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ABSTRACT

Transient phenomena in the wave guide are discussed in the present paper. To
this end, we deal with the case in which various modes of electromagnetic waves
are excited in the wave guide by an electric or a magnetic dipole lying along the
guide axis, assuming that for £<0, neither an electric nor a magnetic dipole exists
and at ¢=0, either an electric or a magnetic dipole appears, giving rise to the excita-
tion of the electromagnetic waves in the guide.

1. Introduction

With the development of microwave technique, the wave guide, one of the main
components, has been discussed more in detail. The discussions, however, seem to
have been confined so far to the steady-state problems, without being extended to the
transient phenomena. In this paper, the authors try to treat the transient phenomena.
We consider the case in which various modes of electromagnetic waves are excited
in the wave guide by an electric or a magnetic dipole oriented along the guide axis
on the following assumptions: For #<(0, neither an electric nor a magnetic dipole
exists, and so no field quantities exist. At #=0, either an electric or a magnetic
dipole appears and so the electromagnetic waves are excited in the guide. On these
assumptions, we derive the Hertzian vectors of excited waves.

The electric and magnetic fields can be derived by differentiating the Hertzian

vectors with respect to the time and spatial coordinates.

2. Laplace transforms of the Maxwell equations

The Maxwell equations in the isotropic homogeneous non-dispersive medium are

expressed in M. K. S. units as follows :

V)(E(';’ t)—;-#W:O,
ot
wrris o O0E(F D) _ yia
PXH(F D R JFH D, (2. 1)

* Read at the annual meeting of the Physical Society of Japan, October 9, 1951.
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p-cE(7, )= 0(3, ©),
PouH(F, ) =0.

Multiplying each of these equations by e¢~#? and integrating from O to oo with respect
to £, namely, by operating Laplace transform, we obtain, by using the assumptions
made in §1:

PXE(7, p)+pupH(Z, p) =0,

VRXH(7, p)—epE(F, p) =T (7, ),

PeeE, p) =07, p),

p-eHEF, p)=0,

2.2

where E(7, p), HF, p), J(F, p) and o(#, p) are Laplace transforms of E(7, £,
H(Z, D, J(# 1) and p(#, t) and similar symbols will be used in the following.

When Egs. (2.1) represent harmonic waves, that is, when the time dependence
is expressed by ei*f, the forms of (2.2) coincide with those which (2.1) will take,
when ‘o is replaced by p and the time factor e#? is omitted. Hence, in order to solve
Egs. (2.2), it is sufficient to replace iw in the steady-state solution by p.

Now, as we wish to consider the electromagnetic fields in the wave guide, the
field quantities E(7, £), H(7, ) are derived from the combination of the z-components
of the electric Hertzian vector and the magnetic Hertzian vector: @(7, £) and ¥ (7, £).

They are :
FOF, H WG, D

E.(7 8 = 0x0z #“ oty

Rl |

B 1) = 0L el 0D, @3
e

s o

(P, ) = azyfa(;, ) _Eﬂazyfaci, .

If we take their Laplace transforms, we obtain, using the assumptions in §1,

2 - -
B, )= 25Ty D)

2 = -
B, 1) = TG, DD,

B3, ) = PEE D) ez, p), -
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OV D) L 90F, P)
Hx(f,p)—- Bx0z + pe ay y

7 2? i »’ @ 3
Hy(f’: ﬁ) = %}QQE?) wpe(')‘__(gx_p_)_ ’

H, )= 220D pe 7, ),

and also

) 4. 0} | =000 =7 @5

(A — A B =
61—2 >
0G0 | L p a3,

where P, and M. are respectively the z-components of the electric and "~magnetic
diople moments of the exciting system located at 7=7%,.
Taking the Laplace transforms of (2.5) and using the assumptions in §1, we

derive

(7, p)

oG, p)f 2.6

} — ML ()0 G =)
~Lp.(0)8G 7.

(A ~8A¢P2){

According to (2.4) and (2.6), the Laplace transforms of electromagnetic fields in the
guide are identified with the steady-state solutions in which i@ is replaced by p and
the time dependent factor e#* is omitted. This is statement made at the beginning

of this section.

3. Laplace transforms of Hertzian vectors in the wave guide

As is well known, the electromagnetic waves in the guide that are excited by an
electric or a magnetic dipole oriented in an arbitrary direction, can be expressed by
a linear combination of z-components of electric and magnetic Hertzian vectors
OF, 5 and W(#, ), where the z-axis is the guide axis. But we consider only the
case in which an electric or a magnetic dipole is oriented along the z-axis. Other
cases can be treated in the same manner. The symbols to be used in the following

are summarized below.

I(t) : strength of electric current forming an electric or a magnetic dipole,
where the latter is considered as the elementary circulating current,
I(p) : Laplace transform of I(#),
d¢ : length of an electric dipole,
OF : area of the elementary circulating current,

Fo(Xe» 3o, 0) : position of dipole,
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2 2
¢n(x, ¥) . a function defined by (%jba—a—y-%—kﬁ)cpn(x, y)=0 subject to the bound-

ary condition 8¢,/0n=0 at the wall of the wave guide, where k2 is
the nth eigenvalue of ¢,(x, ») and k2K,

¢,(x, ¥): a function defined by (06 s+ 68 a5+ k,’f)gp,,(x, ) =0 subject to the bound-

ary condition ¢,(x, )=0 at the wall, where k2 is the nth eigenvalue
of ¢u(% ») and kZ<Fk/3,,

Tn = (B prew) O<argrn< 5,
Fno = (ki pep)V? OZargr<%),

J(dn) = JJ (%, y)dxdy
J(@w) = §§ oi(x, y)dxdy .

According to the statement made at the beginning of §2, the Laplace transform
of an electric or a magnetic dipole moment can be expressed as follows:

The Laplace transform of a magnetic dipole moment is pl/($)6F and that of an
electric dipole moment I(p)d¢/p. Now, when an electric or a magnetic dipole is
oriented along the z-axis, we have the following expressions which are obtained by
putting p in place of {w in the usual steady-state solutions (1) :

(i) For a magnetic dipole parallel to the z-axis,

I(ﬁ)ﬁF 1 Pn(%o, J)Iu(H Y oyye
S () - 3.1

The electromagnetic field can be derived from the Laplace transform of the z-

w‘,nz(?} p)

component of this magnetic Hertzian vector.

(ii) For an electric dipole parallel to the z-axis,

" I (zb)oc Pn (%o, 90) 0 (%, 3)
wcz +"’n R
7, ) = A (T R 3.2)
The double signs in the above two expres- x
sions are to be taken in the same order. The A

minus sign in the exponential factor corresponds

I
to the waves ftravelling in the direction of z ] ™
increasing, while the plus sign corresponds to I
the waves travelling in the direction of z de- P
creasing, when p is replaced by iw. In the /

following, we consider only the case in which 7
the exponential factors are exp(—y,2) and y/
exp(—742), (22>0). The case in which the Fig. 1.
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exponential factors are exp {Z,’” P (2<C0) can be treated analogously. Operating in-

verse transform to these expressions, we can obtain the corresponding ¥ (7, £) and
o7, D).

4. Case 1 when the impressed current I,c’®! begins to be impressed at £=0.

In this case, we take

I — {0 when <0, @1

Ieivt when {220,

where [, represents a complex amplitude of current. By
taking the Laplace transform of (4.1), we obtain

Fit3)]
1) = ’°

_ (il 77,
o’ " /////
Substituting this into (3.1) and (3.2) and taking their in- M //L' :
o]

verse transforms, we obtain ¥ (7, ¥) and @(7, ) for the

present case. Fig. 2.

In the case (i) in §3 we have (2), for 2>>0,

“tnE g —2(kitpPep)2 exp (—pv e B+ 2°
ern _e CIT e =SO Jo(knB) (B; 2%1/{3 4 2%) 84

- aS Tolkw/ FE—2)e~?"dr
== a¢n(z:p> y (4 3)

where we have put 5
a=1/vepn, VFr+22=t/ven=ar,

and ¢,(z, p) is the Laplace transform of ¢,(z, £) defined by:

when i<z/a,
i » = e s~ 4. 4
35D = {1 =) when et “-v
Thus, using this formula, we obtain the expression for ¥™#(7, ) in the form:
- I OF  Pulxy, vo)Pu(2,9) 1 S“*!"" e~ Mm% bt
ma 0 S‘\ n 0y Y0 d 4. 5
w (T, ) n ]((/n) 277:1 [ a5 )’n p"‘l(!) p’ ( )

where a is the real part of 2.
As usual, the above integral can be modified to a contour integral on the complex

» plane, the contour being taken to be the combination of a straight line @—ico —
«-+-ico and a semicircle of radius o on the right-hand or left-hand side, according
as t<z/a or t>z/a, as shown in Fig. 3. Let the Laplace transform and its inverse
transform be designated by the operators L and L-* respectively. Then we have
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1 (%% g=Tnz [ opt
In:: g A -
21t Ja—ie ¥y p—iw

= aqL"Y{p.(2, p)I(p)}
—q S: I(—)p (2, ©)dr
(0 when <z/a,

B A L 4.6
I S:/a = [y(kwy aPc —z2)dr  when t=z2/a. “©

Thus, we have finally

s _LOF o u(o, Yo) (%, 3) feovice
Mz = A
e, =g X .
0 when < z/a, proiane
« , ) t™>z/a t<zla
S ) eiw(t“7)]0(k,,)/a272——«z2>d7-' when t=>z/a.

4.7 real axis

The above expression shows clearly that the
electromagnetic waves propagate with speed
a=1/3/ey and that the phase velocity in the

i —1p00

guide which appears in the steady-state solutions, {maginaty axis

is not the true propagation velocity. Fig. 3.

The case (ii) in $3 can be treated in a similar manner. Only the final result is

given here.
> T008 @Koy P)en(%, ¥) 1 S”‘*iw e~ViE  opt
ez e 2075 1 0y Jo y) x e m* o
oD 2e % JCon) 27t =i 7n P(Pp—iw) dp

o 08 v @nlo, Y0 @, 37)

2 5 “ J(ou)
0 when < z/a,

pe t . N
15 2 in @ (t—r)eiw =012k / diE —F)de  when t=z/a.
z/a w 2

(4.8)

Next, we shall discuss the behaviours of these expressions at f—»oco, fixing z ata
finite value. We here consider only the case (i) in §3, since the other cases can be
discussed similarly. Thus, by (4.7) we obtain

- . t . R
sz(’;’ £) = LgF a3 ¢1l(x0’;gzb¢5t<x’ ) givt Sz/ e—zw'rjo(km/azrz “#dr
n 7 a

where obviously ¢>>z/a, since f—>co, Hence, using (4.3), we obtain

Yy, )= {q{?E a>? Pn(%o, 30)n(x, ¥)

2 - J(dw)

< tim eiot | o= [ (/2 =)
t>oa z
IOF < 0K, 90)dulx, ¥) €097 i
- lim gio* ,
2 ) Tu iyl
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This is the steady-state solution, showing that (4.7) approaches the steady state as

time increases.

5. Case 2 when the current I, begins to be impressed at £=0.

In case when I(#) is a unit function, the expressions (4.7) and (4.8) in the pre-

ceding section are simplified. Thus, taking into account that when

I(t)=0 <0
@® < .1
=1 t=0,
its Laplace transform is
1
I(p) = -, 5.2
@ b (5.2)

we obtain the expression for this case by putting w=0, I,=1 in the expressions in

§4. Thus, for the case (i) in §3,

mz’ (3, _OF < Gn (X, Yo)bul%, ¥)
LS e D A (%
0 when < z2/a,
13
8 {Sz/a Jolkwy/ a?c% —22)dx when t222/a, (5.3)
and for the case (ii) in §3,
ez’ [ __ 0Cxn (%o, YO 0%, ¥)
0T h D =5 Tlow
0 when t< z/a,
~ t S _ .
8 {Sz/a (t—7) Jo(kyy 1/ atc? — g2 )de when t2>z/a. 5.4

6. Case 3 when the impressed currents in cases 1 and 2 end at £=T.

In case when the space is excited by a rectangular pulse, the fields can be easily
obtained from the above expressions. For example, in the

case (i) in §3, the expression (5.3) is used to obtain

g/‘mz”('}, £) = w‘mz’(';,, £ _ﬂ?[/mz’(';,, t—-T), 1

Ith

where T is the duration of the pulse.

Hence, !
o T

oF D, YO u(%, 3) ,
R (D) Fig. 4.

puE (g, 1) = >
0 when t—T<t<z/a,

% [S:/a]"(k"’/m)‘h when t—T<z/a<t,  (6.1)

)

_TJO([@,”/EZ?:E)(ZT when z/a<t—T<t.
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The results for the other case can be obtained in a similar procedure.

Next, when the excitation is given by a harmonic wave train of finite duration,
the formulae in $4 are available. For example, in the case (i) in §3, the expression
(4.7) is used. Thus, if we put I,=1 (say) in (4.7), we obtain

g (7, 1) =W"H(F, £ —eoTY™ (7, t—T)

_ 9221'1‘“ 31 Gu(xg, ¥0)Pul%, 3)

= J(&w)
0 when t—T<t<z/a,
y Sz/a U] (b FE—F)de  when t—T<z/a<t, (6.2)

t
St_TeiW‘T)]o(k,,,/azTZ_zz)dr when z/a<t—T<t.

7. The approximate formulae for the first precursors

While in the above sections we have obtained, by the use of Laplace transforms,
the general solutions including the transient solutions, we shall discuss in this section
the first precursors of the wave by Sommerfeld’s method (3). We shall discuss the
behaviours of ¥(7, ) and @(#,¢). In order to obtain the electromagnetic field inten-
sities, it is sufficient to differentiate them with respect to time and spatial coordinates.
In this section, only the case considered in §4, namely, the case where the impressed

current I,ei®* begins to be impressed at =0 will be discussed.

(a) For the case (i) in §3, we obtain, starting from (4.5),

o Grjco H=Ypi
Y7 f) = IOZFZ OnlXo, Y0)¢ulx, ¥) 1 S e™" ebt dp, (7.1)

@i Ty P—iw

J(dw) 2mi

and

1 S“’**‘ i o=Tn?% bt

IE = .
" 2

dp, (7.2)

a=ic T P—iw

where, as before, 7,= (k24 pPep)'/2
Now, if we put p=iw’, (7.2) becomes

1 rexp {0t owepy—Fz)}

Imz
21 (0 —w) (0 %ep—k2)/2

dw'.

The path of integration of the «’-plane is replaced by a circle of an infinitely large
radius with its centre at the origin. Following Sommerfeld this circle is designated
by U. As the measure of magnitude of the radius of U, the following may be adopted :

|| the larger of w and k,/y/¢p. ' (A)
Hence, when I%* is computed, the following approximations are made :

o —wra,
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—_— 1 k2 s
W% sz 1/2~w/ {1_ ,,,,,,,, 7_7__":____} (& 1=
( n—k) I/E,Ll 5 {w '/S,u)z )
. lane
Then we have p-plan
1 §; ei(w’t'"*‘En/w’)
mz% — _— Va . y .
In o 1//€ﬂ PG dow s (7 3> _
where real axi.
V=1t—21"cp, En=ki2/2y cp.
When we introduce a new integration variable » —ico
such that imaginary axis
T )
gt = () -, (7. 4)
n _w'—plane
we have /
i R A A W
i(w t’+5n/w’)=h/t’§n(“’ 1/L+“7 E“f") 1 ' =
§u o'V e real axis
= 2{3/FE, cos i,
and therefore
1 1 WU 26\/¥E cosu—iu '
I;’:z%z_ﬁ;‘ ,/;/2 'ét; Se VL, du, imaginary axis

(7.5 Fig. 5.

the integral being taken from u=0 to u=2rn, since, as will be seen from (7.4), when
# varies from 0 to 2m, a circle with its centre at the origin is described in the o'-
plane. In case when #={—z,tu is sufficiently small, the radius of this circle satisfies
the above-mentioned condition and so the approximation (7.5) is adequate. Therefore,

when we take an adequately small #/, the approximate expression for I}* is

mz 1 v TR
= o= L R (7.6)

It is to be noted that since there are the condition (4) and the condition k2<Cki.1,
the accuracy of the approximate formula (7. 6) is different for various # with the same

¥. So this formula seems to be useful in order to discuss each mode individually.
(b) For the case (ii) in § 3, we have

057, 1) = 151 “’”("0’]320;7‘3"("’ ) pez,
1 [ e"®  ept
27 ) T i) P

I = (1.7
1 ¥ —
aldvrr L2/ VED,

where
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, — , 1 Rz
t;:t"“zl/elli 5":7,/”52'

From these formulae the behaviours of the first precursors of electromagnetic waves

can be investigated by differential operations.
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