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ABSTRACT

As a method of treating statistically many correlative physical quantities fluctua-
ting only in positive region, the joint characteristic function in the form of Hankel
transform was introduced. Then it was demonstrated that this function is more
effective for the analyses of the noise current than the functions of Fourier or Laplace
type which have been used so far. When the system of correlative random currents
are led into an energy detector and the energy output fluctuation is considered, it
can be reduced to a probability problem of distance in N-dimensional signal space,
and further can correspond to a problem of random walks in MN-dimensional space.
From this point of view, the explicit expressions for the probability distribution of
intensity fluctuation of noise current were derived by means of the Hankel type
characteristic function, in connection with the random walk problem. These expres-
sions are more general than the well-known expressions due to Rice, Rayleigh and
Watson, because they include the latter ones as special cases.

1. Introduction

The probability variables defined over positive region in a functional space
are fundamental quantities in physics, and the probability density distribution
of distance in the multi-dimensional space (1, 2) gives statistically the intensity
fluctuation of random noise current, if we take the distance as the mean energy.
We are well aware of the fact that the energy fluctuation comes to the front in
almost all of noise measurements (3).

In this paper, the energy fluctuation of random noise in the multi-dimensional
space is particularly considered, by treating the generalized problem of random
walks in multi-dimensional vector space (1,4, 5,6). First, we shall introduce a
characteristic function in the form of the Hankel transform (1, 7) applicable as
a postern to probability problems of K correlative physical quantities fluctuating
only in positive region, and then, prove that the above characteristic function
of Hankel type is more useful for calculating the joint-probability distribution

of energy fluctuation of random noise than the usual characteristic function of
# A part of the present paper was already published in the Proceedings of the 9th Japan National
Congress for Applied Mechanics (1959), pp. 473~481.
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Fourier (or Laplace) type. As applications, we shall calculate explicitly the
probability density distribution of intensity fluctuation of random noise current:
P(R) or P(E), and derive the relation between the resultant vector and respective
element vectors affecting parameters of the resultant distribution.

Between the statistical theory of random noise and the information theory
of message which are two main currents in general communication theory, this
paper falls under the former, as S. O. Rice’s way of treating (8).

2. The N-dimensional representation of the random intensity fluctuation

Now, we consider along time axis a set of the general stochastic processes:
Gy(t) (h=1,2 - ,K),

which are respectively composed of the regular component S,(#) and the random
component N,(£) (KNp(£)>=0), and especially the integral energies:

iy o
Ey = S Gi(Dw()dt,
ty

such as the output from energy detector, where Gi(¢¥) corresponds to the instan-
taneous energy fluctuation and w(#) is a weight function, since our observation
coincides essentially with the weighted mean of energy, in that an information
which we can obtain for the crude random phenomenon through our observation
is a certain mean image. The form of the mean operation (especially the weight
function) will be successively improved with the steady progress in science.
However, at the stage where the effect of observation on the crude random
fluctuation is unknown, a special form:

1{tg
7\, Gia

taking w(t)::—,};, T=t,—1t, of the mean operation (1, 2, 5, 9) seems to be a most

natural one to take.

Generally, in investigating properties of Gu(#) (=Su(f)+Np(£)) in a finite
time interval, say (¢, £), it is convenient to expand it in terms of an orthonormal
set of functions, ¢;(#) (1==1, 2, ---) with a weight function w(#). That is, we can
write :

Gi(®) = Su(®) + Ni(®) = 33 gnigs(D)

£,
gui = sui b = | P o GuDeat, o,
1

/" = . r \
Snp S/" w(H S (e Chdl

v

15 o
Hni = S[U o) Ny (D (L) dl
i
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where

to , 1 when ¢ = j
S 0B (D (Hdt = ;) = {
4 0 when /-7,

On the other hand, by use of Khintchine-Wiener’'s theorem (10), auto- and

cross-correlation functions of G,(#) :

on (8, 8) = {(Gp(&) = Gr(DD) (G —=Ge(E) ),
assuming

0wt ) = ﬂ/zl<7>7 T = ”Mi/! s

are derived from its auto- and cross-spectral densities ¢ priori assigned.
In the above expression (1) of G,(#), it is very convenient to choose, as the
orthonormal set ¢;(#) (i=1,2, ---) with o(#), the solutions (eigenfunctions) of the

homogeneous Fredholm integral equation:

({l);lzx»/gu(i)qﬂj(t) = g:z Eni(t, W o(te;(t)dt (L<t<t,) (2)
J 1

with the symmetric kernel:
En(t, t) = ont, 1) 0(Holt).

Then, from the Parseval equation, our weighted average power FE; can be ex-
pressed by:

ty N
B (= (P ow6imar) = 2k, (= g (3)

By finding eigenvalues (/l;,;’s and eigenfunctions ¢;(#)’s of the above integral

i)
equation and letting N be the effective number of eigenvalues (therefore, i=1,
2, -, N), it can easily be shown that the mean value and the covariance for the

expansion coefficients :
gni, (h=1,2,-,K;i=1,2,--,N)

become :
t
Cau> = s> = | (O D 0Dt (= an) |
! i
and {Cani—<gn>) (gzj—<g1j>)> :(4)Itl'b\[j E(Q;:/) , /
7 i

2 _ PN 2 o
05, = <(gni—{gn>)? = r,/'l\}m = 0%, %4,

where sz;’s are independent of s and we must notice that our eigenvalues
and eigenfunctions are affected by w(#).

Thus, a joint-distribution density of xi;s can be expressed in the form of
product of K-dimensional normal distributions (4, 6, 11), that is,



14 M. OTA

P11, Zos o0 3 Xa 3 Kuzs Xany 2 Xu 5 00 5 XNy BN 5 7" XEN)

N1 O\K 1 K& (4
= Il (-—;) v Toth] exp {—— = 23 23 otheni—ans) (X1:— ars) } )
i=1\y/ 21 2%

where [of},] is an inverse-symmetric matrix of the variance matrix [o./].
>

After all, the problem is: What is the joint-probability density of energies
P(E,, E,, -, Er) for K correlative random output fluctuations, from Eqs. (3) and

(4)?

On the other hand, we shall take up the generalized problem of K correlative
Sh
series of random walks Rp=X ry; (=1,2,---,K) as shown in Fig. 1, where
Ny I=1
rrj=25 ei%nyi, ¢; being a unit vector along x;-axis in the N-dimensional vector
i=1

space. Now, in a special case where N;=N,= =Ngxr=N (=N"),
g & Sk
Ri=23x%;; %n; = lehji . (5)
i=1 i=

/\ 12
\(.f\r’, dimensional) Xoo (N, dimensional)

Yoy .
2 Y (N, - dimensional)

- edonp
‘(KKQ

-]

/

FK8

XKN,:

Fig. 1. K series of random walks in an N-dimensional space, (max [N;, N,, -+, Nx]
KN KN+ Nyt N

Thus, the problem can be transformed into the same form as Eq. (3) by
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letting E.=K;. Then, we are able to regard the above random process as a
probability problem in multi-dimensional vector space (1,7).

We may mention several interesting cases.
(i) As shown in Fig. 2, the problem of the resultant of several random

waves such as the signal and the noise, corresponds to the random walk problem
in the Gaussian plane with N=2, where we can consider the noise character as

the amplitude fluctuation or the phase fluctuation (1, 12).

A 5 "——K"\\>
Prad RN .
T A
Lot
X / 7
2 6 £N3
¥, Y ‘\‘ H

(imaginary) .

Fig. 2. The relation between random waves and random walks.

(ii) A probability calculation of average power of the random signals limited
within the frequency interval W and time interval T can be regarded, following
Shannon’s sampling theorem (13), as a problem of the random process in the form

of Eq. (3) in the functional space with N=2TW (1,7, i1).

3. 'The application of Hankel transform to random processes
In the preceding paragraph, it has been confirmed that we can regard the

actual 3-dimensional random processes along time axis as a certain problem of
random walks in an N-dimensional vector space, when the energy fluctuation is
concerned. We are also well aware of the effectiveness of using the moment
generating function of Laplace type: m(t)=<e"E>2S°° e tEP(ENdE or character-
istic function of Fourier type as a postern for the_;robability calculation in a

scalar field.
The problem is: What is the postern for the probability calculation in an
N-dimensional vector space?
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[A7] Derivation of the joint characteristic function of Hankel type

First, we shall introduce a joint characteristic function F(4;, 4,, -+, 4x) in the
form of the Hankel transform applicable to respective probability problems of K
correlative physical quantities Ry’s (h=1,2, .-, K) fluctuating only in positive
region, and express the joint-probability density P(R,, R,, -, Rr) (1,2,7).

In general, the joint-probability distribution function:

Ry

R R
O Ry, Ry -+, Ri) = (" ("5 PRy, Ro, o, RiOARAR, - dRsc

0
can be expressed by

3
!

=] oo <
§ (Ruo, Rary ++, Rie) = |+ {" PRy, R, o, R T DuRodaRa,
1 (Re< Ruo), ]
0 (Ri>>Rin) . /

By using, instead of D,(R,), the discontinuous integral due to Weber-Schafheitlin
(14) :

(6)
Du(Ri) :{

o st (Rndi 1 (R < Rwp,
Rgn S ]m,,(lelzo}\h) J lf]e}nsf‘i l”)‘d);/, = { (7)
’ * 0 <Rh > Rho) 3
we obtain :
%‘;771,1—»[( \
(P<R17 RZi ,R[() = (“2“)
\,Il; Ry Swoo Sm {[If}m,‘l IRDYFQ,, 2 1) dAd} i
- w1 4 (mg) Jo So 0 et g ]m/,( B ICh } (A, 2y, e, Ap)dladls N,
S —K
2 My —
P<R17R2:"')RK'> == (2]:‘) (8)
N ]I]‘{ R;;m o ffoa o ]{[()m” }R) r ) ) N )d} l) l;
- 11=17(m;,) SO So SO ol A7 1]171/,/-1( ~le h } </~1, gy oy AK)AA A, o AR,
K fm/ -1 (lhRIJ
- 72 =1 Smp— I\
F(y, 2, , 2K </1]Z—12 2 (my,) Onloy "t/ |
with mu>1/2 (h=1, 2, -+, K), or, more explicitly,
. s oo feo @K N
6)<R1’ R2> s RK) = (1[ ]3’,;"/0 S S S { 1 ]"llt()‘]’R,’)}
h=1 0 Jo 0 p=1
P < llf R }L—itl}lj1il/,»-l()‘IIR/I>>(l)qd}tg ver d/l[( ,
=1 < 9 N

=3
0

K5 @ =3 K
P(R[, Rz, ,RK) s (/]zl]?;?”)g SO So {I];[lzll]mhm1<)‘hkh>}

bes < ]II{ Rllz_i'l”fiiz/L—l<)~/1R/,>>(l]1d]sg e (l)s]( .
h=1

/
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K K
But F(2y, 2, -, 2x) = I F(2;) when P(Ry, Ry, -+ Rg) = I P(Rp), i.e., Ry, Rz, -+, R
=1 h=1

are statistically independent.
Especially, when we consider the probability problem given in the form

Np
Ri=3 4% of Eq. (5), we can also derive the characteristic function F(/s, 4., =, 4x)
i=1

in Eq. (8) under the additional condition: m,;=N,/2, as follows:

e —-..__.__~._.1 ‘oo e I{
I R SSCNl) SS(N2> S ’ SSCNKJ S ledSCN")

S {
/gl N E
KLF s gy s a5 0 s s 2ses 5 i) 105 L (1)
(/1111, Hhzs """ s /1/1N11> - (2113 Prrs =t g0/”1\’,11“‘0 <V/l> ‘é
Flty, e, =5 N5 o5 0y R, o MENE) = XD (Z[Z /xh]xnj])> , |
where
Np—1
AR, 4 . A .
SCN/, G 71’) N and dsengy = H (sin ¢lzj>N"_1—]d§9hj (h=1,2,K)

J=1

=)

mean respectively a surface area and a surface element of an Njy-dimensional
unit hypersphere, and (uug, tra, - 5 paw ) = (s Piry -+, $avy—) denotes the trans-
formation to the polar coordinates. After a somewhat troublesome calculation,
we can find that Eq. (10) agrees with F(4, 4., -, dx) in Eq. (8), by use of an
inversion formula of the Hankel transformation, and also P(R;, R, -, Rr) in
Eq. (8) can be derived from Eq. (10) by application of the transformation to an
N;~dimensional polar coordinates, (X, Zns, =, Xany) = (Biy iy Oray s By jen) -
If a special case K=1 is taken up, we have

P(R) = 2,,,._57( >S PO s ORYL, |
F() = <2nz——1]‘7<ﬂl> ](")731)("]113) an
15 CDIT GRS
G2 () A
or,
P = 0 LR Gy, o o TN s |

(s ey oo s ) = By 01, 5 0w (12)
a
F(rul: Hay =ty /-‘N) = <eXp <i1§1xKuK)> 3

corresponding to Eq. (8) or Eq. (10).
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[B] The effectiveness of the characteristic function of Hankel type

The method using the moment generating function m(#) of Laplace type is
indeed useful for calculating the probability density P(E) for the sum: E= ge;

of independent s scalar functions e;(#), since we have simply

S
m(t) = L m: (@), m; () = lemtei>.

The method using the characteristic function of Hankel type: F! (/1):<2”’_1F (m)

~~~~~~~~~~~~~~~~ > (see Eq. (11)) is, however, generally effective in calculating the
S

probability density P(R) for the sum RB=2r; (R=|R]|) of independent S vector
f=1

functions r;(¥) in an N-dimensional vector space, when the magnitude »; (=|r;|)
is independent of the direction of r;.
Consequently, we shall prove Eq. (11) under the special condition that

i i 7. = Ther i o m—1 ’ jm—l()‘ri> icitly
F(D {QFZ(Z) and m=N/2, where F;(A)=2"""(m) , more explicitly,

S—1 (N/2)—1 o
em® = (57 L)YTTR] arnery.oR) i
S o (A7
x B fonglid S a,
)
(13
§—1 (N/2)—1 poo
P@® = (5 (1) T omve o
w ()
<A ‘(Z%Q)_)?"'mf*:f az.
—2—‘ Vi

The proof consists in answering our question given at the beginning of this
paragraph. It is sufficient to verify that F(2)=F,(D)F,(1) holds when R=r;+r,
(i.e., S=2) in an N-dimensional vector space. But the way of verification differs
between the next two cases: N==2 and N=2. '
(i) Case when N==2 (m==1)

We shall take up the problem of random walks with two steps in an N-
dimensional vector space as shown in Fig. 3.

Since R?=#}-+rE—2r7, cos @, we shall apply to F(2) an addition-formula for
Bessel function of order v(=m—1) (14):

o0y = 2T 12 ki) L2 LD cyceos 0y

\

i

§ 14)
0=vVZ7TX—9ZXcos® (v==0, —~1, =2, ). )

Then, our characteristic function F(4) in Eq. (11) can be expressed by
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F(2) =47 Ga) [ (m—1)
o X 1 Jm—aex (A9 Jm-1+k(}‘7'z> me-1
x5 =141 i > e, >Creos )y (15)

Now, we take, along the first vector r;, the negative direction of x—axis of

an N-dimensional rectangular coordinate-system and express the second vector
7, by N-dimensional polar coordinates, say r.=[r,, ;, #,, -, 0n_;] as in Fig. 3,
taking #,=@. Under the assumption that the magnitude of each vector is inde-
pendent of its direction, we have P(s,, 0y, 0,, -+, On_) = P(5)P(8,, 0,, -, 0n_D.
Further, from the randomness, i.e., the isotropic property of each vector, the
probability that r, should face to any surface element dScy> of the N-dimensional
hypersphere (radius 7,, surface area Scy)) is constant.

e el TN -
Aﬁw LS P . . - )
N-dimensional hypersphere
R= ¥ “a LN
AY

AN

Fig. 3. Random walks with two steps in an N-dimensional space.

Thus, we have the following relation :

PGy, Oay -, O )d0,d0, -+ dBx_y = gg-;ds(m
IT

7 e N
= Lt TG 09 N-—igB,d0, - dfx ., (2m = N), (16)

T 2mG S w) L

where

) I"(%—)NZM N—1
Sy =l and  dsvy = 7V _]_Il (sin 8)N——igl; .

Accordingly, from Eq. (16), the mean value of the Gegenbauer function (14):
<Cr(cos B)y in Eq. (15) becomes:
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7T T L2
(Cp(cos B)> = So S go Cri(cos BOPB,, By, - | Ox_)d0d0, -+ dfix
4]
— {7 crccos ) (sin 8 2a8 [ (sin )88, (" (" (Tt Lnt D) )
o k EVAN 1 1 o 2 23, o o N —1 2?72( /7..)2m
Hereupon, if we use an orthogonality relation for the Gegenbauer function (14):

T
SO Cr(cos 0)C(cos ) sin®Df,dh,

7l (2m—2) 18y
= Ok 23— 1L (m—1)% 7 (18

F(3) = <2m T (m) ]:QL_J_Q?_Q><2m USCD) jm 1)\:17'0?
= F(DF,(4) . o)

(ii) Case when N=2 (m=1)
In this case, since m=1, we cannot use the same addition-formula for Bessel
functions as in the preceding case. Therefore, we had better use instead the

following addition-formula for Bessel funcitons (14):
]‘J(fﬁi?s"?[ = _ﬁ{ ]‘J%—iz(‘Z} jl(X)i?:;k(D <2O\)

as illustrated in Fig. 4.

X

Fig. 4. Addition-formula for Bessel functions.

Thus, F(A) in the case m=1 hecomes:

ca

FQY = {JoGARY> = {Jo(hr) < Jo(hrs > 2_ {JeClr) JeChr)><lcos k> . (21

Since P(c’))ré}; corresponding to the same isotropic property as in the case when
N==2, we find
lcos k@ =0 (k-=0).
Finally, we have '
B2y = {JoQa) > Jo(2ima)> = T F(4) (22

Thus, the proof has been completed.
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[€C] The transformation between Hamnkel and Laplace type characteristic
functions.
As stated in [B], it goes without saying that our joint-characteristic function
of Hankel type: F(4, 4, -+, x) in Eq. (8) is also effective in calculating the
joint-probability : P(R,, K,, -, Rx) in the vector field, in contrast to the usual

K
joint moment generating function: m(fy, ts, =+, tx) =<exp (— 2 #,E.)> being ef-
h=1

fective in calculating the joint-probability : P(E,, E,, -, Ex) in the scalar field.
We must, however, point out that F(4,, 4, -, x) and m(ty, b, -, tx) are
closely connected with each other (11). When setting E=R3, by use of the

integral formula (15):

Sw e“"RQR"‘f,,,,l(/".[(‘\)dR - /Mi g"(}\?‘/‘i!) s (23)
o '\Zlf)m

we can find that the transformability between the above two characteristic func-

tions reduces itself to a K-dimensional Laplace transform as follows:

.ZVI(SI 3 SZ Y S[f) = SN - S% e-‘.:slAl‘rS?‘Ae‘r“'.:'.SK'A"‘:)
a [
K G(Ay, Asy o, AgddAdd Ay - d g, 24
where

\ Ko ]
[V[(\Sl 3 S:?; Tt Slf,) = Hl(tl 3 tQJ s tK) 27l Unﬁ)t;ﬁh )
Je=1

. 1
52,
( ", ) (25)
oA i
Gy, sy Ag) = FQy, by o, 2a) [0 |
Jes=1
(-/1/1 = /2> .

Similarly, our F(/y, 4., -+, ) is essentially connected with a usual charac-
Ice

teristic function ¢, &, -, tx)=<exp (i 22 tEr)> by a K-dimensional Fourier
fr=1

transform.

4. 'The integral representation of probability density of K correlative series
of random walks.
We have indicated that the probability density P(R) for one series (i.e.,
R 3 ry) of the random walks in an N-dimensional space can be given by Eq.

i=1

(11) in a form of integral expression. Of course, when the magnitude and the

direction of each vector arve independent of all the preceding ones, we have
F(A) = I F;(J) (cf. Eq. (13)). A case of special interest when P(#;)=0(r;—7y)
£l

arises when the magnitude of each vector is respectively constant, say |r;} =#.
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On this occassion, a probability (P(R)(=SRP(RMR) in Eq. (13) agrees with
0
Watson’s results (15), and also, using an integral formula (15):

o S+ S+
[ emom U (at)at =0 (0> an, Re) > =1, (26)
n=1 Py

S
we can find that P(R)=0 if R> 2 rs.
i=1

Generalizing the above, we shall now consider K correlative series (e, k=1,

2,---,K) of random walks of this kind, and assume that the #th series of random
Sy,

walks E,= > rz; exists in an Ny-dimensional vector space, as shown in Fig. 1.
7=1 :

Then, corresponding to Eq. (11), we can here use the same integral expression

as in Eq. (8) or (9), under the special additional condition : ms=N,/2, by altering

the interpretation (1,4, 6).

5. The explicit repsesentation of intensity distribution of random mnoise

current
[ i1 First, one series of random walks is considered, consisting of the regular
components Z;{(j=1,2,-,q¢) and the random components r;(j=¢+1, ¢+2,--,5)
in an N-dimensional vector space as shown in Fig. 5. That is,

, s,
R = I+ D T
=1 j=g+1

Fig. 5. Random walks accompanied by regular vectors in
an N-dimensional space.

We shall now obtain the general expression of probability density P(R) for
very large values of (S—g¢) under no special assumption concerning the distribu-
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tion of the different walks except that all the P(#;)’s (#;=|r;|) are nearly of the
same functional form.

S S
Since II F;(2) =e R/ (Q= >3 (D) in Eq. (11) by use of Laplace’s
F=g+1 j=g+1

process or the method of steepest descent (14, 15) we can rewrite Eq. (13) in a
form as follows:

P(R) = @I )R [ 2 f,n_l(/IR) @/ N
q

><j]I1 (/I )m- ]m 1(7L ])d} (IJ :inD' (27)

In the special case of interest when N=2 (m=1) corresponding to the random

wave problem in the example (i) of §1 [B], ie,

JQ

I = 3} 1;cos w;t (signal) + Iy (noise) ,

Jj=1
the probability density for an envelope amplitude of I agrees with S. O. Rice’s

expression (8) as follows:

PQR) = RY AJo(ARYC¥o® Il [,QLYdL,  (Fo = <L302) 28)

S
Further, when R=1I,+ Ezrj (i.e., ¢g=1) in the above, Eq. (27) can be expressed
=
explicitly by

P(R) = N%N/u(} >(N/2)~1 2*(N(Rz'”%)/mo}lczvm—l(Z—,\Q&R} ,
=0 1 “0

(Bessel-distribution) , (29)

S
where 2,= Zs<r‘§> (1,7,18,14,16). And if ¢ regular vectors Z;(j=1,2,-,9)
=

are given instead of one regular vector I, it can be proved that Eq. (29) ap-

proxnnately expresses P(K) in this case, under the substitutions [,= ¢ Z I% and
.Oon }_, <rj> by applying to Eq. (13) the property in the vicinity of A=0 for the

foHowmg addition-formula for Bessel functions (i4):

]V(]/Zz’*'" Yz) o Y“( 1);110) 27%)[7(1) i I}Z)

G/ ZP+ YD =0
xhﬁﬁhﬁm,@:MY=mmwu<w

using the method of steepest descent.
Also, in the case of no regular vectors (g=0), we have:

N\N2_
25?{2\7);?;;;‘@"(NR2/290> ) (P(E) = P<R>
5 )2

P(R) = F—d1str1but1on) 3L

dE!
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Of course, in the above-mentioned expressions, we must take 2,=(S—¢)7¢ when
all the r;’s have equal lengths, say #;=# (j=¢+1,¢+2,-,5). In order to im-
prove the approximation, we had better use the following asymptotic expression

(1,2,18) :

) R 2 N
P(R) = _~[, (%V)Qéwz-e-uwe /2903{1 o 2>SL<N/2) 1( T%R)

+0(Z)} @ =s5rp, 3

instead of Eq. (31).
[ii] We shall again consider putting p(#;) =6(r;—7j) in Eq. (13) in the same
way as we have done in §4, under a special condition S=2 corresponding to the

special case ¢=0, S=2 in the above [i]. Then, we obtain the following explicit

expression :

1 (1N W)
o v er(2)

X RLRE (ro— 109 (g ) REJN-72
for 70— a0l < R<| 710+ 720] ,
=0 for 0 <R <{|7p—#al OF #ipt 72 < R < o0,

P(R) =

G5))

When we especially fix N=2, this expression evidently means an interference

effect between two random phase waves and becomes explicitly

2 R \
P(R 2 , \
" = TV LR — (10— #20)" 1L (rr0+ #20)°— R?]
(710~ 720 < R < 710+ 720)
R
®R) = S P(R)YdR = 0, (0< R< | ro—rul) "
2
= -3‘7;_ COS—I rjﬂé—??ij:,—z—;"]?" ) (i 10— 710l< R < Y10 + 7’20)
=1, (7’10'F7’20<R<w)-

[iii] In the next place, we consider the case of very large S in two correlative
series of such random walks: Ry, = Lr;,, (h=1,2) having no regular vectors

(i.e., ¢=0) in an N-dimensional space as shown in Fig. 6. Then, we can derive the
joint-probability density of Eq. (31) from Eq. (8) under the particular conditions:

Qcom%lu.,,owuz 3> (h=1,2) and N,=N,=N=2m as follows:
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713

Es]

Fig. 6. Two correlative series of random walks in an
N-dimensional space.
4(R1R2)N/2 { 1 }(N/Z)—l
E

i [T
r(¥)enas1-o0 L1040

1 RZJ Rq}

P(Ry, Ry) =

I—pplfy O

X (et A it Yot A
¢ (1= 9201/ 01,24

I 9 ( 2/ OplR, )

(53)

= P(Rx)P(Rz){ + \‘L<N,2> 1 <Rl )LCNM I(R’ )OL

"(210 ‘QZO
X nB (n, 5 )} (R, R, >0),
== () (Ry, R. <0,

T N - - 2
I (*2~)ZN 2 AN/ — [ QAT+ QFAE]
G/ 0pR210R40) N/

F(4y, %) =
L oarar 36
XI(N/z)—1 —2']/;0E.nggzo Xllz 2 ( )

where P(Rp)’s express respectively

o)

P(Rp) = 7(% )Q%h

following Eq. (31}, and oz denotes the correlation coefficient of R% and R3. In

P/; —1 (NR/; /2'—h0> <l 1 2) ,

the above derivation, we have used the following integrals (14):
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S“ PIPCENS (C zlzz) Tnea R A2,
0

2

= Gep {g[ (5 )R] s (Gom),

[ re s B (R

(37

1 { 1 e e } ( 1 >
ZAe*cp (B+R)IyZXBR

Now, to apply Eq. (83) to the detector output such as considered in §2,
Eqgs. (3) and (5) are taken into account. Then, we can obtain the joint energy

distribution P(E,, E,) of detector output noise as follows:

L 1(2/ 715??}7@) , (38
where
En = R}, 6%, = {(Ev—<E)*,
Dy = m/<Ep> = {Ew>/0%,,
and

<E/l> = ‘leo Ul =1, 2) .
By use of the integral formula (14):

J, PRl = (e (Re) > -1, 39
the moment generating function m(%, £;) of Eq. (38) can be derived as follows:
; — = !_1_ o Z(2 — ttz -

s, &) [(1 FDl)<1 Dz) o Dle : (40)

When Eq. (39) is used again, we can easily confirm that the above m(Zy, £,) is
essentially connected with F(/4, &) in Eq. (36) by the 2-dimensional Laplace
transform from Egs. (24) and (25) (K=2).

[iv] We shall again take up the generalized problem of K correlative series

h N
of random walks, Ry =2 ry; (ru; = 2 eXnji = [Xnp, Xnp, -+, %n;n]) Which is the
i=1 i=1

Jith series of such random walks in the same N-dimensional vector space. When
we are specially interested in the asymptotic expression of the joint-probability
for a large number of steps corresponding to Egs. (31) and (35), we had better
fix our eyes upon the form given by Eq. (3), that is, treat the probability problem
given in the same form as Eq. (5).

Since Su’s are very large, by use of the central limit theorem in NK dimen-
sions, we can find that xz’s (k=1,2, -, K; i=1,2,---, N) are distributed according
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to the NK-dimensional Gaussian distribution. If the coordinate components of
an N-dimensional Euclidean space are statistically independent of each other,
the joint distribution density of xxs can be expressed in the form of such
product of K-dimensional Gaussian distribution as seen in Eq. (4).

This property completely agrees with the starting point of $IV, §V and
§ VI in a previous paper (1I). Accordingly, by thinking each energy E, as the
square of magnitude of each resultant vector R;, we can obtain many different
explicit solutions to the generalized problem of random walks from separate
energy distribution in the previcus paper (11).

R

Moreover, if N— oo(m:%{:%%’fi> according to an estimation by the method
LEh

of moment (2,7), by using the central limit theorem in N dimensions, we can

also find that the joint-probability density of E, (=R}, h=1,2, -, K) is distribu-
ted asymptotically according to the K-dimensional Gaussian distribution.

6. Conclusion

In this paper, we have shown that the intensity fluctuation of random noise
current can be investigated as a problem of many correlative series of random
walks in multi-dimensional space, and from such a point of view, when we pay
our attention to the energy fluctuation of white noise, the characteristic function
of Hankel type is very useful for calculating its probability distribution. Then,
for typical cases, we have derived several explicit expressions for the intensity
distribution of white noise.

The following properties of random noise were derived :

(1) The number of dimensions for the used space is closely connected with
the statistical characters of random noise and the characters of the observational
device.

(2) The fluctuation in the output noise is reasonably described by one
parameter m involved in the energy distribution expressions.

(3) The above parameter m is approximately equivalent to TW (W: equiva-
lent noise band-width, 7: time-interval of observation) appearing in the sampling
theorem.

The method described in this paper is also applicable to the other fields of
measuremeiit on the random phenomena, since the mean energy is a conservative
physical quantity.
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