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A Vista of Mean Zeta-Values. 11

By YoicHI MOTOHASHI

This is a continuation of our former article [5]. We shall use the same set of notations as there.
In the last section of [5] we proposed a few central problems on mean values of automorphic
L-functions. One of them is to establish an explicit spectral decomposition for the mean
square of the L-function attached to a given irreducible I"-automorphic representation of G,
with I' = PSL(2, Z) and G = PSL(2,R). The aim of the present article is to indicate briefly
a method with which one may settle this problem in the most difficult situation; that is, the
case of unitary principal series representations or Maass wave forms. As a consequence, it is
now strongly suggested that the inner-product procedure, which was initiated by A. Good
and greatly enhanced by M. Jutila, should be the right way to pursue further, if we wish
to establish anything like a unified theory of mean values of automorphic L-functions. The
Kirillov map X defined by [5, (5.3)] has turned out to be a key implement, indeed as we
envisaged.

Thus, let V be an irreducible subspace of L?(I'\G) whose spectral data is v. As it is
to be in the unitary principal series, v is pure imaginary. Let ¢(-, @) € U, be such that

u®exp(—2ru) for u >0,

(1) Ke(u) = { 0 for u < 0,

with a > 0. This is possible, for X is surjective and the member on the right side is obviously
in H = L2(R*, 7~ 1d*). Let

(2) b(8:0) =Y cotp(8), Pn(8) = dolg; V),
P
where ¢, = cp(z), a). We may choose an orthonormal base {p,} of V such that
ov(n)
3 = = asm g (a[lnl]g).
3) vp(g) 1%% \/l_'n_| p(a(ln(]g)
We put
4) 0(g,@) = D _ coop(8),
) 4

We shall later prove that

(5) olga) = 3 2 gsenim) g aflnflg, ),

n#0 \/W
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provided a is sufficiently large. Given this, we note that

(6) AsEM g(alin|ln[z]aly], @) = exp(2minz)K(ny, Q).
Thus
(7) e(nlzlaly), ) = y* > ov(n)n®"# exp(2min(z + dy)).

"This brings us to a situation very much similar to the one with holomorphic cusp forms (see

[3D)-

Now, we shall prove (5). To this end, we compute explicitly the coefficients ¢p: The
" unitaricity of X gives

(8) | cp = (¢, Podu, = (K6, Kp)2
1

== /0 ” w1 exp(—2ru) A+, (afu])du.

On noting that the Jacquet transform is essentially equal to the Whittaker function (or
the confluent hypergeometric function) save for a simple factor, the formula 7.621(3) of [2]
becomes relevant here. It implies that

I‘(a+u+%—)1"(a——u+%)
L(z-v+pl(a+l-p)

©) & = (=1)P2 2o

Or one may argue as follows: The bounds (4.3) and (4.5) of [1] imply that the integral is a
regular function of v in a neighbourhood of the imaginary axis. Let us suppose temporarily
that Rev is negative but small. Then we see, by the first equation of (2.16) in [1], that

1 [ 1 E+i\ 7P [ aty—1 .

Lemein (ass]) [ 0O (€07,

where arg(1 4 4£) varies from — 3 to 37 as £ runs over R from —oo to co. This integral can
be computed by the argument given on p. 47 of [4], whence we obtain (9).

In particular, we find that
(11) ¢ < (Ipl +1)774,

as |p| tends to infinity, and v € <R is bounded. Thus, indeed ¢ € U,, if a > 0, and ¢ becomes
smoother if we take o larger. Invoking the uniform bound

(12) Rigy(al) < (ol + ]+ Dy~ oxp (-2,
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we see that (11) confirms (5). This bound is proved in [1, Section 4].

Now, we shall move to an inner-product argument: Let 7(8) be a smooth function
supported on a small neighbourhood of § = 0, and

(13) / =1

Let m be a positive integer, and Res > 1. Put

(14) f(g) = y° exp(2rmi(z + iy))7(0).

Further, put

(15) Pfe)= >, f(ve) Tw=INN,
YE@\T

which is in L2(I'\G).
With this, consider the inner-product

(16) (Pf, el r\e-

Let us assume that « is sufficiently large. The unfolding argument gives

(17) (Pf,loP)re = = / / -2 exp(2mmi(z + iy))

x /_ ,, "Ole(alslelyil ) dodzdy
Thus
(18)  lm(Pf,lpP)ra = - / / * exp(2rmi(a + i)l (alasly), o) dedy,

where the support of 7 tends to 0. The expression (7) implies readily that

o wFm)  m(dm)te-l

n=1

With this, we may use the a.rgument of [3, Section 1] and attain the inner sum of the
expression

@0 > 2 R s (14 ).

m=1n=1
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where § is the Fourier transform of g in the context same as in (1]. In fact, it suffices for us
to multiply both sides by the factor

1 I'E —u—a+it)
21 —u—vHp —&) — 2 t)dt,
(21) m (wtv—8) o Imtz_cl‘(v+%—a—€+it)g()

with ¢ > 0 sufficiently large, and integrate with respect to £ along an appropriate vertical line.
Provided a is sufficiently large and Re (u+v) > Re& > 1, the necessary absolute convergence
holds throughout our procedure. Inserting the thus obtained expression into (20), we find
that (20) admits an expression in terms of (Pf, [p|?) r\a» provided Re (u +v) > 2.

The expression (20) is of course related to the non-diagonal part of

[o%) 2
(22) /_ iLV (% + it) o(t)dt,
~ where
(23) Ly(s) = i E‘gﬁ, Res > 1.

n=1

The inner-product (16) is spectrally decomposed according to the spectral structure of
L?(I'\G). The limit in 7 of the decomposition should converge termwise, so do we be-
lieve. Then, the left side of (19) admits a spectral decomposition, from which a complete
spectral decomposition of (22) ought to transpire.

The above argument appears to extend to bigger groups, at least formally. In our
mind is the situation with G = SL(3,R) and I = SL(3,Z). There the minimal parabolic
Eisenstein series generates a product of 6 values of the Riemann zeta-function, apart from
an unimportant factor. Thus it could be surmised that a mean value of the product of
12 values of the zeta-function is related to the I'-automorphic structure of G, with this
particular combination of G and I".
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