OPTICAL OBSERVATIONS OF THE SECOND RUSSIAN EARTH SATELLITE

BY

Akira HATTORI* and Bunta YADA*

(Received August 27, 1958)

Abstract

This paper deals with the observations of 1957β carried out at Kwasan Observatory and in cooperation with the Western Japanese Moon Watch Stations. Part I gives the description of instruments used and observational data. In part II, the orbital elements are determined. For example, on March 20.000 (J.S.T.), 1958, the period T was $94 .^{\mathrm{m}} 477 \pm 0 . \mathrm{m} 003$, the eccentricity 0.0434 ± 0.0020, and perigee and apogee heights were $195 \mathrm{~km} \pm 14 \mathrm{~km}$ and 791 km 14 km respectively. The inclination of orbit to the equatorial plane, i, is estimated as $65^{\circ} 5 \pm 0^{\circ} 2$. In part III, some results are derived. The period shows erratic variations. $\triangle \Omega$, the retrograde rate of orbit per day, may be connected with the period by an empirical formula : $\Lambda \Omega=(1.08 \pm 0.01) \times 10^{5} \cos i$ $\times T^{-2.1 \pm 0.1}$. Finally, air density at about 195 km altitudes above the equatorial regions is estimated as $6 \times 10^{-10} \mathrm{~kg} \mathrm{~m}^{-3}$ to $10 \times 10^{-10} \mathrm{~kg} \mathrm{~m}^{-3}$.

I. OBSERVATIONS

1. Introduction

It is well known that the calculation of air density from the measured drag of a satellite is one of the frequently suggested uses of the vehicle. Especially, above about 200 km there are no direct determinations of air density or pressure, and air density must be computed from an assumed temperature and molecular weight. But, considering the observations of the satellite orbit, we can evaluate the atmospheric density roughly in the order of magnitude.

In July 1955, the announcement of the American program for the launching of small satellites during the International Geophysical Year was made. Soon after the Russian authorities announced that they were also undertaking the same plan. At Kwasan Observatory, it was planned to observe Earth satellites for the study of physical conditions of the upper atmosphere. So, we started at once to construct Schmidt cameras. In spring 1956 a 16 cm F 1.5 camera was built, and in September 1957 a 40 cm F 1.5 camera was completed. On October 4, the U.S.S.R. announced from Moscow the

[^0]launching of the first Earth satellite (1957 α). We immediately began to observe the satellite by the two Schmidt cameras. The first photographs were obtained on the morning of October 16. At about a month after the launching of the first, the news of the launching of the second Earth satellite (1957 β) was received. At that time, the Baker Schmidt camera had not arrived yet at Tokyo Observatory. As a Schmidt camera of medium size in Japan, our 40 cm camera was the only available one.

In this paper we deal with 1957β only. According to the preliminary reports from Moscow, it was launched on the morning of November 3, weighing 508.3 kg , moving in an elliptic orbit with its maximum altitude of 17000 km , and taking about 103.7 minutes to complete one revolution. It was also reported that the satellite was travelling in an orbit inclined at about 65° to the equatorial plane.

At Kwasan, the observations of 1957β were carried out from November 6, 1957 to March 21, 1958. The Moon Watch teams in Western Japan - Shizuoka, Yokkaichi, Kashiwara, Osaka, Kanaya, Tadotsu, Kochi, Hiroshima and Miyazaki (including photographs) - also reported their observational data to us. By adding these to ours, the orbital elements of the satellite and their variations have been determined. Using these values, we have derived an empirical formula between the retrograde rate of orbit and the period, and have finally estimated the air density at perigee altitudes.

2. Observations

a) Instruments

The observational material mainly consists of a group of Kwasan 40 cm F1.5 Schmidt (film diameter 10 cm , field 8°, designed by Y. Nakai) and 16 cm F 1.5 Schmidt (film diameter 6 cm , field 15°) photographs taken by Y. Nakai, S. Saito and the present authors and of a number of photographs obtained by the present authors with a Nikon S II camera (F 1.2). We used the exposure time of $2 \sim 10$ seconds. Fuji SSS film and Fuji X-Ray film for fluorography were used. All films were developed with Rendol at $20^{\circ} \mathrm{C}$ (3 minutes for SSS, 6 minutes for X-Ray film).

In order to record the time at which the shutters were opened and closed, three methods were adopted; 1. synchronized recording of shutter signals and J.J.Y. signals from radio into pen-oscillograph, 2. synchronized recording of the two signals into tape-recorder, 3. eye and ear methods with a chronometer. The instruments we have made use of are illustrated in Figs. $1 \mathrm{a}, 1 \mathrm{~b}$ and 1 c . Moon Watch teams used Astro and Nikko Satellite telescopes (field 7°). Time recordings were made by using taperecorder and J.J.Y. signals. Miyazaki Team took also many photographs.

Fig. 1 a. $\quad 40 \mathrm{~cm}$ Schmidt camera.

Fig. 1 b. 16 cm Schmidt camera.

Fig. Ic. Nikon S II camera.

b) Data

Observations of the satellite consist in measuring its position at a recorded time. As for the photographic observation, the time recorded is that of the opening or closing of the shutters. Fig. 2 shows an example of the photographic observation.

Table 1.

No.	Team	Longitude	Latitude	Altitude
1	Shizuoka	$138^{\circ} 23^{\prime} 18^{\prime \prime} \mathrm{E}$	$34^{\circ} 58^{\prime} 25^{\prime \prime} \mathrm{N}$	20 m
2	Yokkaichi	$1 き 63900$	350015	3
3	Kashiwara	1354815	343024	66
4	Kwasan	1354733.66	345955.46	221
5	Osaka	1353030	344151	30
6	Kanaya	1351510	340346	40
7	Tadotsu	1334516	341620	$2-5$
8	Kochi	1333035	333325	30
9	Hiroshima	1322810	342208	3
10	Miyazaki	1312524	315523	8

Fig. 2 a. A photograph taken by the 16 cm Schmidt camera: the left end of the trail corresponds to the current number 188 in Table 2, and the right end to 189 .

Fig. 2 b. A photograph taken by a Nikon S II camera on January 24, 1958: it contains the trails covering from Ursa Minor to Orion.

Table 2.

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
1	Nov. 6, '57	Kochi	$\begin{array}{cccc}\mathrm{h} & \mathrm{m} & \mathrm{s} \\ 5 & 8 & 16\end{array}$	$\begin{array}{rr} \mathrm{h} & \mathrm{~m} \\ 8 & 2 \end{array}$	-43°	S $0^{\circ} 6^{\prime} \mathrm{E}$	$13^{\circ} 27^{\prime}$	V.
2		Shizuoka	$5 \quad 925.5$	650	-29	S 2144 W	2226	V .
3		Kwasan	~ 51050.0	-	-	$\sim \mathrm{E}$	-	P.*
4	Nov. 7, '57	Kwasan	52120.2	521.8	$+18.25$	S 80 13W	4542	P.
5			2139.00	518	+45.1	N59 29W	5251	P.
6			2143.32	517	$+49.5$	N52 14W	5233	P.
7			2146.75	516.3	$+52.3$	N47 42W	528	P.
8			2150.12	515	$+57.3$	N39 51W	510	P.
9			2224.68	1930	$+84.46$	N 137 E	2938	P.
10			2228.48	1841	+82.25	N 358 E	$28 \quad 2$	P.
11			2233.25	1830	$+79.58$	N 543 E	2549	P.
12			2237.83	1818	+77.34	N 728 E	$24 \quad 7$	P.
13			2259.83	$18 \quad 3$	+68.7	N13 6E	1711	P.
14			2313.77	$18 \quad 2$	+66.0	N14 38E	1455	P.
15			2317.95	181	+65.2	N15 9E	1417	P.
16		Shizuoka	52133.0	42	$+25$	N79 15W	3031	V.
17	Nov. 8, '57	Kanaya	53327	-	--	N $5 \quad \mathrm{~W}$	8	V.
18		Hiroshima	53339	1945	$+62$	N 522 E	648	V .
19	Dec. 9, '57	Shizuoka	5185	1755	451.3	N38 12E	1632	V .
20	Dec. 10, '57	Shizuoka	$5 \quad 556$	1730	$+50$	N40 54E	1758	V.
21	Dec. 12, '57	Kwasan	62440	-	-	\sim N 40 W	~ 40	P. §
22	Dec. 13, '57	Kanaya	6113	1035	+20	S 4825 W	7018	V .
23	Dec. 14, '57	Kanaya	55558	1035	$+20$	S 425 W	7157	V .
24		Yokkaichi	55559	108	+14	S 47 7W	6148	V .
25		Kochi	55618	1134	$+15$	S 1059 E	719	V .

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
26	Dec. 15, '57	Kwasan	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 5 & 39 & 14.5 \end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 9 & 12 \end{array}$	$+33 .{ }^{\circ} 6$	N $84^{\circ} 14^{\prime} \mathrm{W}$	$64^{\circ} 34^{\prime}$	P.
27			3919.5	919	$+32.3$	N88 1W	6543	P.
28		Yokkaichi	54019	104	$+13$	S 4239 W	626	V .
29	Dec. 16, '57	Kwasan	52223	823	+43.4	N62 26W	5819	P.
30			2227	833	+42.1	N64 54W	6010	P.
31			242	1028	$+10.8$	S 20 55W	6427	P.
32			246	1033	$+9.2$	S 1717 W	6314	P.
33		Kashiwara	52318	951	$+27$	S 69 6W	7246	V.
34		Kanaya	52350	1026	$+20$	S 3140 W	7352	V.
35		Yokkaichi	52356	108	$+13$	S 35 3W	6415	V .
36		Miyazaki	52534	1256	-3	S47 2E	4344	V.
37		Kochi	52711	1236	-24	S 2521 E	2755	V.
38		Kanaya	52737	1218	-26	S 1822 E	2731	V.
39	Dec. 17, '57	Kwasan	5457	759	+48.8	N52 48W	563	P.
40			57	817	+47.0	N55 18W	5916	P.
41			637	1016	$+16.8$	S 2512 W	7014	P.
42			646	1023	$+13.5$	S 17 57W	6737	P.
43	Dec. 18, '57	Miyazaki	45042	1245	-1	S53 0E	4238	V .
44	Dec. 19, '57	Kwasan	43343	1143	-17.8	S 2226 E	345	P.
45			3355	1146	-19.8	S 2223 E	3159	P.
46	Dec. 23, '57	Miyazaki	175231	155	$+29$	N87 22 E	6153	V.
47		Hiroshima	175238	2349	-11	S 010 W	4438	V.
48		Shizuoka	17537	1947	+12.5	S 87 6W	2615	V.
49		Yokkaichi	175324	2019	$+39$	N67 19W	458	V .
50		Osaka	175349	2359	$+89$	N $01 W$	3542	V .

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
51	Dec. 24, '57	Kanaya	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 17 & 30 & 2 \end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 0 & 5 \end{array}$	$+18^{\circ}$	S $19^{\circ} 36^{\prime} \mathrm{E}$	$73^{\circ} 7^{\prime}$	V.
52		Kashiwara	173059	610	$+59$	N34 43E	261	V .
53	Jan. 23, '58	Kashiwara	$1917 \quad 3$	1840	+63	N20 18W	1439	V .
54		Osaka	191959	20	+64	N18 25W	5734	V .
55			229	433	$+16$	S 3923 E	$67 \quad 0$	V.
56		Kanaya	19212	353	$+46$	N17 40E	7722	V.
57			2159	440	+24	S 60 16E	$72 \quad 5$	V.
58		Miyazaki	192123	613	+45.0	N56 2E	5330	V.
59		Yokkaichi	192241	434	$+7$	S 2750 E	5912	V .
60			2245	435	$+5$	S 2648 E	5717	V.
61	Jan. 24, '58	Kwasan	182418	1550	$+72$	N 535 W	1742	P.
62			2424	1543	$+73$	N 447 W	1832	P.
63			2444	1531	$+74.8$	N 329 W	$20 \quad 7$	P.
64			2450	1515	+76.4	N 2 9w	2132	P.
65			$25 \quad 1$	1429	$+78.5$	N 039 E	2331	P.
66			2510	145	$+79.5$	N 148 E	2437	P.
67			2527.5	1243	$+80.8$	N 5 5E	2653	P.
68			2533	1215	+81.0	N 63 E	2738	P.
69			2551	1013	$+80.0$	N10 43E	3039	P.
70			2558	948	$+79.5$	N11 49E	3126	P.
71			2612.5	849	$+77.0$	N15 40E	3336	P.
72			2619.5	828	+75.4	N17 48E	3436	P.
73			2639	747	$+70.5$	N 243 E	3719	P.
74			2644	738	$+69.8$	N24 55E	$38 \quad 6$	P.
75			276.5	713	+62.2	N34 42E	4049	P.

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
76	Jan. 24, '58	Kwasan	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 18 & 27 & 11.5 \end{array}$	$\begin{array}{rr} \mathrm{h} & \mathrm{~m} \\ 7 & 8 \end{array}$	$+60 .{ }^{\circ} 6$	N $36^{\circ} 49^{\prime} \mathrm{E}$	$41^{\circ} 27^{\prime}$	P.
77			2725	70	$+56.3$	N42 37E	4229	P.
78			2730	657	$+54.3$	N45 21 E	4250	P.
79			2748	647	$+48.8$	N53 5E	$44 \quad 0$	P .
80			2753	646	+47.2	N55 19E	$44 \quad 0$	P.
81			284.5	644	+43.2	N60 53E	4344	P.
82			289.5	642	+41.0	N63 58E	4340	P.
83			2822.5	639	$+37.2$	N69 15E	4319	P.
84			2830	637	$+34.0$	N73 37E	4247	P.
85			2849	633	+28.6	N80 53E	4145	P.
86			2858	633	$+25.6$	N84 32E	4032	P.
87			295	632	$+23.6$	N87 3E	3953	P .
88			2914	632	+21.2	N89 48E	3849	P.
89			2920	631	+20.1	S 8848 E	3830	P.
90			2914	631	+21.2	N89 57E	391	P.
91			2920	630.5	$+20.0$	S 8837 E	3833	P.
92			2943	629	$+13.7$	S 8135 E	3538	P.
93			2948	628	$+12.3$	S 7959 E	356	P.
94			2959	628	+10.4	S 78 3E	$34 \quad 2$	P.
95			$30 \quad 3$	627	$+9.8$	S 7717 E	3354	P.
96			3010	627	$+7.5$	S75 3E	3233	P .
97			3017	627	$+5.8$	S 7326 E	3133	P.
98		Shizuoka	18262	249	+85	N 06 W	3959	V .
99		Miyazaki	182633	855	+64.6	N28 6E	2529	V .
100			2717.0	821.4	+53.3	N41 32E	2542	V.

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
101	Jan. 24, '58	Miyazaki	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 18 & 28 & 49.8 \end{array}$	$\begin{array}{rr} \mathrm{h} & \mathrm{ml} \\ 7 & 32 \end{array}$	+32. ${ }^{\circ} 2$	N $67{ }^{\circ} 12^{\prime} \mathrm{E}$	$26^{\circ} 58^{\prime}$	V.
102		Osaka	$1828 \quad 7$	646	$+43$	N60 45E	430	V.
103			3224	628	-13	S 5755 E	1914	V .
104		Yokkaichi	182813	636	+44	N60 16E	4556	V.
105		Kanaya	182843	652	+34	N71 21E	3911	V .
106		Miyazaki	$20 \quad 845.5$	$\begin{array}{lll}0 & 7.6\end{array}$	$+27.6$	N78 19W	3825	V.
107			920.4	036.6	$+20.8$	N89 46W	4148	V.
108			925.9	044	$+19.2$	S 87 18W	4240	V.
109			948.0	11	+14.6	S79 8W	4359	V.
110			1029.0	137.5	+ 5.5	S 61 23W	4549	V .
111		Kashiwara	$20 \quad 849$	2359	$+12$	S 8651 W	$26 \quad 2$	V.
112	Jan. 25, '58	Kwasan	191449	036	$+33$	N79 59W	5311	P.
113			1458.5	043	$+31.7$	N82 46W	5413	P.
114			154.5	050	$+30$	N86 22W	554	P.
115			158.5	054	+28.4	N89 31W	5520	P.
116			154.5	049	$+30.1$	N86 5W	5454	P.
117			$15 \quad 8.5$	054	$+29.1$	N88 22W	5534	P.
118			1623	213.5	$+7.3$	S 39 22W	5623	P.
119			1627.5	217.5	+6.0	S 3640 W	5545	P .
120			1636.5	225	+ 3.8	S 32 3W	5439	P.
121			1642	228	$+2.5$	S 29 58W	5347	P.
122			1647	236	- 0.5	S 25 4W	5146	P.
123			1657	240	-1.5	S 23 6W	519	P.
124		Kashiwara	19154	2448	+32	N82 6W	5513	V .
125			1654	235	$+1$	S 26 41W	5330	V .

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
126	Jan. 25, '58	Kashiwara	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 19 & 18 & 57 \end{array}$	$\begin{gathered} \mathrm{h} \mathrm{~m} \\ 343 \end{gathered}$	-23°	S $1^{\circ} 4^{\prime} \mathrm{E}$	$32^{\circ} 30^{\prime}$	V.
127		Kanaya	191511	056	$+34$	N78 49w	5740	V.
128			1557	152	$+19$	S 62 51W	6249	V.
129			1655	240	$+3$	S 25 19W	5625	V.
130			188	332	-15	S 117 W	4055	V.
131			199	359	-24	S 554 E	3142	V.
132			2025	430	-32.5	S11 45E	2220	V.
133		Hiroshima	191630	324	$+9$	S 025 E	6438	V.
134		Miyazaki	191739.6	426	$+1.3$	S30 8E	5540	V.
135			1757.6	433	- 3.4	S 2921 E	4948	V.
136			1939.9	$5 \quad 4.4$	-22.1	S 2741 E	3042	V.
137		Tadotsu	191743	343	-10	S 443 E	4537	V.
138		Yokkaichi	191839	329	-22	S 338 W	3255	V.
139	Jan. 27, '58	Miyazaki	$19 \quad 423.0$	2228	$+49.8$	N48 34W	3510	V.
140			427.9	2236	+49.3	N49 26W	3621	P.
141			$5 \quad 6.5$	2330	+44.1	N57 32W	4452	P.?
142			538.9	012	$+37.6$	N68 18W	$52 \quad 9$	P.?
143			$6 \quad 3.5$	042	$+31.9$	N79 33W	5724	P.
144			$6 \quad 8.0$	047	$+30.5$	N82 31W	$58 \quad 9$	P.
145			830.1	248.2	- 9.9	S11 15W	4732	V.
146			92.0	37	-16.3	S 41 W	4141	V.
147		Kanaya	$19 \quad 435$	228	+32	N66 38W	2419	V.
148			438	2252	$+30$	N73 12W	321	V.
149			54	238	$+28$	N77 1W	3420	V.
150			532	2336	$+23$	N85 53W	3750	V.

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
151	Jan. 27, '58	Kanaya	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 19 & 6 & 14 \end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 0 & 15 \end{array}$	$+14^{\circ}$	S $78{ }^{\circ} 8^{\prime} \mathrm{W}$	$41^{\circ} 19^{\prime}$	V.
152			713	146	-13	S 33 2W	3630	V .
153		Yokkaichi	19643	033	$+4$	S64 51W	3713	V .
154		Tadotsu	$\begin{array}{lll}19 & 5 & 8\end{array}$	2330	$+28$	N79 30W	$40 \quad 2$	V .
155	Jan. 28, '58	Kobe	-18 925	-	-	-	-90	
156	Jan. 30, '58	Yokkaichi	175412	03	$+27$	S87 7W	5613	V .
157		Osaka	175418	-	-	-	-	V.
158	Mar. 13, '58	Kashiwara	52619	2344	$+60$	N3154E	2310	V.
159			2953	2138	$+8$	S86 0E	1957	V.
160	Mar. 14, '58	Miyazaki	51830	22.27	$+32$	N62 10E	1626	V.?
161	Mar. 15, '58	Kanaya	$5 \quad 310$	2130	+37	N63 46E	3054	V.?
162	Mar. 16, '58	Kanaya	45041	$21 \quad 6$	+16	N86 50E	2442	V .
163	Mar. 17, '58	Kanaya	431.25	2145	$+49$	N4758E	2830	V .
164		Kashiwara	43251	2055	$+25$	N78 0E	2858	V.
165	Mar. 18, '58	Miyazaki	$193321+1$	545	-3	S 3052 W	5042	V .
166			3331.6	60.6	$+5.8$	S 31 37W	6018	V .
167	Mar. 19, '58	Kwasan	35241.4	2112.40	+44.18	N53 43E	2755	P.
168			5246.4	$21 \quad 9.20$	$+43.20$	N55 0E	285	P.
169			5417.4	2031.25	$+18.30$	N84 3E	2421	P.
170			5424.4	2029.20	$+16.40$	N86 7E	2349	P.
171		Miyazaki	52848	1251	+46	N54 29W	4115	V.
172			2854	1258	+45.5	N 55 19W	4224	P.
173			2858.9	$13 \quad 7$	$+44.1$	N57 25W	4351	P.
174			3034.1	1524	$+13.7$	S 5546 W	6130	P.?
175			3158.4	1639	-13.6	S 733 W	4410	P.?

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
176	Mar. 19, '58	Miyazaki	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 5 & 32 & 6.8 \end{array}$	$\stackrel{\mathrm{h}}{16} \mathrm{~m}_{47.5}$	-16.7	S $4^{\circ} 25^{\prime} \mathrm{W}$	$41^{\circ} 16^{\prime}$	P.?
177			3211.7	1651	-17.9	S 315 W	4015	P.
178			3217.1	1654	-19.2	S 217 W	3851	P.?
179		Kanaya	52934	1325	$+17$	S 8638 W	3618	V.
180		Miyazaki	191128.3	60	-26	S 11 18W	3111	P.
181			$12 \quad 5.6$	731.2	$+10.8$	S 307 E	6611	V .
182			131	1152.1	$+55.3$	N41 22E	3259	P.
183		Kochi	191248	648	$+34$	N65 3W	8856	V.
184		Tadotsu	191250	630	$+16.5$	S18 6W	7127	V.
185		Kashiwara	191255	423	+15.4	S 71.58 W	4936	V .
186			1317	445	+47	N53 36W	6127	V.
187		Yokkaichi	19132	40	$+12.0$	S 7258 W	4214	V.
188		Kwasan	$1913 \quad 9.5$	447.5	$+24.8$	S 79 53W	5916	P.
189			1311.5	451.0	$+28.9$	S 8650 W	6139	P.
190			1323	50	$+45$	N57 24W	6443	V .
191		Osaka	191317	514	$+47$	N50 21W	6628	V.
192		Shizuoka	191446	1915	$+76$	N0 7W	2058	V.
193	Mar. 20, '58	Miyazaki	$5 \quad 357.5$	98	$+56$	N32 23W	1459	V.?
194			531	110	$+57.3$	N38 2W	2911	V .
195			557.8	1146.4	+55.4	N41.37W	$35 \quad 5$	V.
196			614.8	1215	$+54.4$	N 43 16W	$39 \quad 4$	P.
197			622.3	1230	+53.4	N44 38W	4114	P.
198			647.5	1320	+48.9	N50 26W	4913	P.?
199			711	$14 \quad 7$	$+42.7$	N59 17W	5759	P.?
200			722	1421	+39.6	N64 52W	6053	P .

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
201	Mar. 20, '58	Miyazaki	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 5 & 25.4 \end{array}$	$\begin{gathered} \mathrm{h} \\ 14 \mathrm{~m} \\ 26 \end{gathered}$	$+38 .{ }^{\circ} 5$	N $67{ }^{\circ} 1^{\prime} \mathrm{W}$	$61^{\circ} 54^{\prime}$	P.
202			736	1445	$+33.9$	N77 27W	6542	P.
203			739.7	1451	$+32.5$	N81 11W	6650	P.
204			749	154	$+28.9$	S 88 6W	6855	P.?
205			819.6	1543.9	+15.6	S 425 W	694	V.
206			857.4	1622	$+0.1$	S 928 W	5749	P.?
207			910.2	1632.5	-4.4	S 47 W	5336	P.
208			913.5	1635	- 5.7	S 3 0w	5220	P.
209			926.4	1646	- 9.9	S 116 E	4810	P.?
210			929.5	1646.6	-10.7	S 126 E	4722	V.
211			952.6	$17 \quad 3$	-17.1	S 618 E	4045	P.?
212			104	$17 \quad 9$	-19.5	S 745 E	3813	P.
213			108	1712	-20.3	S 829 E	3720	P.
214			1051.1	1732.5	-27.7	S 1219 E	2916	P.?
215		Kochi	$\begin{array}{ll}5 & 736\end{array}$	1411	$+19$	S 7738 W	5159	V.
216		Kanaya	$1849 \quad 5$	535	- 9	S 2238 W	4417	V.
217			5015	110	+65	N30 28E	414	V.
218		Kashiwara	184914	522	-12	S 2550 W	3945	V.
219			4926	544	$+7$	S 29 24W	5923	V.
220			5025	115	$+67.83$	N26 58E	4051	V.
221			5052	1318	+64.5	N28 42 E	2730	V.
222		Osaka	184938	635	$+16$	S 446 W	7115	V.
223		Shizuoka	184953	345	+23.7	S87 35W	4753	V .
224			5049	0	+88.7	N 1 32W	3440	V.
225		Kwasan	184954.3	710.6	+33.4	S7627E	842	P.

Table 2. (continued)

No.	Date	Team	Time	R.A.	Declination	Azimuth	Altitude	Remarks
226	Mar. 20, '58	Kwasan	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} \\ 18 & \mathrm{~s} \\ 49 & 56.3 \end{array}$	$\begin{array}{ll} \mathrm{h} & \mathrm{~m} \\ 7 & 17.7 \end{array}$	$+36 .{ }^{\circ} 05$	N79 ${ }^{\prime} \mathrm{E}$	$82^{\circ} 50^{\prime}$	P.
227			5016.2	917.64	+57.66	N36 26E	5547	P.
228			5024.1	1014.68	+62.32	N33 16E	4732	P.
229			5038.5	1149	$+64.22$	N3155E	3654	P.
230			5042.3	1213.02	+63.9	N31 51 E	3416	P.
231			5049.0	1243.12	$+63.71$	N31 6E	311	P.
232		Yokkaichi	18500	559	$+46$	N35 33W	7550	V .
233			5058	1232	$+71$	N23 5E	344	V.
234	Mar. 21, '58	Kanaya	44324	1355	$+19$	S 7732 W	5120	V.
235			4533	161	-21	S 1026 W	3415	V .

P.: photographic
*: no field star because of cloudy
V.: visual
§: no trail because of sky fog
?: reported as uncertain.

The position is given by the right ascension (R.A.) and by the declination of the satellite referred to field stars. The Skalnate Pleso Atlas was used for reference. The Moon Watch teams reported also the observational time and the position at which a good observation was carried out. Table 1 gives the data for the observing teams; the first column gives the current number, the second the place of the observing team, the third the longitude, the fourth the latitude, and the fifth the altitude. The observational data are compiled in Table 2; the first column gives the current number, the second the observational date, the third the observing team, the fourth the observation time, the fifth the right ascension, the sixth the declination, the seventh and the eighth the azimuth and the altitude converted from the right ascension and the declination respectively, and the ninth gives remarks. Hereafter time is referred to the Japanese Standard Time.

II. ORBIT

In this part, we shall describe the method of determining the orbital elements of 1957β and find them by using the observational data obtained in the Western Japanese territories. According to the Russian communication the orbit of 1957β is nearly circular, and we can observe only a small part of its orbit on any day. With
further allowance for the observational errors, it is difficult and rather disadvantageous to apply straightforwardly the usual orbital theory to the determination of the orbit of 1957β. Therefore, we have confined ourselves to the favourable opportunities for us to determine the orbital elements and have treated the subject graphically.

3. Basic relations

Under the inverse-square law in the central-force field of the Earth's gravitation, the orbit of satellite is given by the well-known equation for an ellipse :

$$
\begin{equation*}
r=p(1+\varepsilon \cos v)^{-1}, \quad \text { with } \quad p=a\left(1-\varepsilon^{2}\right), \quad r=R_{\phi}+H \tag{1}
\end{equation*}
$$

where r is the radius vector from the Earth's center to the satellite, a the semi-major axis, ε the eccentricity, v the true anomaly, R_{ϕ} the radius of the Earth at the latitude ϕ, and H is the height of the satellite above the sea level. r / a is illustrated in Fig. 3, taking ε as a parameter.

Fig. 3. The behavior of r / v versus v, taking ε as a parameter.

It is useful also to give the Keplerian expressions for the period T and for the orbital velocity V of an elliptical orbit;

$$
\left.\begin{array}{rl}
T & =2 \pi(G M)^{-1 / 2} a^{3 / 2} \tag{2}\\
V & =(G M)^{1 / 2}\left(\frac{2}{r}-\frac{1}{a}\right)^{1 / 2},
\end{array}\right\}
$$

where G is the gravitational constant and M is the mass of the Earth. R_{ϕ} decreases by several kilometers from $30^{\circ} \mathrm{N}$ to $40^{\circ} \mathrm{N}$. In Fig. 4 are shown the relations (2), taking H above the $35^{\circ} \mathrm{N}$ sea level as a parameter.

Let h be the observed altitude of the satellite and θ the angle with which the

Fig. 4. The behavior of V versus a or T, taking H above the $35^{\circ} \mathrm{N}$ sea level as a parameter.
observer and the satellite subtend at the Earth's center. Then h is safely connected with θ and H by the relation:

$$
\begin{equation*}
\tan h=\cot \theta-\frac{R_{\phi}}{r} \operatorname{cosec} \theta, \tag{3}
\end{equation*}
$$

in which it is assumed that the altitude of the observatory is not too high and that the latitude of the observed point of the satellite is not too different from that of the observatory. The relation (3) is illustrated in Fig. 5, taking H above the $35^{\circ} \mathrm{N}$ sea level as a parameter.

Lastly it is convenient to

Fig. 5. The behavior of h versus θ, taking H above the $35^{\circ} \mathrm{N}$ sea level as a parameter.

Fig. 6. The behavior of i_{ϕ} versus ϕ, taking i as a parameter.
have the inclination i_{ϕ} of the orbit projected on the surface of the Earth to any latitude line. Let i be the inclination of the orbit to the equatorial plane, then i_{ϕ} is given by

$$
\begin{equation*}
\cos i_{\phi}=\cos i \sec \phi, \quad|\phi| \leqslant i . \tag{4}
\end{equation*}
$$

The relation (4) is shown in Fig. 6, taking i as a parameter. Corresponding to $i=64^{\circ}$, 65° and 66°, we have prepared three curved measures drawn on a transparent celluloid sheet so as to fit the scale of the chart (1).

4. Determination of height

As is seen from the relation (3), the observed altitude is a function of θ and H. In other words, we cannot plot the observational data on the chart without knowing H. Moreover, (1) and (2) show that H is a fundamental quantity which determines the orbital elements. Then we shall take a glance at methods of fixing H.
a) It is obvious that the trigonometric survey is the most useful and precise method of determining H.
b) The orbital velocity of the satellite is connected with H by the relation (2). We may find out H from pass length of the satellite orbit projected on the chart, taking H as a parameter. H is, of course, variable when the time interval of the observations is too long, whereas change of the pass length due to that of H is negligible for $\Delta v \leq 5^{\circ}$ for 1957β with $\varepsilon \leq 0.1$. Namely, the pass length on the chart is approximated by R_{ϕ} / r times that in space. It is to be noted, however, that this method of determining H is such as to estimate the mean height over the time interval of observations.
c) We may employ a new trial of determining H from the observations at only one place in the absence of trigonometric survey. By means of the one place observations of the successive crossings of the east-west line for three days, we can simultaneously fix the mean height for three days at that latitude and $\Delta \Omega$, the retrograde rate of orbit per day. Let t_{i} and λ_{i} be the time and the longitude of the crossing of the east-west line for the i-th day, respectively. Then t_{i} and λ_{i} are connected with those in the following day by the relation:

$$
\begin{equation*}
\lambda_{i+1}-\lambda_{i}=\left(t_{i}-t_{i+1}\right)-\left(1-\frac{t_{i}-t_{i+1}}{\text { one day }}\right)(\Delta \Omega+\Delta \mathscr{D}), \tag{5}
\end{equation*}
$$

where ΔO is the rate of revolution of the Earth around the Sun per day and is put nearly as $0 .^{\circ} 986$. Using the relation (5) we derive for λ_{2} and λ_{3}

$$
\left.\begin{array}{l}
\lambda_{2}=\lambda_{1}-\left(1-\frac{t_{1}-t_{2}}{1440}\right) \Delta \Omega+\frac{1}{4}\left(t_{1}-t_{2}\right)-\left(1-\frac{t_{1}-t_{2}}{1440}\right) \Delta \mathscr{O}, \tag{6}\\
\lambda_{3}=\lambda_{1}-\left(2-\frac{t_{1}-t_{3}}{1440}\right) \Delta \Omega+\frac{1}{4}\left(t_{1}-t_{3}\right)-\left(2-\frac{t_{1}-t_{3}}{1440}\right) \Delta \mathscr{O},
\end{array}\right\}
$$

where $t_{i}-t_{j}$ is expressed in minutes of time, each term in degrees of arc, and $\Delta \Omega$ is assumed not to change during those days.

Now, we shall apply the relations (6) to the evening observations on March 18, 19 and 20 in 1958. Of course, the crossing longitudes λ_{i} 's depend apparently on H. Using each observational time and λ_{1} which depends on H, we shall compute $\lambda_{i}(i=2,3)$ from (6) taking 4Ω as a parameter, and shall plot λ_{i} in Fig. 7. On the other hand, we know $\lambda_{i}(i=2,3)$ from the observations as the function of H, and plot λ_{i} in Fig. 7. Then, we can uniquely fix $H=255 \mathrm{~km}$ and $\Delta \Omega=3 .{ }^{\circ} 18$, assuming that H has not changed during

Fig. 7. The computed behaviors of λ_{2} and λ_{3} versus H taking $A \Omega$ as a parameter are expressed by the solid curves, and the observed ones for λ_{2} and λ_{3} versus H by the dashed. λ_{2} in thick curve is read by the left-hand ordinate scale, and λ_{3} in thin by the right-hand one. three days. The observation on March 18 was considerably apart from our east-west line, and so we are obliged to extrapolate its data to this line (see $\$ 5$). Hence the values of H and $\Delta \Omega$ fixed above might be somewhat incorrect.

The change of H per day might be of the order of several kilometers and that of $\Delta \Omega$ per day of the order of a few thousandths of degree for 1957β. Therefore, in treating the subject, the said assumptions may be admissible particularly for the observations in the perigee regions, with allowance for the observational errors. If we are able to have successive observations day by day, we may find the daily changes for H and $A \Omega$. The present method is, however, not so effective with the exception of such a case that the observing place lies between the successive crossings.

5. Period and retrograde rate of orbit

If we can observe the times of the successive crossings of the east-west line of the observing place, we can find the period in which the satellite revolves around the Earth. It is, however, of rare occurrence to observe the successive passages within a day. Moreover, we have not always the east-west line observations. Therefore it
is necessary to extrapolate the observed points to one latitude line. We shall fix that line to the $35^{\circ} \mathrm{N}$ one passing near Kwasan Observatory. After finding H by means of such methods in the preceding section, we can plot the observed points on the chart using the data given in Table 2. When the observed point is apart from the $35^{\circ} \mathrm{N}$ line, it is extrapolated to that line along the curved measure mentioned in $\$ 3$. The observed point for the extrapolation should be such as more close to the $35^{\circ} \mathrm{N}$ line and more precise in observations. Until the inclination i is determined, it is assumed as 65° according to the Russian announcement. Then, we can find the time and the longitude at which the satellite crosses the $35^{\circ} \mathrm{N}$ line. Of course, the rotation of the Earth for the time interval between the two successive observations must be taken into account. From the successive crossings for two days, the mean period over about one day, T_{ϕ}, may be obtained in general by the following relation:

$$
\begin{equation*}
1440=N T_{\phi}+\tau, \quad T_{\phi}>\tau \tag{7}
\end{equation*}
$$

where τ is the time in minutes by which N revolutions fall short of one day. $\Delta \Omega$, the retrograde rate of orbit per day, is directly obtained from the relation (5).

In Table 3 are listed the several quantities reduced as above with exception of those obtained from observations unfavourable for reductions. The first column in Table 3 gives the date of observation, the second the mean height for the two or three days, the third the crossing time, the fourth the crossing longitude, each on the $35^{\circ} \mathrm{N}$ line, the fifth the date on which the mean period is fixed, the sixth the mean period over about one day, and the seventh the retrograde rate of orbit per day. The explanation as to the figure in the bracket in the sixth column will be postponed to $\S 9$. The errors estimated are such as incurred through the uncertainty of H and partly through those of the observation time, the inclination, the operations of plotting the observational data and of extrapolating to the $35^{\circ} \mathrm{N}$ line, and so on.

6. Eccentricity

The orbit of 1957β is nearly circular and we can observe only a small part of its orbit within one day. Practically we had not so precise observation of heights as to determine the orbital elements, only by the Western Japanese territory observations for one day. However, it we have successive observations evening after morning or morning after evening, we can determine the eccentricity of the orbit, provided that the orbital elements do not change for those intervals. For we can observe considerably separate parts of the orbit on the morning and on the evening. We had such a case on March observations.

Now we shall determine the eccentricity on March 20.000 by using the observational data on March 19 evening and on March 20 morning. Let the quantities of

Table 3.

Table 3. (continued)

Date	$35^{\circ} \mathrm{N}$			Date	$\begin{gathered} T \phi \\ (T) \end{gathered}$	$d \Omega$
	H	t	λ			
Jan. 23, '58		$\begin{gathered} \mathrm{h} \mathrm{~m} \\ 1921.233 \\ \mathrm{~m} \\ \pm 0.020 \end{gathered}$	$\begin{aligned} & 136 .^{\circ} 21 \\ & \pm 0 . .^{\circ} 05 \end{aligned}$	Jan. 24.288	$\begin{gathered} \mathrm{m} \\ 99.144 \\ \mathrm{~m} \\ \pm 0.002 \\ \mathrm{~m} \\ (99.135) \end{gathered}$	$\begin{array}{r} 2 .^{\circ} 79 \\ \pm 0^{\circ} 26 \end{array}$
Jan. 24, '58 Jan. 25, '58	$\begin{array}{r} 895 \mathrm{~km} \\ \pm 20 \mathrm{~km} \end{array}$	$\begin{array}{r} 1829.245 \\ \pm 0.010 \\ \\ 1915.185 \\ \pm 0.010 \end{array}$	$\begin{aligned} & 145.57 \\ & \pm 0.20 \\ & \\ & 130.13 \\ & \pm 0.13 \end{aligned}$	Jan. 25.286	$\begin{gathered} 99.063 \\ \pm 0.002 \\ \hline(99.054) \end{gathered}$	$\begin{array}{r} 2.84 \\ \pm 0.33 \end{array}$
Mar. 18, '58		$\begin{array}{r} 1934.673 \\ \pm 0.017 \end{array}$	$\begin{aligned} & 133.13 \\ & \pm 0.03 \end{aligned}$			
Mar. 19, '58 Mar. 20, '58	$\begin{gathered} 254 \\ \pm 5 \end{gathered}$	$\begin{array}{r} 1913.212 \\ \pm 0.010 \end{array}$ $\begin{array}{r} 1849.922 \\ \pm 0.010 \end{array}$	$\text { 134. } 39$ ± 0.05 136. 11 ± 0.03	Mar. 19.308 Mar. 20.293	$\begin{gathered} 94.569 \\ \pm 0.002 \\ \hline(94.561) \\ \\ 94.447 \\ \pm 0.001 \\ \hline 94.439) \end{gathered}$	$\begin{array}{r} 3.18 \\ \pm 0.08 \\ \\ \text { 3. } 19 \\ \pm 0.08 \end{array}$
Mar. 19, '58		$\begin{array}{r} 529.010 \\ \pm 0.039 \end{array}$	$\begin{aligned} & 125.73 \\ & \pm 0.10 \end{aligned}$	Mar. 19.721	$\begin{array}{r} 94.520 \\ \pm 0.004 \\ \hline(94.512) \end{array}$	
Mar. 20, '58	$\begin{array}{r} 715 \\ \pm 20 \end{array}$	$\begin{array}{r} 5.812 \\ +-0.017 \end{array}$	$\begin{aligned} & 127.01 \\ & \pm 0.08 \end{aligned}$	Mar. 20.705	$\begin{array}{r} 94.399 \\ +0.003 \\ \hline(94.391) \end{array}$	
Mar. 21, '58		$\begin{array}{r} 442.790 \\ +0.021 \end{array}$	$\begin{aligned} & 128.83 \\ & \pm 0.16 \end{aligned}$			

the former be denoted by suffix e and those of the latter by suffix m. From the data in Table 3 we may find for the difference of the true anomalies $v_{m}-v_{e}$ between the 19 evening and the 20 morning, in an approximation of no motion of the perigee along the orbit:
then

$$
\left.\begin{array}{l}
\cos \left(v_{m}-v_{e}\right)=1-\cos ^{2} 35^{\circ}+\cos ^{2} 35^{\circ} \cos \theta \tag{8}\\
v_{m}-v_{e}=101 .^{\circ} 83
\end{array}\right\}
$$

where

$$
\Theta=\left(1-\frac{t_{e}-t_{m}}{\text { one day }}\right)\left(360^{\circ}+\Delta \Omega+\Delta D\right)-\left(\lambda_{e}-\lambda_{m}\right)=142 .^{\circ} 74
$$

with

$$
4 \Omega=3 .{ }^{\circ} 18
$$

On the other hand, we have $a=6871 \mathrm{~km}$ from the mean period $T \simeq T_{\phi}=94 . \mathrm{m} 485$ (see $\S 9$), and have $r_{e}=6625 \mathrm{~km} \pm 5 \mathrm{~km}$ and $r_{m}=7086 \mathrm{~km} \pm 20 \mathrm{~km}$ corresponding to $H_{c}=254 \mathrm{~km} \pm 5 \mathrm{~km}$ and $H_{m}=715 \mathrm{~km} \pm 20 \mathrm{~km}$ respectively. Then we have

$$
\left.\begin{array}{r}
r_{e} / a=0.9642 \pm 0.007 \tag{9}\\
r_{m} / a=1.0313 \pm 0.029
\end{array}\right\}
$$

By applying (8) and (9) to Fig. 3, we find out graphically, for the mean eccentricity ε and also for v_{e} :

$$
\begin{equation*}
\varepsilon(\text { Mar. 20.000 })=0.043 \pm 0.0020 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{c}(\text { Mar. } 20.000)=35 .^{\circ} \pm 4 .^{\circ} 0 \tag{11}
\end{equation*}
$$

The latitude of the perigee on those days may be found about $3^{\circ} \mathrm{N}$ with the value (11) and that of the apogee about $3^{\circ} \mathrm{S}$, by assuming the inclination i as 65°. Then, we can obtain, by (10), for the heights of the perigee and the apogee:

$$
\left.\begin{array}{l}
H_{P}(\text { Mar. } 20.000)=195 \mathrm{~km} \pm 14 \mathrm{~km}, \tag{12}\\
H_{A}(\text { Mar. } 20.000)=791 \mathrm{~km} \pm 14 \mathrm{~km},
\end{array}\right\}
$$

where the suffixes P and A are referred to the perigee and the apogee, respectively.

7. Inclination

From the analysis in the preceding section we have found the dimensions and the direction of the orbit with respect to the Earth from March 19 to 20. Therefore we can compute the heights of 1957β at every latitude of the Earth, assuming at first that the inclination i is equal to 65°. In fact, the heights computed above are seen hardly dependent on i as long as the uncertainty for i is of the order of $\pm 1^{\circ}$. We shall apply these heights to the photographic and comparatively precise observations
on March 20 morning obtained by Miyazaki Team and find the height for every observation, which is listed in Table 4. The 1st column of Table 4 gives the current number in Table 2, the 2nd the latitude of the observed point which is estimated from the azimuth and from the first approximation height, and the 3rd the height computed corresponding to the 2 nd column latitude. Using the heights ih Table 4 we can plot the observational data on the chart, of course, with allowance for the rotation of the earth

Table 4.

No.	ϕ	H
196	36.7 N	707 km
197	36.3	709
200	33.3	721
201	33.1	722
202	32.5	724
203	32.3	725
305	30.2	732
207	27.6	741
208	27.4	742

$$
\begin{equation*}
i=65 .^{\circ} 5 \pm 0 . .^{\circ} 2 \tag{13}
\end{equation*}
$$

Without all these valuable data which were put at our disposal by Miyazaki Team, it would have been impossible to make this determination.

8. Motion of the perigee along the orbit

It is known by the perturbation theory that the perigee is in motion along the orbit corresponding to the retrograde motion of the orbit. We shall seek for the rate of the perigee motion.

It is probable that the change of the perigee height with time is very slow compared to that of the apogee one, so we can say from the values in Table 3 and in (12) that we had the observation near the perigee regions on December 23 evening. Therefore, it may be permissible to extrapolate the height on December 23 to that on December 16. Namely, on December $16,1957 \beta$ might have crossed with $H_{e} \simeq 232 \mathrm{~km}$ or more* near evening while with $H_{m}=870 \mathrm{~km} \pm 20 \mathrm{~km}$ on the morning. As we have, however, no informations on the time and the longitude of the evening crossing, we cannot evaluate $v_{m}-v_{e}$. Assuming a circular orbit with $i=65 .{ }^{\circ} 5$ we shall estimate $v_{m}-v_{e}$ nearly as 102°. Then, following the procedure as in $\$ 6$ we may find for ε and v_{e} :

$$
\begin{equation*}
\varepsilon(\sim \text { Dec. } 16) \simeq 0.088 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{e}(\sim \text { Dec. } 16) \simeq 354^{\circ}\left(=-6^{\circ}\right) \tag{15}
\end{equation*}
$$

The latitude of the perigee may be found with (15) near $40^{\circ} \mathrm{N}$ and that of the apogee

[^1]near $40^{\circ} \mathrm{S}$. Then we get, by (14), the heights of the perigee and the apogee as:
\[

\left.$$
\begin{array}{l}
H_{P}(\sim \text { Dec. } 16) \simeq 210 \mathrm{~km}, \tag{16}\\
H_{A}(\sim \text { Dec. } 16) \simeq 1480 \mathrm{~km} .
\end{array}
$$\right\}
\]

In the first approximation of its linear motion, we may find, for the motion of the perigee along the orbit per day from Debember 16 to March 20,

$$
\begin{equation*}
\Delta \omega \simeq \frac{-6-35.8}{94}=-0.44 \text { degrees per day } . \tag{17}
\end{equation*}
$$

That is, the perigee might retrograde along the orbit at the mean rate of 0.44 degrees per day. When we extrapolate, with (17), linearly back to the launching days, we may guess that the latitude of the perigee for those days was near $55^{\circ} \mathrm{N}$.

As will be shown later, the period and the retrograde motion of the orbit do not change linearly with respect to time. The retrograde motion of the orbit seems further to be in some relation to the period. The perigee motion is connected with the retrograde motion of the orbit, so the former must, in fact, have a dependency like that of the latter on the period.

Up to the preceding section we have neglected the perigee motion in describing the orbit. In the next section we shall briefly consider an influence of the present motion on the period and shall give the period in its true sense.

III. RESULTS

We shall derive some results from the orbital elements and their changes of 1957β obtained in the preceding part.

9. Period in the true sense and its acceleration rate

Owing to the perigee motion along the orbit, the period in the true sense T is expected to be different from T_{ϕ}, the period between the successive crossings of $35^{\circ} \mathrm{N}$ line. T may be connected with T_{ϕ} by the relation:

$$
\begin{equation*}
T=T_{\phi}\left(1+\frac{\Delta \omega T_{\phi}}{360 \times 1440}\right) \tag{18}
\end{equation*}
$$

With (17), as for 1957β, it is found that T is shorter by about $0 . \mathrm{m} 01$ than T_{ϕ} in the first appro ximation. The period in the true sense is bracketed in the sixth column of Table 3.

As a result of the transformation of T_{ϕ} into T, the semi-major axis introduced in $\$ 8$ and 8 should be made smaller by about 0.5 km and, consequently, the results in sections from 6 to 8 must suffer some changes. However these are included within the errors, so we shall leave the results as they were.

Next we shall estimate the acceleration rate of the period. The mean rate per day may be approximated by a rough formula:

$$
\begin{equation*}
\Delta T=\frac{\delta T}{\delta t} \tag{19}
\end{equation*}
$$

where δt means the difference of time in days on which T 's are fixed, and δT the increment of the period for that interval. The data made use of for determining ΔT are listed in Table 5 with reference to Table 3 . The first column of Table 5 gives the date on which T is fixed, the second the period, the third δT, the fourth δt, the fifth the mean date on which ΔT is determined, and the sixth the acceleration rate of the period per day obtained from (19).

Table 5.

* Less certain data which are not listed in Table 3.

The behaviors of T and ΔT with respect to date are illustrated in Fig. 8 with reference to Table 3 and to Table 5 . The behavior of ΔT is very curious. The discussions on this erratic orbital acceleration were given partly by L. G. Jacchia (2). We shall, however, have no comment on this interesting subject only from our observations.

10. Dependency of the retrograde rate of orbit on the period

The retrograde motion of the orbit is due to the non-central field of terrestrial gravitation, so the retrograde rate is expected to depend on the mean height of the satellite. From Table 3 it is found that the retrograde per day tends to increase in fact with the period decreasing We shall now seek for an empirical formula between $\Delta \Omega$, the retrograde rate of the orbit per day, and the period in the true sense T.

In treating the subject we shall make use of a mean value of the retrograde motion, for its daily rate tabulated is considerably incorrect due to the uncertainty of the
crossing longitude. We shall define for its mean value from the i-th day to the $(i+n)$-th day which belongs to the next observation series and corresponds to the cycle with the same true anomaly, apart form the perigee motion

$$
\begin{equation*}
\overline{\Delta \Omega}=\frac{1}{\delta t^{\prime}}\left\{\left(\lambda_{i}-\lambda_{i+n}\right)+\left(t_{i}-t_{i+n}\right)\right\}-\Delta \emptyset, \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
\partial t^{\prime}=(n-1)-\frac{t_{i}-t_{i+n}}{\text { one day }} \tag{20}
\end{equation*}
$$

where $t_{i}-t_{i+n}$ in the right-hand side of (20) is always to be positive, making allowance for the retrograde rate of the oribit from the i-th day to the $(i+n)$-th day. The data for determining $\overline{\Delta \Omega}$ and the dependency of $\Delta \Omega$ on T are compiled in Table 6 with reference to Table 3. The data in the first, the second and the third columns of Table 6 are those in Table 3, while the fourth gives the difference of time in days between the neighbouring dates, the fifth the mean rate of the retrograde motion per day obtained, and the sixth the period for each date in the first column, extrapolated using the data in Table 3. The seventh will be explained later.

Table 6.

Date	t	λ	δt^{\prime}	$\overline{\triangle \Omega}$	T	T
Nov. 7, '57 Dec. 23, '57 Mar. 20, '58	$\begin{array}{rl} \mathrm{h} & \mathrm{~m} \\ 5 & 21.383 \\ 17 & 53.181 \\ 18 & 49.922 \end{array}$	$\begin{aligned} & 133 .{ }^{\circ} 13 \\ & 134.20 \\ & 136.11 \end{aligned}$	d 46.522 87.040	$\begin{aligned} & \text { 2. }{ }^{\circ} 689 \\ & \text { 2. } 965 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 103.577 \\ 101.250 \\ 94.378 \end{gathered}$	102.446 98.079
Dec. 16, '57 Jan. 24, '58 Mar. 20, '58	$\begin{array}{r} 522.992 \\ 18 \\ 29.245 \\ 5 \end{array} 6.812$	$\begin{aligned} & 132.53 \\ & 145.57 \\ & \text { 127. } 01 \end{aligned}$	$\begin{aligned} & 39.546 \\ & 54.443 \end{aligned}$	$\begin{aligned} & \text { 2. } 817 \\ & \text { 3. } 040 \end{aligned}$	$\begin{array}{r} 101.652 \\ 99.093 \\ 94.451 \end{array}$	$\begin{array}{r} 100.464 \\ 96.998 \end{array}$
*Mar. 19.9, ${ }^{\text {'5 }}$ (3. 18		94.486

* Direct observational datum on March 18, 19 and 20 evenings in 1958.

Now we shall empirically set forth the relation between $\Delta \Omega$ and T in the form:

$$
\begin{equation*}
\Delta \Omega=K T^{k} \tag{21}
\end{equation*}
$$

where K and k are constants. The mean rate of the retrograde motion with respect to the period from the i-th day to the $(i+n)$-th day is

$$
\begin{equation*}
\frac{1}{T_{i+n}-T_{i}} \int_{T_{i}}^{T_{i+n}} \Delta \Omega d T=\frac{K}{k+1}\left(T_{i \neq n}^{k+1}-T_{i}^{k+1}\right) . \tag{22}
\end{equation*}
$$

As is seen from Fig. 8 the period does not vary linearly with respect to time, so the mean value (20) is not strictly equal to the mean value (22). As a rough approximation, however, we shall seek for the constants K and k by equating (20) to (22).

The empirical formula between $\Delta \Omega$ and T thus obtained by using the data for four intervals in Table 6 may be given as follows:

$$
\begin{equation*}
\Delta \Omega=(4.49 \pm 0.01) \times 10^{4} T^{-2.1 \pm 0.1} \tag{23}
\end{equation*}
$$

where $\Delta \Omega$ is in degrees of arc, and T in minutes of time. Further $\Delta \Omega$ is known linearly dependent on $\cos i$, so we get with (13) and (23)

$$
\begin{equation*}
\Delta \Omega=(1.08 \pm 0.01) \times 10^{5} \cos i T^{-2,1 \pm 0.1} \tag{24}
\end{equation*}
$$

Fig. 8 shows that the period considerably deviates from the linearity with respect to time for such intervals as given in Table 6. The longer the intervals, the errors of $\overline{A \Omega}$ incurred through the uncertainties of longitudes are smaller, whereas the permissibility of equating (20) to (22) is broken. Then we shall take \bar{T}, the mean period

Fig. 8. The behaviors of T and ΔT versus date: T in minutes of time, ΔT in seconds of time; the solid curve is such as obtained directly from the observations, the dashed curve as intercombined smoothly. The behavior of $\Delta \Omega$ versus T or date (see $\S 10$).
with respect to long time, approximating T by the quadratic curve with respect to time from the i-th day to the $(i+n)$-th day. \bar{T} thus obtained is given in the seventh column of Table 6. As an alternative approximate method for finding out the relation (21), we shall make $\overline{A \Omega}$ correspond, one to one, to \bar{T} for each interval. By means of the method of least squares with five data in Table 6 we derive other formulae:

$$
\begin{equation*}
\Delta \Omega=4.36 \times 10^{4} T^{-2.093} \pm 0.01 \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \Omega=(1.05 \pm 0.01) \times 10^{5} \cos i T^{-2.093} \pm 0.01 \tag{26}
\end{equation*}
$$

Numerically the value (25) is larger than (23) by about $0 .^{\circ} 01$ throughout the period of 1957β. The empirical formulae (23) and (24) are illustrated respectively in Figs. 8 and 9 , by tak. ing the inclination i as a parameter.

Since the air resistance to the satellite may be expected to have the same component of force as that due to noncentral terrestrial gravitation in accordance with the shape and with the flying mode of the satellite the relation (24) or (26) is not universal.

11. Atmospheric density

The work performed by air re-

Fig. 9. The behavior of $\triangle Q$ versus T, taking i as a parameter. sistance to the satellitc diminishes its total energy, and the dimensions of the orbit progressively decrease. In other words, we may be able to determine the atmospheric density by observing the changes of the orbital elements.

We shall treat the subject following the analysis given by I. M. Yaçunski (3). He confines himself to the plane orbit problem. Namely, no perturbations of the node or of the inclination occur. Likewise he takes no account of the secular perturbations of perigee. Therefore his treatment reduces to calculating merely the secular perturbations of the parameter p and thd eccentricity ε of the orbit.

For the acceleration Γ due to air resistance we may have

$$
\begin{equation*}
T=\frac{C \sigma_{s}}{2 m_{s}} \rho V^{2}=\frac{1}{2} b \rho V^{2} \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
b=\frac{C \sigma_{s}}{m_{s}} \tag{28}
\end{equation*}
$$

where ρ is the air density, C the coefficient of air resistance, V the orbital velocity, σ_{s} the frontal cross-sectional area and m_{s} the mass of the satellite.

On the basis of the plane orbit problem, we shall have the differential equations for determining p and ε as functions of v as:

$$
\begin{equation*}
\frac{d p}{d v}=\frac{r^{2}}{G M} \cdot 2 r Y \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \varepsilon}{d v}=\frac{r^{2}}{G M}\left\{X \sin v+\left(1+\frac{r}{p}\right) Y \cos v+\varepsilon \frac{r}{p} Y\right\} \tag{30}
\end{equation*}
$$

where X and Y are the projections of the perturbing acceleration on the radius vector and on the perpendicular to the radius vector in the plane of the ellipse, respectively. X and Y may be given by

$$
\left.\begin{array}{l}
X=-\frac{\Gamma}{V}\left(\frac{G M}{p}\right)^{1 / 2} \varepsilon \sin v=-\frac{1}{2} b_{\rho} \frac{G M}{p} \varepsilon \sin v\left(1+2 \varepsilon \cos v+\varepsilon^{2}\right)^{1 / 2} \tag{31}\\
Y=-\frac{\Gamma}{V}\left(\frac{G M}{p}\right)^{1 / 2}(1+\varepsilon \cos v)=-\frac{1}{2} b_{\rho} \frac{G M}{p}(1+\varepsilon \cos v)\left(1+2 \varepsilon \cos v+\varepsilon^{2}\right)^{1 / 2}
\end{array}\right\}
$$

Substituting the expressions (31) into (29) and (30), we get

$$
\begin{equation*}
\frac{d p}{d v}=-b_{\rho} p^{2}\left(1+2 \varepsilon \cos v+\varepsilon^{2}\right)^{1 / 2}(1+\varepsilon \cos v)^{-2} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \varepsilon}{d v}=-b o p(\varepsilon+\cos v)\left(1+2 \varepsilon \cos v+\varepsilon^{2}\right)^{1 / 2}(1+\varepsilon \cos v)^{-2} \tag{33}
\end{equation*}
$$

For the density distribution, we shall assume the exponential function of the type

$$
\begin{equation*}
\rho=A e^{-\alpha_{H}} \tag{34}
\end{equation*}
$$

where A and α are constants. Substituting (34) into (32) and (33) with the relations (1) and expanding these into power series and retaining terms of order ε^{2} with allow. ance for the smallness of ε, we get, instead of (32) and (33),

$$
\begin{align*}
& \frac{d p}{d v}=A b p^{2} e^{-\alpha\left(P-R_{q}\right)} e^{x} \cos v\left(1-\varepsilon x \cos ^{2} v+\frac{\varepsilon^{2}}{2} x^{2} \cos ^{4} v\right) \\
& \times\left\{\left(1+\frac{\varepsilon^{2}}{2}\right)-\varepsilon \cos v+\frac{\varepsilon^{2}}{2} \cos ^{2} v\right\} \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d \varepsilon}{d v}=-A b p e^{-\alpha\left(p-R_{\phi}\right)} e^{x} \cos v & \left(1-\varepsilon x \cos ^{2} v+\frac{\varepsilon^{2}}{2} x^{2} \cos ^{4} v\right) \\
& \times\left\{\varepsilon+\left(1-\frac{\varepsilon^{2}}{2}\right) \cos v-\varepsilon \cos ^{2} v+\frac{\varepsilon^{2}}{2} \cos ^{3} v\right\} \tag{36}
\end{align*}
$$

with

$$
\begin{equation*}
x=\alpha p \varepsilon \tag{37}
\end{equation*}
$$

Let η denote the number of revolutions around the Earth. We shall integrate (35) and (36) with respect to v between the limits 0 and $2 \pi \eta$, assuming that the changes of p and ε are negligibly small in this interval. Then we have approximately

$$
\begin{equation*}
p-p_{0}=-2 \pi \eta A b p_{0}^{2} e^{-\alpha\left(p_{0}-R_{\phi}\right) F_{p}(x)} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon-\varepsilon_{0}=-2 \pi \eta A b p_{0} e^{-\alpha_{(}\left(p_{0}-R_{\varphi}\right)} F_{\varepsilon}(x) \tag{39}
\end{equation*}
$$

[^2]with
\[

$$
\begin{equation*}
F_{p}(x)=\left\{\left(1+\varepsilon_{0}^{2}\right)-\varepsilon_{0} x+\frac{\varepsilon_{0}^{2}}{2} x^{2}\right\} I_{0}(x)-\frac{\varepsilon_{0}^{2}}{2 x} I_{1}(x)+\frac{\varepsilon_{0}^{2}}{2} I_{2}(x), \tag{40}
\end{equation*}
$$

\]

and

$$
\begin{align*}
& F_{\varepsilon}(x)=\left\{\frac{\varepsilon_{0}}{x}+\left(1-\varepsilon_{0}^{2}\right)-\varepsilon_{0} x+\frac{\varepsilon_{0}^{2}}{2} x^{2}\right\} I_{1}(x)+ \\
&+\left(\frac{5 \varepsilon_{0}^{2}}{2 x}+\varepsilon_{0}-\varepsilon_{0}^{2} x\right) I_{2}(x)+\frac{3 \varepsilon_{0}^{2}}{2} I_{3}(x), \tag{41}
\end{align*}
$$

where $I_{i}(x)$'s ($i=0,1,2,3$) are modified Bessel functions and the suffix zero denotes the initial values. Eliminating A from (38) and (39) we get

$$
\begin{equation*}
\frac{p-p_{0}}{p_{0}} /\left(\varepsilon-\varepsilon_{0}\right)=\frac{F_{p}(x)}{F_{\varepsilon}(x)} . \tag{42}
\end{equation*}
$$

Now we shall find out the constant α for those days in March observations. As the starting data March 19.308 will be taken, and as the ending March 20.705. We shall assume, in the first approximation, that the increment of eccentricity for short time interval may be equal to $\frac{2}{3} \frac{\delta T}{T_{0}}$. Then, from the data in Table 3 and from the value given in (10) we have

$$
\left.\begin{array}{ll}
\varepsilon_{0}=0.0440, & p_{0}=6862 \mathrm{~km}, \tag{43}\\
\varepsilon=0.0428, & p=6854 \mathrm{~km}, \\
\varepsilon=6 \text { Mar } 10.308 \\
\varepsilon & 20.705 .
\end{array}\right\}
$$

Using the values (43) we evaluate the righthand side of (42) for the probable range of x. This is given in Table 7. The second column of Table 7 is the scale height calculated from (37) and (43), for x in the first column. As is seen from Table $7, F_{p}(x) / F_{\varepsilon}(x)$ decreases very slowly with increasing x and is close to unity for a considerable range of x. On the other hand, the value of the left-hand side of (42) is nearly equal to unity in the first approximation. Consequently we cannot uniquely fix x unless

Table 7.

x	$1 / \alpha$	$F_{p}(x) / F_{\mathrm{E}}(x)$
1	293 km	2.125
2	147	1.378
3	98	1.189
4	73	1.115
5	59	1.078
6	49	1.056
7	42	1.041
8	37	1.031
9	33	1.024
10	29	1.018

In order to limit x to a narrower range the following procedure may be taken, though this is not substantially different from the above. The left-hand side of (42) is analytically given, retaining terms of order ε, by

$$
\begin{equation*}
\frac{p-p_{0}}{p_{0}} /\left(\varepsilon-\varepsilon_{0}\right)=1+2 \frac{\partial H_{P}}{\partial H_{A}}-\varepsilon, \tag{44}
\end{equation*}
$$

where $\delta H_{P} / \delta H_{A}$ is the ratio of the increment of the perigee height to that of the
apogee one. We cannot, however, know this reliable value by March observations. From (12) and (16) we may estimate the mean value of $\delta H_{P} / \delta H_{A}$ to be about 0.02 from December 16 to March 20. On the other hand, if a supposition that 1957β burnt out for example in a circular orbit at 150 km altitudes on April 14 is admissible, we may estimate the mean value of $\delta H_{P} / \delta H_{A}$ to be about 0.07 from March 20 to April 14. Then we shall roughly assume that $\delta H_{P} / \delta H_{A}$ near on March 20 is bounded by

$$
\begin{equation*}
0.03<\frac{\delta H_{P}}{\delta H_{A}}<0.06 \tag{45}
\end{equation*}
$$

from which we have for (44)

$$
\begin{equation*}
1.017<\frac{p-p_{0}}{p_{0}} /\left(\varepsilon-\varepsilon_{0}\right)<1.077 . \tag{46}
\end{equation*}
$$

Then, from (42), (46) and Table 7, we get finally for $1 / \alpha$

$$
\begin{equation*}
29 \mathrm{~km}<\frac{1}{\alpha}<59 \mathrm{~km} . \tag{47}
\end{equation*}
$$

Next we shall return to Eq. (38). b may be estimated as $1.18 \times 10^{-2} \mathrm{~m}^{2} \mathrm{~kg}^{-1}$ with $C \simeq 2, \sigma_{s} \simeq 3 \mathrm{~m}^{2}$ and $m_{s}=508.3 \mathrm{~kg}$. Using (43), $\eta=21.29$ and $R_{\phi}=R_{3}{ }^{\circ} \mathrm{N}=6378 \mathrm{~km}$ we have for A

$$
\begin{equation*}
A=10^{-10} \times \frac{e^{4.84 \times 10^{2} x}}{F_{p}(x)} \mathrm{kg} \mathrm{~m}^{-3} . \tag{48}
\end{equation*}
$$

The restriction (47) and the expression (48) will determine a probable range for the density distribution (34). This is illustrated in Fig. 10.

In short, what we can say about the density distribution at about 195 km altitudes above the equatorial regions is no more than that, corresponding to $30 \mathrm{~km}<$ scale height $<60 \mathrm{~km}$, the air density lies between $10 \times 10^{-10} \mathrm{~kg} \mathrm{~m}^{-3}$ and $6 \times$ $10^{-10} \mathrm{~kg} \mathrm{~m}^{-3}$. Further the lack of reliable information on b will make the above values uncertain by factor two.

12. Acknowledgement

We wish to express our sincere

Fig. 10. The behavior of p versus H, taking $1 / \alpha$ as a parameter.
thanks to Professor S. Miyamoto, who planned this work and encouraged us throughout the observations.

Our thanks are due to Press the Osaka Yomiuri for financial supports and for communications that made this investigation possible; to Kotobukiya Co., Ltd. under whose sponsorship the Schmidt cameras were constructed ; to Osaka Industrial Research Institute (Ikeda Station) for making a 60 cm mirror gratis; and to Fuji Photo Film Co., Ltd. for technical advices and for furnishing photographic materials.

In particular, we are grateful to Western Japanese Moon Watch teams, especially to Miyazaki Team headed by Dr. M. Inaba and also to Kanaya Team headed by Dr. K. Komaki who placed many valuable data at our disposal.

Lastly it is our pleasure to thank Messrs. I. Kawaguchi, S. Tominaga, J. Kubota, T. Inada and others at Kwasan Observatory for their co-works, M. T. Osaki for his helpful discussion, and Dr. J. Jugaku for reading the manuscript.

REFERENCES

1. Surveys of the Japanese Hydrographic Bureau, Chart No. 1009, Japan and the Adjacent Seas, $\frac{1}{3,000,000}$ (Lat. $35^{\circ} \mathrm{N}$).
2. L. G. Jacchia, Sky and Telescope, 17 (1958), No. 6.
3. I. M. Yaçunski, Uspekhi Fiz. Nauk, 63 (1957), 1, 59-71.

[^0]: * Kwasan Observatory, Kyoto University.

[^1]: * This will be justified in a later analysis.

[^2]: * Hereafter, we have somewhat different expressions from those given by Yaçunski (3).

