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                                  ABSTRACT

        Tlte diffraction of electromagnetic plane waves by a circular cylinder ef infin.ite
     length is discussed in case when the wave is incideRt normally to the axis of the
     cylinder and the magnetic and the electric fields are parallel and perpendicular to
     the cylinder-axis respectively.

1.- IRtroduction
                   '
    The problerns on the diffraction of electromagnetic waves by a circu}ar cyliRder

have been treated by several authors. Recentiy, C. H. Papas (i) has calcttlated the

totaI scattering cross section of a circular cylinder of infinite length for the plane

wave incident normally to the cylinder:axis, in case when the electric field of the

incident wave ls parallel to the cylinder-axis and the magnetic field perpendicu}ar to

it. In this paper, the authors discuss a case in which the magnetic field is parallel

to the cylinder-axis and the electric field perpendicular to it. Whi!e Papas ca!culated

the cross section at high frequencies oRly to the zeroth approximation for his case, we

shall here perform the calculation to the first approximation for our present case.

                                                                  '2. Fundamental equations ' • '
    We assume that (1) a circular cy!inder of radius a is perfectly conducting, (2)

the exterRal medium is vacuum with constants eo and pto, and (3) the wave incident

•normaiiy to the cylinder-axis has its H-vector paral!el to the axis and its E-vector

perpendicular to it. Taking the z-axis along the cyiinder-axis, the fundamental

equations in the cylindrical coordinates p, q, x are given by

                             Jj.toi,eS.pl'?•,3e",fX,'} ' .,,,

                                          ,
 * Read at the annual meeting of the Physical Seciety of 3apan, November 2, 2950. Some of
   the results here given are queted from our manuscript, which was sent to Dr. Papas in
   2951, in F. E. Borgnis and C. H. Papas's book efititled "RandwertProbleme der Mifermvellen-
  Pltptsile" (Springer Verlag, 1955), pp. 59--60.
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                         itoptoH: == ;i' bOs,. (pEop) - -li %-//-P-, (2)

 where we have assumed Ex--Hp=:Hep==O since the state of po}arization of the incident

 wave and the infinite length of the circular cylinder justify this assumption, and the

 time dependence of E and H is expressed by e-"itot.

    Writing Nzu=ip, fe2::-=eoptetu2, we obtain, from (1) and (2),

                                (A,+k2)ip == O, (3)
 where A2 is the two-dimensional Lap}acian.

    •Further, introduclng twe-dimensional Green's function G defined by

                  (A,-t-k2)G(p, g; p!, ift) -- -a(p-p') ,"(op-q,), (4)
                                              p
we have, by Green's theorem,

                          i },      j,{GCo, op; p', g')(A21-fe2)ip(,o', q')-ip(p', g')(AS+le2)G(p, q; s,', op') dv

    =' Is,.s,{G(P, gP ; P', gO')t'i']gb(p', gp')-gb(,o', of)b-i-it-,G(p., go; pi, gpt)}dsi,

where v is the volume of the hollow cyiinder of unit length formed by the conducting

cylinder surface Si of radius a and the cylindrical surface S2 of radius a' (>a). A

solution of (4) is

                        G(,o, g; p', v') ==;' -S H6i'(lex), (s)

with
                        x= {p2+p'2-2,op' cos (gp -gp') }b •

In the limit a'->oo, by (3), (4), the second equation of (1) and the boundary condi-

tion on the conducting cylinder surface, the above relation from Green's theorem is

rewntten as :

  di(P' q) mp- -Ss,Åë(P!, op')tt. G(p, g; pC gi)dst

           Hr 2'1 .M.. S ,,{G(P, 9 ; P', ca') aa.x ip (,o', if') - ip (,o', g') oO., G(p, g ; p', op')}dS' ..

                                                                        (6)
Since the induced current oR the conducting surface is proportional to Ha, namely to

ip, the first term of (6) can be anticipated to represent the scattered waves and

according!y, if so, the second term must represent the incident wave. In fact, if we

assume the incident wave to be

                              ip .. eikp cos (ep-epi), (7)
and put it for ip in the second term of (6), we can demonstrate
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        iLrr.i. Ss,{G(P' if ; P" 9')ttn ip(p', q') um ip(p', q')b9r, G(p, q ; p', q')}ds!

            = eikp Co$ (9-rp1),

 when we utilize the relatiens:

                           oo         G(p, q; p', q') = :iuz,;l.il-,snJn(leniHS'(fep') cosn(q-op') , (p<p')

and '                                co                  eiiep'cos(q'-ipa) -..- =5 i e.i":11.(le,o') cos n(go'-opi) ,

                               tl=-o
                             wiÅíh ett:='" (; Xitlrm9i

Thus we obtain, iRstead of (6), ,
           ip(S', q) :=':' -Ss,Åë(iO', 9')t'n-xG(p, op;p', op')dS'-Feikpcos(g-gi). (s)

    Considering that the value of Odi(p, g)/0,o at p::';a vanishes because of the second

equation of (1) and the boundary condition, and that a/0n!=:-a/O,o!, the foliowing

equation can be shown to hold:

         -ile cos (op-q,) exp[ilea cos (op-op,)]xaS:"ip(a, op')g(op-if')dg', (g)

where
                   g(op ptq') '= {-6i.-Oo'2mm,.x G(p, g; p', g')};t.=a.• (10)

    If we can soive the integral equation (9) with respect to di(a, q') i.e. H. oR the

conducting surface, we can obtain, by putting ip(a, q') into (8), the generai ll., i.e.

ip(P, 9)•

3. Scatbering cross seetion

    The scattered field term oÅí (8) is:

             qscat(p, q) ==aS2,aÅë(a, g'){ttL G(p, q; ,o', of)},,m-.d9"

We shall find its asymptotic representation at p-> oo. Since

             G(p, q; p', q')=:-:l(.-le2.i)ijexp[ik{p-p' cos (q-op')}]

                                 ,
hoids at p'<<p-> oo,.we obtain

                Åëscatco., q) =: {I-(-.le2i)g,/lr... exp (iie,o)A(q, qi), (11)

wbere



                                 '
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          A(q, qi) =a!igipep,(a, q') Åëos (q-q') exp {-ika cos (op-g')}dop', (12)

and the subscript opi of ipip, means that the correspoRding incident wave propagates

in the qi direction. Then, from the geometricai syrnmetry with respect to two incident

angles gi and q2, there foliows

                         A(n-l-qi, q2) :=-; A(rr-- op2, qi). (13)

From (12) and the integra} equation (9), we obtain

     ile ile
A(n+g2, opi) A(rr"9i, if2)

                     S2,"!:rddq'ipÅë,(a, op')g(q-if')ipq,(a, q)dq

 '- S2,"ipq, cos (q-gi) exp {ilea cos (q-qi) }dq Sit' cos (op-q2) exp {ifea cos (op -q2) }diip,dep '

                                                                        (14)

From (14), (12) and (9) we can derive the stationarity condition of

                       A==- A(rr+g,, g,) '-" A(x-Fq2, opi) ,

against the variation of diep, and dirp,, that is, the condition for 6A==-=O.

    We skall now concem 6urselves with the total scattering cross section defined by

          The time average scattered power per unit length of cylinder-axis
       if          The time average incident power through unit area

         ::-=- ,i5scat/s-inc. •

                       ,SinÅë -..:=- -}Re(EinCÅ~lli"C*) '-' 2i,, ,

and
                   Pseat =:= -}ReS:ndE}eat(a, op)EI2Ca"*(a, g)adq ,

we have

                             o=L' -ReA(ifi, opi). (15)

4. Approximation of a at low frequencies

    If, in (14), we put gi==O, g2==rr and ipo(a, g) L'di.(a, q) ==1 to the zeroth approxi-

mation we can obtaiR
      '
                          A(T• rr) =" -ftrfo?1ee) '

and therefore, from (15), we have

                        a :='; -f- k-f,!(haY}l'.(,Jk{"iei,2(k.) },. a6)

           '
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    Now, in order to improve the approximation, we assume

                              as                         ipipi = .X.-, An COS n(9 - qi) , (17)

where A.'s are unknown coeMcients. From ' (17) and (14)

                                   oe ee                         ik .2.I]o ,pu.oA,n Cm nAn
                       A("' ii5 ==- (:ir A.B.)2 ' (l8)
                                     n=O
                                                                     'where

                     ,e;t,:-2,i,?1),"ftr"[•.fe,a,)m,},.,(,.).th,,,(,.).l' (i9)

of AI (f z)N;)IliVe VariatiOnS to An's in (18) there follovLTs by virtue of the stationarity

                     `1'Ii'rm('ttil•k"'!U)'tl,S..,LAnCmn"='='-B,n,I/llil..iAnBn• (20)

    Further, to calculate after the method of Schwinger (2), we lntroduce D. defined

by
                      co                     YAnv-J" CmnDn :Btn, (m :"'` O, 1, 2, ''')                     n=-O '
By multiplying (20) by D. and summing up with respect to m, we obtain

             A(rr, x)
               ife ill] {( lill] AnCm n) Dm } == -(] l.i] Dm Bm)( :lll AnBn) ,

which gives

                                               Bk                     A(x, n)                        th " - >ll DmBm =M ;lii Umm '

Therefore, we ebtain final!y

                   . 6 == {I- lii""..l,en {f.,(ki)l}'S'ffe{aN) lftk.)}2• (2i)

As will be shown in Appendix I, this result can also be derived from the results of

Ignatowsky (3).

   In order to compare, at low frequencies, our result with that of Papas, we denote

ouraby ai and Papas's6by q]. Papas has given the results that .

                        -4 {J, (ka) }2
                      aii nv nvff {J,(fea) }2-i- {N, (ka) }2 '

                      tiit="ftt.",en{f.(lei)f}"2(+k"{)N}i(fe.)}2,

whlch correspond respectlvely to (16) ancl (21) in our present case. Then, if we
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retain only the first term in each expansion of cylindrica} functiens for lea<<1, we

have

                              !:'il == {2 fnfe{)leZ)}2} (22)

and

                            -Åëg->o as ha->o.
                             ali

                                                  .5. Approxirnatien of 6 at high Åírequencies

    In this case, we can approximate the distribution of Åëip,(a, q) such that

                   mo        diq,(a, op) =' >i btt cosn(g-qi) exp {ika cos (g-q,)} on the illuminated side,
                  )t r.:O

        diepi(a, 9) ==O on the shadow side.
    To the zeroth approximation, we put ,
               Åëei(a, if) == eXP {ifea cos (op-opi)} on Åíhe illuminated side,

               ipq,(a, 9) "=O on the shadow side, (23)
that is, we assume Kirchhoff's approximation. '
    For the sal<e of convenience, we consider di.!!r and ip.sc. as given by
                                           Z2
                 ip{(a, op):e,x,p(ileasinq)} lx,tft:,S,-2:) ] (24)

                 di\(a, op) :eox.p(wwihaSinq), [O.-tft9gtlt.rr2).) ] . (2s)

Appiying these to (14), we have

         A--( Ilifr1 t'Ili'I-)- pt- t Sl d9 j:" exp{-ilea(sin q-sin if')}g(g-gt)dqt. (26)

If we change the integration variabies from q, g' to a, S by the relations

                       gp-gp'-F2rr =2cu, gp-l-g'-2rt-:219, (27)
(26) becomes
                           rt             Aww({ilig g)= 2Slirmg(2cv) dcv Sg exp(-2iha sin cv sin B) di?. (2s)

Carrying out the integration with respect to B foy Iea>>1 by the method of stationary

phase, we have

                               1-               A(tig g) == (il/)-2- II"g(2a) eXP (i/2,IL.'aii" a) da, (2g)



r
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where
         g(2a) = t•Z;-k-2 {H,(i"(2feg sin a) sin2a-k-la Hfi) (2ha sin cr) 2C,OiSn2aa}• (30)

    Now, a==O is a singular point of the integrand of (29). If 2kasina>>1, however,

it can be proved that the second term of g(2ev) gives only imaginary contributien to

A and thus no contribution to a.

    In order to secure the convergency of the integfal, we replace the lower limit O

by cro such that 2hasinev,>>1. In this case, we write A.,(rr/2, x/2) in place of

A(rr/2, n/2) and (29) becomes

                                    "                  A.,(#?, {gT) "= I:k l.ww',sin ada = -tt/E cos ao, (3i)

when the second term oÅí the integrand is convenienÅíiy neglected. Thus the corres-

ponding cross section is

                                      4a                                           . (32)                                aato ="                                     cos ao

    The dependence of a., on lea is roughly considered as fol!ows. For example, if

we put 2hasinao==10, Hankel's function can be asymptotically expanded te a good

approximation. Then, we have

                    Odio =" {1 - (4knvsaa)2}ii2 R` 4a{l my g(k-5a)2}, (33)

which enables us to anticipate the high frequency behaviour of a. Especia!ly it gives

                                lim octo = 4a ,
                                ka"oe
which coincides with the cross section in the geometrical optics.

    For a better approximation of a calculation, we take, instead of (23), the first

two terms in the expansion of Åëq, and thus we put

       ipq, =`' {1-l-bcos (g-qi)} exp{ika cos (g-cai)} on the illuminated side,

           =O on the shadow side. (34)
Then,

                di-v- == (1 -Fb sin ca) exp (ika sin if) , (rr :Ell ca #S; 2n)
                 .2
                   =-O, (O;:S;9$rc)
                ipL. == (1-bsin g) exp (-iha sin q) , (O::lllg;:$lrr)
                 2
                   =- O, (rr ;slg;Sl 2n)
which correspond respectively to (24) and (25). If we introduce these into (l4),

we obtain
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                         ife P-t- 2bQ+b2R
                      A({ll,g) P'ÅÄ2bQi+b2R/•

where

    P xx S: exp (iha sin g')dg' S:g(q-g') exp (-ilea sin g)dq ,

    Q == -ll- I2."sin q' exp (iha sin q')dq' Sgg(q-q') exp (-i•Iea sin q)dop '

                              '      - -} S;" exp (iha sin q')dop' Sgg(q - of) sin g exp (- ika sin op)dop ,

    R == - S#" sin q' exp (ifea sin g')dif' S#g(q-g') sin q exp (- iha sin g)dop ,

    P' == - SXsin qdup Slasin ifdg ,

    Q' ;L- -21-- S:sin2cadif S2` sin gdop --li- Sgsin opdop Si"sin2ifdg ,

    R' ---- Sl sin2ifdq ilXsin2gdg.

Fuyther, (35) can be transforrned into
                                         ..1 1                ile bo2P -" 2bobiQ+b,2R .:E.]-"o .E.]o bm Mm nbn

             l4-(t/lll , -gn) nv be2P' -' 26ebiQ" bi2R' - ,t?.i, ,S., b2nN-m-.iln' '

where

               2::-l; .",oet:ewII},..,, .N,o:-:wwlf}lg-H,t,l

                       M,, -- R, N,, ww Rt. s
When we glve variation to b. in (37) corresponding to the variation ef diip,,

from the stationarity of A,

                   A(-lll-, {i-) .Zi..",Mm,tbn = ife.*, Allntnbn t

Then, rnultiplying (39) with an indetermlnate quantity E. aRd $umming

respect to m, we obtain

                                )E l' X EmNntnbn                    A("rr2mu-• ntllN) "= ife Stlliii Sts E.tMlmnbn '

                                7i" tl
   The above E., can be defined by

                   .l. 1                  X= EmNmnnvww' 1 NLt]' EntMtnn (n --' O, 1) ,
                  tlt .-,o' mr.-o
that is,

lli'

we

up

(35)

(36)

(37)

(38)

have

(39)

with

(40)

(41)
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                     Eli\1:::Z,Ml::lg:j E,N,[lo,:,RYI,oigi ;-8i] (4it)

                                                                   '
where 7, is an undetermiRed constant.

    In order that a nontrivial solution of E,. may exlst, the following equation must

be satisfied :

                         NeowwZMoo NiewwaMie =O,
                         Noi-ZMoi NnwwIMii
that is,

                          iP/-RP Qt-IQI-O, (42)
                           Qt-aQ i?'-jRl
which determines the value of R. Accordingly, E., (mnv-O, 1) can also be determined,

but for the determination oÅí A which in turn gives g by (15), it suMces only to know

the vaiue of 1, because from (40) and (41), we have

                             A(-rr2-, -li-) :- ife2, (43)

    For ka>>1 and 2kasinao>>1, the elemeRt$ of the determinantal equation (42)

become :

                            pa ile                        P:"-" a ceScro)

                        Q==t/g/i(-rc-2-a,"9i,gn22ao),

                                '                        R== -{it (cos a,-COS33ao), (36/)

                        Pt == 4,

                        Q'=: --n,

                         t- rc2                        R-Z-'

whose derivation is shown in Appendix II. Witk these values, the solution of (42)

                a 4(cos ao-g cos3ae)+i' cos cro-S9+nao-gsin 2ao

          A ile cosev,(cosa,--l}-cos3av,)--il-(g-ao-F"}sin2cr,)2 ' (44)

   To get a rough estlmation, we put for example

                             2fea sin ao == 10 ,

tlieR (44) becomes

                           z==-tife{i-Fg(k-5.)2}, (4s)
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and we obtain by (15)

                                                      '                            a = 4a {i + -ll-(fe-5a )2} , (46)

which tends to

                            oge- 4a as ha --> c>c. (47)
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                                Appendix I

    Using the results derived by Ignatowsky (3), a can be evaluated as follows.

Corresponding to
                                                       '
                                   oo                H;ne == eikpcos(op-ipi) == ZI e.i"J.(le,o) cos 7z(g-opi) , (Al)
                                   n la-e

                            oo                    H.$cat == Xe,, i"P.H5,i'<le,o) cos n(op-qi), (A2)
                           n:=O

where eo=''1, en=:2 (n,l}.i...1), and P. is an unknown factor, but it can be determined

by the boundary condition to be

                              p.---AJ,,/s-SS(fe,",2s. (A3)

Inserting (A3) into (A2), we obtain

                     a .= --fe1-im {Si`' (q--th"/lx'i'IS),r..Hg:{ (a, q)adca}

                                      ,
                      == -ll,} ,li.,e"{f.'uei)1}'ZiS/3f3gi}.2!(ha)}2• (A`)

which coincides with (2i).

                                Appendix IX

    The evaluation of P', Q' aRd R' is easy and P is equal to the right-hand side

of (26) except for a nnmerical factor. Therefore, we perform the eva}uation of Q

and R only. Now,

                                Q==Q,-{-Q,,

with

        Qi == -ll- i;' siR q' exp (ika sin g')dif' S:g(q -- g') exp (-t`ka sin ca)dg ,
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       Q2 '= --5- Si"exp (ifea sin q')dq' Sl g(op-g') sin op exp (-iha sin g)dg .

Changing the integration variables from g, op' to a, B by the relations :

    . op-gp'+2x == 2ev, gp+g'-2rr == 2B,
we have
                   rt          Q, nv- -4SI'rdag(2a) !gdB sin (a-B) exp (-2ika sin a cosB) ,

Carrying out the integration with respect to B for ha>>1, we obtain

                         1pt '             Q, ta- -2(t/l/e) M2 nvS//'Mdcrg(2cr)(sin a)lj exp (-2ifea sin cr) •

If we replace the lower limit of the abeve integrai by the constant cro which statisfies

2ha sin cro>> 1, then

                        Qi = tt.le (g-ao -F -} sin 2a,) .

Further, we can easily show that Q2= Q, and thus we obtain finally the following

expression for Q :

                        Q = tgl/ ('i} -ao -F il- sln 2ao) .

Similarly we can evaluate R.
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