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A Vista of Mean Zeta-Values. II

BY YOICHI MOTOHASHI

This is a continuation of our former article [5]. We shall use the same set ofnotations as there.
In the last section of [5] we proposed a few central problems on mean values of automorphic
-functions. One of them is to establish an explicit spectral decomposition for the mean

square of the $L$-function attached to a given irreducible $\Gamma$-automorphic representation of $G$,
with $\Gamma=$ PSL(2, Z) and $G=$ PSL $(2, \mathbb{R})$ . The aim of the present article is to indicate briefly
a method with which one may settle this problem in the most difficult situation; that is, the
case of unitary principal series representations or Maass wave forms. As a consequence, it is
now strongly suggested that the inner-product procedure, which was initiated by A. Good
and greatly enhanced by M. Jutila, should be the right way to pursue further, if we wish
to establish anything like a unified theory of mean values of automorphic $L$-functions. The
Kirillov map OC defined by [5, (5.3)] has turned out to be a key implement, indeed as we
envisaged.

Thus, let $V$ be an irreducible subspace of $L^{2}(\Gamma\backslash G)$ whose spectral data is $\nu$ . As it is
to be in the unitary principal series, $\nu$ is pure imaginary. Let $\phi(\cdot, \alpha)$ : $U_{\nu}$ be such that

(1) $\mathrm{X}\phi(u)=\{$
$u^{\alpha}\exp(-2\pi u)$ for $u\geq 0,$

0for $u<0,$

with $ax>0.$ This is possible, for $\mathfrak{X}$ is surjective and the member on the right side is obviously
in $H$ $=L^{2}(\mathbb{R}^{\mathrm{x}}, \pi^{-1}7^{\mathrm{x}})$ . Let

(2) $\phi(\mathrm{g}, \alpha)=E$ $\mathrm{c}_{p}\phi_{p}(\mathrm{g})$ , $\phi_{p}(\mathrm{g})=\phi_{p}(\mathrm{g};\nu)$ ,
$p$

where $\mathrm{c}_{p}=c_{p}($ \mbox{\boldmath $\nu$}, $\alpha)$ . We may choose an orthonormal base $\{\varphi_{p}\}$ of $V$ such that

(3) $\varphi_{p}(\mathrm{g})=\sum_{n\neq 0}\frac{\rho_{V}(n)}{\sqrt{|n|}}\mathrm{A}^{\epsilon \mathrm{g}\mathrm{n}(n)}\phi_{p}(\mathrm{a}[|n|]\mathrm{g})$ .

We put

(4)
$\varphi(\mathrm{g},\alpha)=\sum_{p}\mathrm{q}\varphi_{p}(\mathrm{g})$

,

We shall later prove that

(5) $\varphi(\mathrm{g}, \alpha)$
$= \sum_{n\neq 0}\frac{\rho_{V}(n)}{\sqrt{|n|}}4^{\mathrm{s}\mathrm{g}\mathrm{n}(n)}\phi(\mathrm{a}[|n|]\mathrm{g}, \alpha)$ ,
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provided $\alpha$ is sufficiently large. Given this, we note that

(6) $\mathrm{A}^{\mathrm{s}\mathrm{g}\mathrm{n}(n)}\phi$ (a $[|n|]\mathrm{n}[x]$ a$[y]$ , $\alpha$ ) $=\exp(2\pi inx)\mathfrak{X}\phi(ny, \alpha)$ .

Thus

(7) $\varphi(\mathrm{n}[x]\mathrm{a}[y], \alpha)=y^{\alpha}\sum_{n=1}^{\infty}\rho_{V}(n)n^{\alpha-\frac{1}{2}}\exp(2\pi in(x+i!/))$ .

This brings us to a situation very much similar to the one with holomorphic cusp forms (see
[3] $)$ .

Now, we shall prove (5). To this end, we compute explicitly the coefficients $\mathrm{q}$ : The
unitaricity of $\mathfrak{X}$ gives

(8) $\mathrm{q}$
$=\langle\phi, \phi_{p}\rangle_{U_{\nu}}=(\mathfrak{X}\phi,\mathrm{X}\phi_{p})_{H}$

$= \frac{1}{\pi}\int_{0}^{\infty}u^{\alpha-1}\exp(-2\pi u)\overline{A+\phi_{p}(\mathrm{a}[u])}du$.

On noting that the Jacquet transform is essentially equal to the Whittaker function (or
the confluent hypergeometric function) save for a simple factor, the formula 7.621(3) of [2]
becomes relevant here. It implies that

(9) $\mathrm{q}$
$=(-1)^{p}2^{-2\alpha}\pi^{-\nu-\alpha-\mathrm{i}_{\frac{\Gamma(\alpha+\nu+\frac{1}{2})\Gamma(\alpha-\nu+\frac{1}{2})}{\Gamma(\frac{1}{2}-\nu+p)\Gamma(\alpha+1-p)}}}$ .

Or one may argue as follows: The bounds (4.3) and (4.5) of [1] imply that the integral is a
regular function of $\nu$ in a neighbourhood of the imaginary axis. Let us suppose temporarily
that $\mathrm{R}e\nu$ is negative but small. Then we see, by the first equation of (2.16) in [1], that

(10) $c_{\mathrm{p}}= \frac{1}{\pi}\underline{l}_{\infty}^{\infty}\frac{1}{(\xi^{2}+1)\#-\nu}J(\frac{\xi+i}{\xi-i})^{-p}\int_{0}^{\infty}u’-_{2}^{1}\exp(+\nu-2\pi u(1+i\xi))$ dtzd4

$= \frac{1}{\pi}(2\pi)^{-\nu-\alpha-\#}\Gamma(\alpha+\nu+\frac{1}{2})\int_{-\infty}^{\infty}\frac{(1+i\xi)^{-\nu-\alpha-}\mathrm{z}1}{(\xi^{2}+1)^{1}\mathrm{a}^{-\nu}}(\frac{\xi+i}{\xi-i})^{-}\mathrm{p}$ $d\xi$ ,

where $\arg(1+ \mathrm{i}\xi)$ varies ffom $- \frac{1}{2}\pi$ to $\frac{1}{2}\pi$ as $\xi$ runs over $\mathbb{R}$ from $-\mathrm{o}\mathrm{o}$ to $\infty$ . This integral can
be computed by the argument given on p. 47 of [4], whence we obtain (9).

In particular, we find that

(11) $\mathrm{q}$
$\ll(|p|+1)^{-\alpha-f}1$ ,

as $|p|$ tends to infinity, and $\nu\in$ iR is bounded. Thus, indeed $\phi\in U_{\nu}$ if $\alpha>0,$ and $\phi$ becomes
smoother if we take $\alpha$ larger. Invoking the uniform bound

(12) $A\mathrm{L}$
”

$6_{\mathrm{p}}(\mathrm{a}[y])<<$ $(|p|+| \mathrm{v}|+ 1)y^{-:}\exp(-\frac{y}{|\nu|+|p|+1})$ ,
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we see that (11) confirms (5). This bound is proved in [1, Section 4].

Now, we shall move to an inner-product argument: Let $\tau(\theta)$ be a smooth function
supported on a small neighbourhood of $0=0,$ and

(13) $\int_{-\pi}^{\frac{1}{2:}\pi}\tau(\theta)d\theta=1.$

Let $m$ be a positive integer, and ${\rm Re} s>1.$ Put

(14) $f(\mathrm{g})=y^{\epsilon}\exp(2\pi mi(x+iy))\tau$ (&).

Further, put

(15)
$\mathrm{J}f(\mathrm{g})=\sum_{\gamma\in\Gamma_{\infty}\backslash \Gamma}f(\gamma \mathrm{g})$

, $\Gamma_{\infty}=\Gamma\cap N,$

which is in $L^{2}(\Gamma\backslash G)$ .
With this, consider the inner-product

(16) $(\mathrm{P}f, |\varphi|^{2})rZa$ .

Let us assume that $\alpha$ is sufficiently large. The unfolding argument gives

(17) $( \varphi f, |\varphi|^{2}\rangle_{\Gamma\backslash G}=\frac{1}{\pi}\int_{0}^{\infty}\int_{0}^{1}y^{s-2}\exp(2\pi mi(x+iy))$

$\mathrm{x}/_{-\not\in\pi}:\pi\tau(\theta)|\varphi(\mathrm{n}[x]\mathrm{a}[y]\mathrm{k}[\theta], \alpha)|^{2}$ dfldxdqt $\cdot$

Thus

(18) $\lim_{\tau}\langle\varphi f, |\varphi|^{2}\rangle_{\Gamma\backslash G}=\frac{1}{\pi}7^{\infty}$ $/1$ $y^{s-2}\exp(2\pi mi(x+iy))|\varphi$($\mathrm{n}[x]$ a$[y],\alpha$) $|^{2}dxdy$ ,

where the support of $\mathrm{r}$ tends to 0. The expression (7) implies readily that

(19) $\sum_{n=1}^{\infty}\frac{\rho_{V}(n)\overline{\rho_{V}(n+m)}}{(n+m)^{\epsilon}(1+m/n)^{\alpha-\#}}=\frac{\pi(4\pi)^{s+2\alpha-1}}{\Gamma(s+2\alpha-1)}\lim_{\tau}\langle\varphi$f, $|\mathrm{Z}|^{2}$ ) $\mathrm{r}3G$ .

With this, we may use the argument of [3, Section 1] and attain the inner sum of the
expression

(20) $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{\rho_{V}(n)\overline{\rho_{V}(n+m)}}{n^{u}(n+m)^{v}}\hat{g}(\log(1+\frac{m}{n}))$ ,
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where $\hat{g}$ is the Fourier transform of $g$ in the context same as in [1]. In fact, it suffices for us
to multiply both sides by the factor

(21) $m^{-u-v+\xi} \Gamma(u+v-\xi)\cdot\frac{1}{2\pi i}\int_{{\rm Im} t=-e}\frac{\Gamma(\frac{3}{2}-u-\alpha+it)}{\Gamma(v+\frac{3}{2}-\alpha-\xi+it)}g(t)$ dt,

with $c>0$ sufficiently large, and integrate with respect to $\xi$ along an appropriate vertical line.
Provided $\alpha$ is sufficiently large and ${\rm Re}(u+v)>{\rm Re}$ ( $>1,$ the necessary absolute convergence
holds throughout our procedure. Inserting the thus obtained expression into (20), we find
that (20) admits an expression in terms of $\langle$ J $f$, $|\mathrm{r}|^{2}$)r3G, provided ${\rm Re}(u+v)>2.$

The expression (20) is of course related to the non-diagonal part of

(22) $\int_{-\infty}^{\infty}|LV(\frac{1}{2}+it)|^{2}g(t)dt$,

where

(23) $L_{V}(s)= \sum_{-}^{\sim}\frac{\rho_{V}(n)}{n^{s}}$ , $\mathrm{R}\epsilon s$ $>1.$

The inner-product (16) is spectraly decomposed according to the spectral structure of
$L^{2}(\Gamma\backslash G)$ . The limit in $\tau$ of the decomposition should converge termwise, so do we $\mathrm{b}\triangleright$

lieve. Then, the left side of (19) admits a spectral decomposition, from which a complete
spectral decomposition of (22) ought to transpire.

The above argument appears to extend to bigger groups, at least formally. In our
mind is the situation with $G=\mathrm{S}\mathrm{L}(3,\mathbb{R})$ and $\Gamma=\mathrm{S}\mathrm{L}(3,\mathbb{Z})$ . There the minimal parabolic
Eisenstein series generates a product of 6 values of the Riemann zeta function, apart from
an unimportant factor. Thus it could be surmised that a mean value of the product of
12 values of the zeta-function is related to the $\Gamma$-automorphic structure of $G$ , with this
particular combination of $G$ and $\Gamma-$
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