2ka sin o, = 10,
then (44) becomes

1= -3,
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and we obtain by (15)

s=aaf1+L{2V}, | (46)

which tends to

o=4a as ha->oo . (47
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Appendix I

Using the results derived by Ignatowsky (8), ¢ can be evaluated as follows.
Corresponding to

Hipe = gito cos@=00) = Ste i (ko) cos n(g—@y) , (AD
)
we put
H:cat = 5;‘(') En i"PnHﬁ) (k{)) Cos n(q&—(ﬂ;) > <A2>

where g,=1, ¢,=2 (#>1), and P, is an unknown factor, but it can be determined
by the boundary condition to be

I A ()
Pn = "—Hgl)/aea—)' . <A3>

Inserting (A3) into (A2), we obtain
_ 1 2% (9 H ine y .
B klm{go( ap’*),@ﬁaHz (@, ¢,ad¢}

_4 s {J (ka)}?
= B T Y AN R (AD)

which coincides with (21).

Appendix II

The evaluation of P/, @ and R’ is easy and P is equal to the right-hand side
of (26) except for a numerical factor. Therefore, we perform the evaluation of @
and R only. Now,

Q=@ +Q,,
with

kx4 z
Q= % Sm sin ¢’ exp (ika sin ¢”)d¢’ gog«p__(p,) exp (—ika sin ¢)do ,
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21 4
Q, = —~—%— Sn exp (tka sin ¢ )d¢’ Sog(go—ga’) sin ¢ exp ( —ika sin @)de .

Changing the integration variables from ¢, ¢’ to «, 8 by the relations:

o—@' +2n=2a, e+¢ —2r=28,

we have
= "
Q= —4 SO dag(2a) SO df sin (a—B) exp (—2ika sin a cos f3) .

Carrying out the integration with respect to B for ka»1, we obtain

i :
Q, = ~2(g—§) : SO“ de g(20) (sin @)} exp (—2ika sin @) .

If we replace the lower limit of the above integral by the constant «, which statisfies
2ka sin ay>1, then
—tk(m 1y
Q"’zm( 5 -+ 5 31n2a'0) .
Further, we can easily show that @,=@, and thus we obtain finally the following
expression for @ :
k(w1

Q—Za(z a+ sm2ao) .

Similarly we can evaluate R.
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