<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>$<q, r>$-number systems and algebraic independence</td>
</tr>
<tr>
<td>(Analytic Number Theory and Surrounding Areas)</td>
<td></td>
</tr>
<tr>
<td>著者</td>
<td>Okada, Shin-ichiro; Shiokawa, Iekata</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2004), 1384: 158-162</td>
</tr>
<tr>
<td>発行日</td>
<td>2004-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25745</td>
</tr>
<tr>
<td>テイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>版</td>
<td>publisher</td>
</tr>
<tr>
<td>発行机関</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
\(\langle q, r \rangle \)-number systems and algebraic independence

By

Shin-ichiro Okada and Iekata Shiokawa

Keio University, Yokohama, Japan

This is an announcement of our results in [9].

Let \(q \) and \(r \) are integers with \(q \geq 2 \) and \(0 \leq r \leq q - 1 \). In the \(\langle q, r \rangle \) number system, every integer \(n \in \mathbb{Z} \) is uniquely expressed with base \(q \) and digits \(-r, 1 - r, \ldots, 0, \ldots, q - 1 - r\); namely,

\[
n = \sum_{h=0}^{k} \delta_h q^h, \quad \delta_k \in \{-r, 1 - r, \ldots, q - 1 - r\}, \quad \delta_k \neq 0 \text{ if } n \neq 0,
\]

(1)

where \(\mathbb{Z} \) should be replaced by \(\mathbb{Z}_{\geq 0} \) and \(\mathbb{Z}_{< 0} \) if \(r = 0 \) and \(r = q - 1 \), respectively. The usual \(q \)-adic expansion is the \(\langle q, 0 \rangle \) number system. Symmetrically, in the \(\langle q, q - 1 - r \rangle \) number system \(-n\) is uniquely expressed as

\[
-n = \sum_{h=0}^{k} (-\delta_h) q^h,
\]

(2)

where \(\delta_h \) are as above (cf. [3], [5]).

Furthermore, taking the negative base \(-q\), we have the \(\langle -q, r \rangle \) number system, in which every \(n \in \mathbb{Z} \) is uniquely expressed as

\[
n = \sum_{h=0}^{l} \epsilon_h (-q)^h, \quad \epsilon_h \in \{-r, 1 - r, \ldots, q - 1 - r\}, \quad \epsilon_l \neq 0 \text{ if } n \neq 0
\]

(3)

(without exception on \(r \)). In the \(\langle -q, q - 1 - r \rangle \) number system, we have also an expansion of \(-n\) similar to (2).

An arithmetical function \(a_r(n) : \mathbb{Z} \rightarrow \mathbb{C} \) is called \(\langle q, r \rangle \)-linear, if there is an \(\alpha \in \mathbb{C}^\times \) such that

\[
a_r(nq + t) = \alpha a_r(n) + a_r(t)
\]

(4)
for any $n \in \mathbb{Z}$ and $t \in \mathbb{Z}$ with $-r \leq t \leq q - 1 - r$, where \mathbb{Z} is replaced by $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{<0}$ if $r = 0$ and $r = q - 1$, respectively. By definition, $a_r(0) = 0$. Using the expansion (1), we have

$$a_r(n) = \sum_{h=0}^{k} a_r(\delta_h) \alpha^h,$$

and so $a_r(n)$ is determined by the coefficient α and the initial vector

$$a_r = (a_r(-r), a_r(1-r), \ldots, a_r(q-1-r)).$$

It follows from (2) and (5) that

$$a_{q-1-r}(-n) = \sum_{h=0}^{k} a_{q-1-r}(-\delta_h) \alpha^h.$$

An arithmetical function $b_r(n) : \mathbb{Z} \to \mathbb{C}$ is called $(-q, r)$-linear, if there is a $\beta \in \mathbb{C}$ such that

$$b_r(n(-q) + t) = \beta b_r(n) + b_r(t)$$

for any $n \in \mathbb{Z}$ and $t \in \mathbb{Z}$ with $-r \leq t \leq q - 1 - r$. We have $b_r(0) = 0$ and

$$b_r(n) = \sum_{h=0}^{l} b_r(\epsilon_h) \beta^h,$$

using the expression (3), so that $b_r(n)$ is determined by the coefficient β and the initial vector

$$b_r = (b_r(-r), b_r(1-r), \ldots, b_r(q-1-r)).$$

For $b_{q-1-r}(n)$, we have an expression similar to (7)

Examples. We give some examples of (q, r)-linear functions using the expression (1) of $n \in \mathbb{Z}$, where \mathbb{Z} should be replaced by $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{<0}$ if $r = 0$ and $r = q - 1$, respectively.

1. The sum of digits function in the (q, r) number system defined by $s_{(q,r)}(n) = \sum_{h=0}^{k} \delta_h$ is (q, r)-linear with the coefficient 1 and the initial vector $(-r, 1-r, \ldots, q-1-r)$. Delange[1] proved for the ordinary q-adic sum of digits function $s_q(n) = s_{(q,0)}(n)$ that

$$\frac{1}{N} \sum_{n<N} s_q(n) = \frac{q-1}{2} \log_q N + F(\log_q N),$$
where $F(x)$ is a continuous, nowhere differentiable function of period 1, whose Fourier coefficients are given explicitly. Flajolet and Ramshaw[3] and Grabner and Thuswaldner[4] studied these phenomena in the (q, r) number systems and in the $-q$ adic ones, respectively.

2. For any given $t = -r, 1 - r, \ldots, q - 1 - r$, $e_{tr}(n)$ denotes the number of the digits t appearing in the (q, r)-expansion (1) of $n \in \mathbb{Z}$, which is (q, r)-linear with the coefficient 1 and the initial conditions $e_{tr}(s) = 1$ if $s = t$; 0 other wise. Flajolet and Ramshaw[3] proved Delange-type results for $e_{tr}(n)(-r \leq t \leq q - 1 - r)$ and applied them to the study of the summentary functions of $s_{(q, r)} = \sum_{t=r}^{q-1-r} te_{tr}(n)$.

3. The radical inverse function in the (q, r) number system defined by $\phi_{(q,r)}(n) = \sum_{h=0}^{k} \delta_{h} q^{-h-1}$ is (q, r)-linear with the coefficient q^{-1} and the initial vector $q^{-1}(-r, 1 - r, \ldots, q - 1 - r)$. Furthermore, for any given permutation σ of $\{-r, 1 - r, \ldots, q - 1 - r\}$ with $0^\sigma = 0$, the generalized radical inverse function defined by $\phi_{(q,r)}^\sigma(n) = \sum_{h=0}^{k} \delta_{h} q^{-h-1}$ is (q, r)-linear with the coefficient q^{-1} and the initial vector $q^{-1}((-r)^\sigma, (1 - r)^\sigma, \ldots, (q - 1 - r)^\sigma)$ (cf. [8] Chapter 3).

4. For any given $p \in \mathbb{Z}$ with $|p| \geq q$, the bases change function $\gamma_{pq}(n)$ is defined by $\gamma_{pq}(n) = \sum_{h=0}^{k} \delta_{h} p^h$, which is (q, r)-linear with the coefficient p and the initial vector $(-r, 1 - r, \ldots, q - 1 - r)$ (cf. [2]).

5. The linear function cn ($c \in \mathbb{C}^\times$) is (q, r)-linear with the coefficient q and the initial vector $c((-r, 1 - r, \ldots, q - 1 - r)$.

Examples of $(-q, r)$-linear functions can be constructed similarly as above by using the expression (3).

Recently, Kuroswa and the second named author[6] gave a necessarily and sufficient condition for the generating functions of $(q, 0)$-linear functions and $(-q, 0)$-linear ones to be algebraically independent over $\mathbb{C}(z)$. We note that the generating function of $a(n) = cn$ given in Example 5 is

$$\frac{z}{(1-z)^2} \in \mathbb{C}(z).$$

We state our theorems. Let $\alpha_i, \beta_i \in \mathbb{C}^\times$ ($1 \leq i \leq I$) satisfy

$$\alpha_i \neq \alpha_j, \beta_i \neq \beta_j \quad (i \neq j, 1 \leq i, j \leq I).$$ \hspace{1cm} (11)

For any fixed q, let $a_{iir}(n)$ ($1 \leq l \leq m(i)$) and $b_{iir}(n)$ ($1 \leq l \leq n(i)$) be (q, r)-linear functions and $(-q, r)$-linear ones with coefficients α_i and β_i, respectively. We consider the generating functions

$$f_{iir}(z) = \sum_{n=0}^{\infty} a_{iir}(n) z^n, \quad f'_{iir}(z) = \sum_{n=0}^{\infty} a_{iir}(n) (z^n),$$
\[
g_{ilr}(z) = \sum_{n=0}^{\infty} b_{ilr}(n)z^n, \quad g_{ilr}^*(z) = \sum_{n=0}^{\infty} b_{ilr}(-n)z^n,
\]

which converge in \(|z| < 1\) by (4) and (8). We put

\[
a_{ilr} = (a_{ilr}(-r), a_{ilr}(1 - r), \ldots, a_{ilr}(q - 1 - r)),
\]

\[
b_{ilr} = (b_{ilr}(-r), b_{ilr}(1 - r), \ldots, b_{ilr}(q - 1 - r)).
\]

For any vector \(c = (c_1, c_2, \ldots, c_q)\), we write \(\overline{c} = (c_q, c_{q-1}, \ldots, c_1)\).

Theorem 1.1. The functions \(f_{ilr}(z) (1 \leq i \leq I, 1 \leq l \leq m(i), 0 \leq r < q - 1)\), \(f_{ilr}^*(z) (1 \leq i \leq I, 1 \leq l \leq m(i), 0 < r \leq q - 1)\), \(g_{ilr}(z)\) and \(g_{ilr}^*(z) (1 \leq i \leq I, 1 \leq l \leq n(i), 0 \leq r \leq q - 1, 2r \neq q - 1)\) are algebraically independent over \(\mathbb{C}(z)\) if and only if the following conditions (i) and (ii) hold;

(i) each one of the sets of vectors \(\{a_{ilr}, \overline{a}_{ilq-1-r} ; 1 \leq l \leq m(i)\} (1 \leq i \leq I, 0 \leq r < q - 1)\) and \(\{b_{ilr}, \overline{b}_{ilq-1-r} ; 1 \leq l \leq n(i)\} (1 \leq i \leq I, 0 \leq r \leq q - 1, 2r \neq q - 1)\) is linearly independent over \(\mathbb{C}\),

(ii) if \(\alpha_i = q\), then for any \(r\) with \(0 \leq r < q - 1\)

\((-r, 1 - r, \ldots, q - 1 - r) \notin \text{Span}_\mathbb{C}\{a_{ilr}, \overline{a}_{ilq-1-r} ; 1 \leq l \leq m(i)\},\)

and if \(\beta_i = -q\), then for any \(r\) with \(0 \leq r \leq q - 1, 2r \neq q - 1\)

\((-r, 1 - r, \ldots, q - 1 - r) \notin \text{Span}_\mathbb{C}\{b_{ilr}, \overline{b}_{ilq-1-r} ; 1 \leq j \leq n(i)\}.

Remark 1.1 To prove the theorem, we use a criterion of algebraic independence over \(\mathbb{C}(z)\) of functions satisfying certain functional equations (cf. [7] Corollary of Theorem 3.2.1), which enable us to reduce the algebraic dependency over \(\mathbb{C}(z)\) of our functions to the linear dependency of them over \(\mathbb{C}\)mod \(\mathbb{C}(z)\). So we actually prove that the functions in the theorem are algebraically dependent over \(\mathbb{C}(z)\) if and only if, for some \(i\) and \(r\), \(f_{ilr}(z), f_{ilq-1-r}(z) (1 \leq l \leq m(i))\) are linearly dependent over \(\mathbb{C}\), \(g_{ilr}(z), g_{ilr}^*(z) (1 \leq l \leq n(i))\) are linearly dependent over \(\mathbb{C}\), \(\alpha_i = q\) and \(z/(1 - z)^2 \in \text{Span}_\mathbb{C}\{f_{ilr}(z), f_{ilq-1-r}(z) ; 1 \leq l \leq m(i)\}\), or \(\beta_i = -q\) and \(z/(1 - z)^2 \in \text{Span}_\mathbb{C}\{g_{ilr}(z), g_{ilq-1-r}(z) ; 1 \leq l \leq n(i)\}\).

Remark 1.2 The conditions (i) and (ii) in Theorem 1.1 imply that \(m(i), n(i) \leq q\) for any \(i\), \(\alpha_i \neq q\) if \(m(i) = q\), and \(\beta_i \neq -q\) if \(n(i) = q\).

Theorem 1.2. Let the functions \(f_{ilr}(z), f_{ilq-1-r}(z), g_{ilr}(z),\) and \(g_{ilr}^*(z)\) satisfy the conditions (i) and (ii) in Theorem 1.1. Assume that \(\alpha_i, \beta_i, a_{ilr}(n),\) and \(b_{ilr}(n)\) are algebraic for all \(i, l, r\) and \(n\). Then, for any algebraic number \(\alpha\) with \(0 < |\alpha| < 1\), the numbers \(f_{ilr}(\alpha) (1 \leq i \leq I, 1 \leq l \leq m(i), 0 \leq r < q - 1)\), \(f_{ilq-1-r}(\alpha) (1 \leq i \leq I, 1 \leq l \leq m(i), 0 < r \leq q - 1)\), \(g_{ilr}(\alpha)\) and \(g_{ilr}^*(\alpha) (1 \leq i \leq I, 1 \leq l \leq n(i), 0 \leq r \leq q - 1, 2r \neq q - 1)\) are algebraically independent.
If we fix $r = 0$ in Theorem 1.1 and Theorem 1.2, we have the results of Kurosawa and the second named author[6] mentioned above. In their proof, they used another criterion ([7] Theorem 3.5) of algebraic independence of functions over $\mathbb{C}(z)$.

References

Author's address: Department of Mathematics, Keio University Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan, e-mail: s.okada@math.keio.ac.jp e-mail: shiokawa@math.keio.ac.jp