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                                ABSTRAC[l]

       In Part I, a generalized theory of turbulent diffusion is developed by a modifica-
    tion of Inoue's turbulon model theory, and it is shown, with some experimental
    verifications, that the results in a reasonably assumed case may be applied to certain
    problems of turbulent diffusion.
       In Part II, a new governing equation for turbulent diffusion in the atmospheric
    surfaÅëe layer with shear velocity is derived from the viewpoint of mixing-length
    concept, and the solutions to an important two-dimensional problem are given for large

    and small dispersion times respectively, with seme experimental verifications.

1. Intreduction

    Tke theoreticaHnvestigation of turbulent diffusion based on pure dynamical

syseem has been on the rocks owing to its complexity, and especially in the

atmosphere the situation becomes almost intractable because of the enormous

range in the scale of turbulence and the frequent co-existence of natural con-

vection. So far, two lines of attack have been developed for the understanding

of the tubulent diffusion ; one is the "statistical theory of turbuience" pioneered

by G.I. Taylor (1), and the other is the so-cal!ed K-theory.

   Taylor's statistica! theory can predict universal formulae for the mean

dispersion and the rate of its change with respect to time without making any

assgmption concerning the mechanism of turbulence, but in order to determine

the values of these quantities it is necessary to know the form of Lagrangian
correlation function R(g), Åíhe correlation between the velocity of a particle at

any instant and that of the same particle after a time-interval of & It is an

important subject, therefore, to find the fo.rfn of the correlation function appro-

priate for tke atmospheric turbulent diffusion, and Part I of the present paper

deals with this subject.

   In K-theory the flux of diffusing matter (or property) across a fixed surface

is assumed to be proportional to the mean concentration gradient of diffusing
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matter along the normaHn the direction of the fiux. This hypothesis obviously

comes from the analogy with the kinetic theory of gases. The treatment of
I<-theory with a simple model 2n the field of atmospheric turbulent motion

utilizing the mixing-length idea was first undertaken by G.I. Taylor (2). In

Part II, the fundamenta} equation of two-dimensional diffusion in the lower

atmosphere with shear velocity is derived from the viewpoint of mixing-length

model in K-theory. Referring to the resuk obtained in Part I, the fundamenta}

equation is extended to the case of small dispefsion time, and some problems
concerning the distribution of conservative concentration in the lower atmosphere

are treated with more or less success.

         PART I. MODIFIED THEORY OF TURBULON MODEL
                  OF ATMOSPHERIC TURBULENCE

2. Historica} note

   For the case of homogeneogs turbu!ence with zero mean ve!ocity, Taylor
(1) cierived the very important formulae :

                         S3S'IwwN..i2==V,SIR(ei)d6•, (i)

and
                        yrio- =: 2ir, SiSS'R(e") dg"ds', (2)

where bars impiy mean values, v is tke ve!ocity component in the y-direction

and R(S) is the correlatien coeracient between the value of v of a particle at

any instant (t) and that of the same particle after the time-ineerval of $, i. e.,

                       ww v(t)v(tmmtumi).ww.. .., {ls(,.t,)/nvV(-kS)'- (3)                  R(e) rm ,/if?rtJ/,2(t+t'-) v2 '

Here we have assumed the relations :

                          v2(t) == v2(t-l-- {?) -m- iJT,,

and
                            1?(-e) == R(g").

   The present author coRsiders t to be an instant at which any particle starts

from the origin, and that for practicai purpose bar notation implies the time

mean with respect to starting time t, which, strict!y speaking, reqttires some deep

reconsideration of the ergodic hypothesis. In the field where v-i is defined, the

probiem of tarbulent diffusion may be settled by the very determinatlop of. tbq
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Åíorm of R(g""). Various investigators have tkus tried to determine the form

R(g"j. Most of them, however, have determined it witkout inquiring into

detailed mechanism of turbuience, but have taken it rather hypothetically or

an assumption. For reference, the forms of R(8) used by various authors
tabulatecl in Table 1 below.

                               Table 1.
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G. I. Taylor (1),
E N. Frenkiei C4),

H. Gebelein (3),
J. Sakagami (5>

(k/ )'i, (.fl",al', (••f'Xiii,>l' bb-4)"

      exp ( - e,2/A)

O. G. Sutton (6, 7, 8, 9, 10, 11)

                                    G. Dedeband and P. Wehlre (l2),
                                    UN. Frenkiel (S?.

   The experimental approach Åío the determination of R(S) by utilizlng the
definition of R(6) or the relation :

                                m 1 d2t.o                            R(6) mm -2'b}- -zil--2-, (4)
wkich follows from (1), has recentiy been- started by such investigators as

Edinger (13) and Barad (14). But, it is very dithcult to put this method in practice

apart from laboratory works. On the basis that the turbuient energy spectrum

fuRction in terms of frequency may be closely related to R(6) in the Lagrangian

time-space, just as the Eulerian correlation function ,l?(t) is related to the tur-

bu!ent energy spectrum function in terms of frequency iR the Eulerian time-space

(Taylor (15)), Gifford (16) attempted another experimental approach to deter-

mining the kinetic enegy spectrum in the Lagrangian time-space. But, all of the

experimental results above mentioned do not appear to lead to the conclusive

form of R(S).

   Inoue's investigations (17, 18, 19) attract the alithor in that lae takes into

account the mechanism of turbulence theoretically and proves the possibility of

further development. He leans largely upon the modern statisticai theory of
locaily homogeneous and isotropic turbuleRce initiated by Koimogorov (20, 21)

and developed, in more or less different ways, by other authors such as Obkbov

(22), Onsager (23), Weizsacker (24), Heisenberg (25, 26) and von Karman (27).

inoue's basic assumption is that the turbu}ence consists of disintegrating turbulons

of various ranks aRd turbulons of any rank conserve their energy during their

proper life-time. In his theory the expression for R(g) is derived as follows.

   In statiseicaily (locally) homogeneous, isotrop. ic and stationary turbulent field,
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velocity component v(t) for any one materialized point at any time t in the
y-direction, which is perpendicular to the x-axis tal<en along the steady uniform

mean fiow (tz), can be represented by

                    V(t) =:= Veo(t) -F '''-F Vn(t)+'''rl- Ve(t) , (5)

where v.(t) is the y-component of the proper velocity of turbulon of rank n
which surrounds the mateyialized point under conslderation. Then, tlie velocity

component at aR interval of time 6 laÅíer is given by

               v(t+e) :::: vco(t+6) -t- ••t -F v.(t -F 6) ÅÄ•••+ve(t--F e) . (6)

   By the presumption of the individwality of every rank of turbulon, the
Lagrangian correlation function R(O defined by (3) can be represented as follows :

              R(#) = ,l?co(6) t-!liZi- -y •••g- 1?.($) i}i -F -••ÅÄR,(g) gi' . (7)

   Tke assumption of tke conservation of the original proper velocity of the

disintegrating turbulons during the proper life-time r. Ied Inoue to conclude that

               ren($) ='-(8 :ff.r.ISI (s)

and under the assumptlon of uniform distribation of kinetic energy of turbuions

sÅíich that

                F(r?:==Ig,/(To-r..)[,;itttLlll.,)$ro?, (g)

he derivecl
                                        '                i?($)-il-(e-T...)/(r,-roo)St-`nd.illT'?)i{.;T,), (io)

                      K O (g" ".> To) ,
or, in the case of T.. <<ro, approximately,

                                              '                R(e)-(l;nd(e/ro) 1?ltllil..,.f,=<t)--:pt`e), aot)

3. Genen'alizatio" of Enoue's assumptien of deriving R(8)

   Inoue supposed that tke materia! point considered at time t was surrognded
only by the fresh furbulons having full life-time, b=t it seems to the present

author that there is ne reason to consider all of tke turbulons surrounding the

materiai point to be fresh; it ls rnore reasonable to assume that some of them

are old and accordingly have no ful1 original life-time. Then, the turbu}ons of
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ranl< n surrounding the point considered at t may be classified into two groups

by the yemaining life-time "e" or by the age of the Surbulons T.-e. For the

turbulons of e>6, we have R.(S)=k'1, while for the turbulons of e$.6 we have

Rn(S)=:O. If we put down the raSio of the number of turbu}ons be!onging to
tke first group to that of the second group as v.(6):pt.(g") (where vn(6) -l-pan(e)

==1), the correiation function R.(6) becomes '

                      R.(#) ==[5"(4) 1?'i.f,S.T"" (n)

Since tlie generalized representation of (7) is expressed by

                          .l?(#) =: S,TOI?.(6) dG(T), (12)

wheye ,l?T(6) is the Lagrangian corre!ation function of the turbulons of life-time

T and G(T) is the distribution of the energy of turbulons with respect to the

same life-time such tkat dG(T)/dT "F(T) when F(T) is a continuous fgnction and

the integration on the rlght-hand side is taken in the sense of Stieltjes, we get,

from (11) and (12),

                          1?(4) == S:Ov.(e)dG(T). (13)

   To settle the form of v.(6) is a problem of experimental physics. Under

the present state where no experimental knowledge is obtained, equal appearance

of the chance may be reasonably assumed for tlte turbu}ons of different ages.

Tken we have y.(g) xx1-(e/Tn), lxn(#) :sc6/r.; thus we have

                     '
                    i?.(e) .,(gww(e/T") E?26.,iliif")' (i4)

Moreover, if we assume with some reasoB (Inoue (i7)) such a form of F(T) as
the form (9) or approximately, in the case of T.. <<To,

                         F(e,•)mx(8/"`'o IT.-".x//Lz',; (is)

we get respectively

                    1-F .. e- log ;' oo (o ;;s e$ T..),
                       Lo-Cca LD
            R(6) = T, i'ISeT.wwT, E"T.. t- r, ii:TII log .ii (TcaS g" tl$l To) , (16)

                    o (e>t,),
or approximately, in the case of Tca </<r",

        'l
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                ,,(s) .. Igww i+ S,'log S`, i?2-i,-:.Te), (m

This form of R(6) is in perfect agreement with that of Grant (28) derived in

an apparently different, but essentially the same, way of thinking.

   It is of !nterest that if we take A=To/4 to give the same Lagrangian time

scale S:R(6)di our expyession of R(4) yields a very good numerical agreement

with the familiar expresslon R(6)==exp (-g/A). These are illustrated in Fig. 1.

             R(g)

           '1.0
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                         - EXPRESSION (17)
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   1. Comparison of the expression (l7) with the expression
      R(e) == exp (-4g/To).

    of R(e), i.e., (10') is a limiting case of

 also a special case corresponding to v.(g")==

evidences might lead to other form or forms

   have room for modificatlon, because the form

    is derived by a consideration of the range

  so-called "inertial subrange" in the modern

  the To must be taken as a virtual life-tline

   tm'bulon in the case when the real spectrum

  g!To

 yn-'>1, and Grant-

 1-(4/r.). Further
of v.(gi ). The form

  (9) or the appro-

 of life-times corre-

statistical theory of

 of the eqttivalently

  is replacecl by the
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   It may be added that the investigation of the general mathematical character

of R(8) is also important. For instance, the fact that, if R"(g") exists for e>O,

the relation (14) aRd any non-negative continuous spectra} functlon F(r) lead,

as is easi!y seen, to R"(g);l}O(e>O)-a fact which was proved from anotker

approach by Kac (29, p. 149). '
4. Horizonta} diffusion from a eontinuous poiRt-seurce of fixed type

  in the atmosphere with ,ne shear yeleeity

   By substituting the form R(O expressed by (17) into Taylor's formulae (1)

and (2), we get

      , K(g')'im-llCldtii/i-=- tlll'ilr,S,.i-im3`M $o"wwi`iJiOg T6e) [i.III':i; as)

and

                  7v'i#2(i-lg-; -/-,--- -y --3g;-u iog /",) (g" ntS To), '

          5M}'(g) ": bir,(t?nt- t,g.Q-) (.A -:},, .,), (i9)

for the diffusion along the y-direct!on.

   By using our formzAa (19), we can evaiuate the !aterai width of the cloud

of diffusing matter aiownwind from an elevated continuous point-sogrce. Here,

the width is defined by the root mean square distance travelled by diffusing

matter in the lateral (y-) direction at the distance (x) measured in the direc-

tion of steady and horizontally uniform motion of mean ve!ocity from the source,

and To and u" are respectively the life-time of effective largest turbu}on within

the layer in which the diffusion occars and the mean veloclty at the keigkt of

the source, If we put

              u-"`"o == xe, i/ift/ti :oA, r= x/xo and ize=x, (20)

              ,,,..Io.i,:!/('YJnd/blr,`-gr'ogr)lr,/iCl ,,,,

or
                            r( i.- llg- r-F g s• iog r)i!2 (rs i) ,

              1/ttt/(aAxe) =                                                                <22)
                            ('21- rrm gl")ii2 (. :t o.
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   AIIowing the approximation afg"L=x, namely, the released partic!es of disper-

sion time e being always displaced by the distance x in the x-direction, and

assuraing that the vertical diffusion does not affect the probabiiity distribution

of the travelled particles in the horizontal layer as Sutton (11), Cramer (30),

Inoue (31) and others put, we can verify our result by comparing it with some

avaiiable experimental data (Cramer (30)). Cramer's data in near-neutrai cases

shown in his Figs. 8 (O'Neili daytime experiments) and 9 (O'Neill nighttirne

experirnents) determined by the data of concentration measurements at 50m,

100m, 2eOm, 4eOm and 8eOm downwind, from the source point at 1.5m height,

              N/Y'ff' (M)

           ,100

                                                   ju            50                                                 /
                                             .re.i
                     Daytime datca. //
                                       ESi /
                                     4-
                                  !/Å~ •
                                .s)•' " Nighttime data
             10                             /
                          e//

             5 -uLLui-UJ-
                O.05 O.1 O.5' 1.0 2.0 2.5
                                   r( == x!Xe)

             Fig. 2. Cramer's experimental curves of vis-ii2 versus r in
                   near neutral conditions at daytime and nighttime
                   and the plotted theoretical values of v't','-i (,•.> for
                   daytime, e for nighttime).

are reproduced iR Fig. 2 to compare witk our result (22). The values of To aye
dete.rmined by the method of tria} and error, and the va!ues of i/ymuth2 in our expres-

sion (22), corresponding resbectively to x==50 m, x:=: 100 m, x==200 m, x =:-400 m, x=

600m and x==800m, are plotted in the same figure. The excellent fittness of our

plotted points to Cramer's curves is indicaÅíed in Fig. 2. Here, from Cramer's

data, we have taken u-,=:5m/sec and aA===60 for daytime and u-=::5m/sec and
aA==80 for nighttime, and, furtker, assumed xe=:'=ua850m (i.e., To=-.170 sec) for day-

time and xo== 400m (i.e., Te:==80 sec) for the nighttime.
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5. za'wo-dimensional diffusion of a cluster released instantaneously

   at a point-source in the atmosphere with ne shear velocity

    As we have treated in the previous section, Taylor's analysis is concerned

only with the statistical behavior of a single particle and is generally applicable

to the diffusion probiem of continuous fixed source type. In this case, the con-

centration distribution does not give the instantaneous concentration in a diffusing

cloud, imp!ying that the turbulons of all ranks or the eddies of ali sizes are

effective at a!l dispersion times. On the otker hand, in the case of the probiem

invo}ving the relative spread of particles initially given in a fiuid voiume (e. g.

a puff of smoke), we must treat the problem with careful distinction from the

former problem. In the case of smoke puff, the reiative diffusion is cieariy con-

trolled by the sma}l scale eddies as long as the parcels are fairly close together.

The basic idea of relative diffusion was first proposed by LF. Richardson (32)

and was iater deve}oped by Batcheior (33, 34). Richardson's idea that only the

comparatively small sca}e turbulence components contribute mainly to the tur-

bulent diffusion process while comparatively large scale turbuience components

contribute mainly to the dispiacement of the cluster as a whole or of the center

of the cluster mass when the growing cluster is of intermediate size, is introduced

in a simpiified form by Inoue (19), and by treating the horizontal diffusion of

fixed source type he obtained a result similar to Batchelor's.

    A presumption similar to Inoue's is adopted .in the present study. Referr,ing

to the possibility of labeling the size of turbulons by their life-time (T's) and that

of the size of growing ciuster by dispersion time (g), the author assumes that• the

turbulons with T<fe6 effectively contribute only to the diffusion of cluster par-

ticles and the turbulons with Tkne effectively contribute only to the translation

of the cluster as a whole, where fe is a certain constant such that O<le<1.

    It must be noticed that the above-mentioned assumption has no physical
realky, but it may be valid in the convenient sense, and no serious error may
be expected as far as we discuss the resuitant statistical nature.

    Let yi(S) be tlte y-coerdinate of each particle of ciuster at any dispersion

time relative to the fixed coordinate system whose origin is the originai source

poiRt, designating any one particle by suMx i, yri(e) the y-coordinate of any one

particle designated by suthx i at that instant relative to tke center of cluster,

and yg(e) the y-coordinate of the center of the cluster at that time reiative to

the fixed coordinate system whose origin is the original source point, and then

we have
                            yi({l') == .ysr(8) ml-Jyri(6) ,

and, employing the commonly used brackee notation to represent the average



  i2s4 H. MATStioKA
vaiues of the whole partic}es composing the cluster, i.e. [Q]=:-IL- :lhQi, where n

                                                       n t---1
is the totai number of particles composing the cluster, we have
                                  t/.              • [pt2(G)] -= y2, (g) +[y?(6)], (23)
by inserting the definiÅíion of the center of cluster or [yr]==O.

   The above equation (23) is vaiid for a c!ustey of singie puff. Repeating the

release of the such puff in sufuciently large number so as to be capable of

estimating the mean va}ue of each term of Eq. (23), making a single puff a

sample, we have

                            [y2]=y3"[y?], . (24)
where bars mean the mean values of all samples. It is cleay that [yww'(6)] is

identical with y-, which is tke mean square distance travelled by the triai particle

at # from the fixed origin and identicai with yin, represented by Eq. (19) in the

previous section. By the assumed condition of the uniformity of the turbu!ence,

we know that each y:,? taken at any moving origin gives the same value in-

dependent of the Iocation of the moving origin itseif. Accordingly, we have

                              [y3]-y2,. (25)
   Consequently, we have from (24)
                                              '                         Y,..-y-,2+tt., (26)
and

                        g-d,-,-,-e=--l-4,y/q:---}rmd,/eZn, (27)

or
                         K(6) -= Kg(g-') -F Kr(g) .

   The evaiuation of each term of Eq. (27) can be carried out as foilows.

(i) K(6) is already given by (18),i.e., '
                     ( 2 S, 2S,:,10g S,) (8:l!ITo),                 I Vrm2$ irm ww-.

          K(6) == l t'i`o (." 2-}) .,), (28)

(ii) According to our assumption the effective turbulons for Kr at g are limited

by rpm<...fee. Accordingiy, by (12) and (15) we have when le6:;.lmTe

                     K.($) ::= iJ7•E2 Sglt'g-i,Z,. .R.,.(6')dTd$i, (29)

where v'2 is the mean tota} kinetic enery of effective turbulons for Kr and by

the same assumption as (15) we have v'2=,-(ue/To)if,. The evaluation of (29) can
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be made by putting if'i2 and ue in place of T, and ro in (28) respectively and

taking the case of 8kTe in (28) since CF>leg", we have

                                  v'2k6 vww,fe2e2                          Kr(6) == -4-'- :" 4.,. (30)

   On the other hand, when k6kro, it is easily seen that

                           K.(e) =- K(e)=!/i o-. (31)

(iii) By the aid of the relation (27), i.e., Kg==K-Kr, the expression for Kg(e)

is obtained as fellows :

                    ff,e(i-31le2 .9", + i,iog S, ) ($2${ ro),'"'

           Kg(#) = S'll;,(T-fe262) (r, :$e;!s r,/le), (32)

                    O (6 ;lll To/fe)•
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(32), we have
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                Fig. 4. Graphical illustration of y2(e), y.2(4) and y,2(e)•

                             v-2fe2e3                                             (6 < ro/le) ,
                    - 6ro
                   y;(g) =: ili,Tg (3 .v(s:rm wh z ) ($ ;}l .,.,/fe) ,

and
           VrmiTs2o(-.i )2{ls-(3fe2-i-11) .8, -e6 S, log S,} (SSTe),

                                                       tt  yrv,2(6) == ll'Ts2o{g 5, -2-3le2( S,)3}
                                                    (ro ;SS 6 ri-< To/le) ,

           i51E'rs6(mlll--2) (6kT,/fe).
                x
    Graphical Mustrations of the above resuEts are shown in Figs. 3 and 4,

Je is taken to be O.5 as an example.

    Now, it is easily shown tliat the relations (30) and (33) lead to the

(33)

(34)

 where

iamous
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Richardson's law K(>cL4i3 if it is aliowed to regard i/i2, as a representative

length scale of the diffusion phenomenon; that is, eiiminating 8 from (30) and

(33), we have

                       I</r(8') - -41-(36 fe.2,Vum2)ii3G/tte)3ia. (3s)

    Next, the above relations may be compared with Batchelor's (33, 34•) given by
   ''N

                        ddY62" ==cee2 and 5Ti - -g-e63.

These expressions are respectively identical with the expressiens (30) and (33)

!f we put

                                    i5rtle2                                        • (36)                                ce =: ma..                                    2"L'o

The rough order of magnitude of ofle2/2r, can be known by the experimental data.

The resume of the estimates of ce is given by Lettau (35).

       PART II. TWO-DIMENSIONAL TURBULENT DIFFUSION IN
         THE LOWER A'I['MOSPHERE WITH SKEAR VELOCITY

6. Prelirminary

    The general three-dimensional equation of turbulent diffusion is usually

writteR in the form:

                di7=-8.(K.geaotrk-)+t-O,va(K.&t)+lt,(K.g/- (37)                                                     )•

(e.g., Sutton (ll), p. 273). If this equation is correct, it must be applicable

also to the field of stationary homogeneous turbulence with steady zero mean

fiow as a special case. In such a field, Tay!or's analysis can be extended to

determine the general dispersion tensor, i. e.,

                                xix,• (G) ,* (38)
in place of the lef"hand side of (2), and the left-hand side of (1) may be

extended to

                                .gl-dX,tgXne:, (39)

and, in this case, v-'-R($) in (1) and (2) must be replaced by

* Hereafter we will, for thesake of brevity, rnake use of xi , x2, x3- coordinate systern in place

  of x, y, 2- coordinate system.
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                                  Si,•(g") , (4e)
 wkere
                  xixj•(8) == 2!:S,g'Sii(6")d8"d.g' ,

                  gfk.f2,xi' = sgs,,•(g) ds•

                   sii(Ii) - {vi(t) v,-(t+6) ÅÄ vi(t+ <s) vj(t)ll-/2 .

 Sucli an analysis was carried out by Gebelein (3), Batche}or (36) and Corrsin

 (37), and such consideration "ras applied to the flow with skear by Corrsin (37,

 38) and llinze (39).

     The tensor (40) is not always of dlagonai type and therefore tke non-diagonal

 components of tensor (39) do not always vanish. This sugge$ts that tke diffusion

  equation (37) may be extended in somLe way. In fact, Erte! (40) intreduced the

 generalized "Aust'auschtensor" with nine compo:ents. However, his derivation
 seems to be too foymal. In the atmospheric shearing layer there seems to be some

 characterlstic Åíeatures in turbulent motion }ike horlzontai shearing eddy stress.

 In the foilowing sections, the derivation of such a diffusion equation and the

 app!ication of the equation to certain two-dimensional diffnsion problems are

   . glven.

 7. Derivation of the fundamental equatiep of turbulent diffusio"

     in the atmosphere with shear veloeity

     The equation of conservative concentration is generally given by

o2tZmh--v•(vz),

 where z and V denote respectively the instantaneous values of concentration and

 velocity at a point ina turbulent flow field, and it is assumed that no sinks and

 •sources exist.

     Denoting the ve!ocity component, ln the xi-, x,2- and x3- directions by v!, v?.

 and v3, we put

                   vi ww- vi -- vi', "x -- ff+ z', vi' ww O, iii" m O, (42)

 where bars denote the mean values and prim.e dedotes the deviation from the

 mean value. We then obtain

                                 07. ww O ,,                           07.                           6t +' Vi oxi ma -rro-x,ViZ, (43)

 where the equation of no divergence V•V==-rO has been u$ed,
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We introduce the quantities xi', x2', xsJ such that

 , ,oa7.
ZNXi -e- .
     o'xi

(44)

Then xa', x2', x3' may be regarded as components of a radius vector of turbulent

trajectory.

   Substituting (44) into (43), we have

                       aomxt+vi-cra.llti;x.:ba-.-ti(ttvgxi,•it--.,z•d). ' (4s)

This is tlie general diffusion equation, and in this equatioB we can put Ki,- ua 6' vYxi!.

Here o" is a proportlonal constant nearly equal to unity.

   NovvT, if, in the atmospheric sutface layer having vertical shear of steady

korizontal motion, we take the xi-axis a}ong the direction of mean wind (q) and

the x3--axis vertically upward, dvma ,/dx,=t=O and ur.== q= O, and Eq. (45) becomes

            t.lj;t-Livhiiltstl--aO.,(6v-i'x-i-7gi,-Fo"vi'x3-'oO"//t,)--oO.,(6v2'x"2'aO,Z.)

                        {-i60i-x,(o'v3'xi'-9tlli/Ilt'-•6vM3'x,'-aak'Zi,). - (46)

Here we have assumedthat

T7Tva7VI X2 == ViXl trt =:= V2 X3 = v3txLi =O, (47)

which can be derived
Thotion with respect to

the xi-axis.

when we assume
any vertical plane

the statisticai

involving the

symmetry of turbulent
straight line parallel to

Table 2. Correlation coethcient (r) and regresslon coeracient (-A).

A

r A
E
; S.R Å~ 102

B

r
L

A

-O.66

-O.62

-O.49

-O,35

-O.39

-O.41

-O.53

-O.29

2.53

1.14

O.81 l

I Ri Å~ lo3

 O- -1
-1 - -2
-3 - -4

O.80

O.72

O.68

O.56

O.54

'

Iil

c

  -O.36
  -O.37I

I -o.36

  -O.37I
i, -o.se
i -O.41
l -o.3i
l -o.2s
il -O.33

I -O.21
l -O.39
l -o.o6
i -O.15
I

E

E

E

O.65

O.86

O.72

O.82

1.41

O.93

O.71

O.74

O.73

O.49

O.53

1.23

O.4G

/

l  125 - 100
 10e- 75
  75 - 50
  50 - 25
   e- -25
 -25 - -50
 -75 - -100
-100 - -l25
-125 - -250
-175 - -200
-20e - -225
-325 - -350
-450 - -475
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    Now, in view of the fact that there exists some definite correlation between

vi' and v3' as shown in Table 2, we will consider the regression coeracient of vi'

on v3'. Then the coeMcient (-R) becomes

                                    tt'
                              -R :=: YLI=V;S,iL; (48)
                                   V3

In this table, A is McCormick's (41) data of air of Iand trajectory at 91m level,

B those of air of sea trajectory at 91m level, and C Swinbank's (42) data at

1.5m level, aBd

                r .. .ma" ]II X vi'v3' 2 - -NA x vi'v3'

                   VNIxv,,2VXt-xv,,2' - fi >[ ,,,2 '

where, for A and B, N--3420 (every 10 sec reading over 57 minuites), and for
C, iV==300 (every 1sec yeading over 5 minuites). Aiso, S. R. is a stability index

defined by (Ti2s-Tn)/Ug! (deg sec2 m-2) where Ti2.r and Tii are the mean tem-

peratures (OC) at the heights of 125m and 11m respectively and Ug.i the mean

wind speed (m seofi) at 91m level, and Ri is the Richardson ngmber.

   Thus 'vv'e can put .

                       vt -: v{i+vi2, v{i == -av5, (49)

and hereafter we will put v{2 out of consideration and simply take v{==v!i. Then

we have

                              v,/ == -Rv,t. (50)
Furthermore, if we adopt a plausib!e assumption of the constancy of vertical

velocity (v3') of an individuai eddy during the time needed to bring the eddy to

the reference point from its starting point and denote the time by t', we have

                       x,i =i (v-, -F v,i) t', x,f = v,it'. (51)

   Thus, the quantities vi'x3', -vi'xi', rivlJII/' and v-,Xxww,' in Eq. (46) becomes, from

(50) and (51),

                     vl!x3! =: v3!xli ::., -2,v3t2t, (< o) )

                     v,tx,t =: Z2v,i2tt (> O), (52)
                     vrmsT"xnm,' ==: v,'2t' (> O),

where we have taken xl,'==O. Accordingly, putting

                             K3 =: av,tx,', (s3)
the general equation (46) is reduced to
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               t6.7'v-i-vww,g{/t/'=:ti,(l2K3•tTr,-7`K3gil)-i-ttO-kl(K22-oOil'Z-)

                        + -f70-.g( - 2• K, -g•lltg {- K, git,), (s4)

                                                       'or, in two dimensions,

                                             '          jljTl•"ff, -3rt• =- ..O.,(?L2I<, -Oo-iA-,-zK,i3a/•i) +• oO.,(-2LK,giZfK, .a.i,). (ss)

Thls is the required fgndamentai equation of two-dimensional diffusion in the

lower atmosphere with shear velocity.

    It is irnportant to give tke values of ?L which, from Table 2, appears to be

in the range from 1.5 to O.5 and depends upon the stability ef the fiuic? layer,

the surface rouglmess and probably on heiglit'. For the sake of simplicky, we

assume in the following section that 7L is a certaln constant throughout the

shearing layer considered.

8. Application o'E the diiffus.ion equation to large dispersion times

   If, in Eq. (55), we put

                             x;}: r- xi+,?Lx3, (56)
we have
              94-ff'A-<•t,7':li';ttX--3-)+v,07(aX'".!':,"3)=:oO.,(K,O--7,-(-iE!oii'tLi,X3-)-), (57)

or, in usual conventional notations,

                c6ft(-:.x:•t•-?-g)--F ,I 07• (i.zs'i,: g) = lil. (l<. 07(//)-,i(.i..=al). (s7,)

Hereafter we wM use such notations.

   In this sectioR we will treat the importar.t problem of diffusion from a line

source of 2nfinite length along x:=aL-O, which emits maeter at a constant rate Q

foy a long time, taking the origifi of coordinate system at the source.

   Then the diffusion equation (57t) becomes

                   tZ(z) S6t'(,nfElii e) == 'bO's?(Kx `07(:.'nv.k' a)). (ss>•

   The accessory condi'tions are:

    (i) 7. (x, e) -O as x, x---> oe ;

    (ii) [-7,K. w`Rti-Z'.//tt1-) -;•- K. `35'T,(.:Xi--g)-].=.nv, :v- o;

    (iii) 7(x, z) -> O as x -1- 2,a --> O (2 tG•= O), and

        X(x, cr) -> oo a$ x+• le -> O (g == O);
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    (iv) The condition of constancy for the total flux of diffusing matter from

tlie bottom to the top of the layer through any line wieh xg-7.g==C (==cent st'>O),

viz.,

               !:h,f...eU-(g) COS e 7•(x, x) ds

                 -s- Sr.,f.., , {- (z2Kx C77g6ilk,-g> -RK. .0-Z-5.x.nv, 2) ) ces fl

                          -( mu 7LKx -(a2-7x i, Ke 2?l"l7.•) sin a} ds

               :=Q (=:: const) for ali C>O,

where e is the intersecting ani gle between the line xl-2ek-C and the g-axis,

s==a/cosO, and the 2ntegrations have been taken along the llne x-Y2e=:C. Uslng

the new parameter x;,k as defined by (56), these cerditior,s are reduced respec-

tiveiy to

    (i) 7. (x*, cr) ->• O as x*, a -> oo ;

    (ii) [KzE}tlZI!:1(//'i' g)],..,-, == O;

    (iii) 7(x* , z) -> O as x:k -> O (a =t- O) and

         7(x*, e) -> eo as x*•->O (g=:O);

    (iV) S:, a(Z) 7(x* , g) de == Q for all x* >O .

   ']rhus, we arrive at tke same mathematical problem as those treated by Frost

(43), Calder (44), Sutten <8,9), Rounds (45) and Smith (46). Therefore, for

instance, in the case when

                     zZ :=: ue (e -F h) pt, 11<la in- I<lo (e A- h) iww at, (59)

we get, after Smitli,

           ii•(x* , e) == -2,t9. -t -(eii}iki.,,)ati2 exp [- Z{e(lc-i:(iz2•)iii-'l;Ef//,ui,Ciiti'2at]

                                  Å~L.i,,.,.,[2-utonv(,rmg(Z2,2ii//,i'"iii?i."-,,)i2],

and accordingiy we have

           7•(x•g)=:=2i,,Q-x,,i-{i{-I,t'tt/IC'2;.:-3'eexp[-t-i-<,g(-i(421;//'ituif-.z{,:i;,:i')2v']

                                Å~ Lpti`i"2pt'[2ff(02(.Zfftl"P ll)'22)i.i'i atIL'.2) ] .

Thus, Smith's figure giving the concentration at the grour.d level should be

modified and can be utilized only by a!tering the abscissa scale of Kox/(uehi"2es)

into Ko(x-Ah)/(u,lt"2at) (Fig. 5),
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                         O.4
                 t/i-i rtohi +a o.3
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                                        '                         O.1 .

                         0o 123
                                     Ke(x-Mt)
                                      uolel + 2(x

                  Fig. 5. The concentration at ground level, as
                        funÅëtion of the distance downstream due
                        to an elevated source when dian1/7.

9. Distributien of eonservative coneentratioR for svaall dispersion times

   As was treated in bggt3 and 4 of Part I, special cogesideration must be given

to small dispersion times in tlae problems of diffusion of matter emitted from a

continuous source of fixed type. Therefore such cor,si'cleration is So be given to

the problem treated in t13e precedir,g s6ction. In this case, si}ice the form of Kz

is unknown, we suppose te-rtatively that, in the small domaain within the thin

layer at the source level except when the source is on the ground (the reasoning

of this exception will bc" taken up later.), the form of Eq. (18) is stil} applicable,

though the effective life-time To in this case may differ from the effective life-

time of horizontal motion, such as treated in g4 in Part I, wliich does Rot cor-

relate to vertical eddy motion. If this supposltioB is allowed, the eddy diffusivity

along the vertical (K.(g")) ls given by

                   Kor(S === il'icf (1ww -2- tt.;E-a- -i--., log •i//t-,--), (60)

where tv'2 is the mean square vertical component of eddy velocity, ar.d the disper-

sion time, 8, can be taken as 8f fx*/u-(O) (where ti(=i'r-O) is the mean velocity at

the source level within the shearing layer). Here we also'suppose that the
variation of a and re with height does not affect seriously the resuitant distri-

bution of ff so far as the dispersion time g is much smaller than r•o. The rnethod

of estimatipg To wili be given later.

   Then we have the fol}owing diffu$ion equation for small dispersion times,

                      a7(x)k, z) um                                            02il(x){ , e)                  a(O) enx..:, um Kx(X'.::/ZZ(O)) oA?2wwww'. (61)

   Since the ground surface lies far below the layer up-der consideration, the

effect resuiting from its boundary condition may be removed, and yeferring to a
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theorem due to
condition :

Thus,

where
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Chandrasekhar (47, 1). 34), we have the solution

        S:.. ti(O) 7(X;'s, x) dz = Q =" const

        r(x*, g) = 97/--es- <t-.-)- exp (- i2,) ,

a2 =- ilJi'i (-t.,X-//6-)-)2{1 wu li' .,.X.'i"o) + Lg.,X:k(omi' IOg iiu:t'/io"s} '

                 x* ==-:- x{- 7,g.

                i                i. A v'l'ii7il"72/zz -t, (sec) {,

                  Ol O.07 I 508 -i
                       O.07                                  415

l
I

satisfying the

(62)

a • ::•:-i: : '/:.:'.i;::....L

b----lc' ------:L' Il
 -------- --IdnyIe ----
f--be-ew i

..nvQ nej

.Ll
ww1...

 1
 1.5 I-

O.06
olo'7'•

i---..,...rm.Q.rQ.8

       O.07
lg i" O.1

l
5
5

 4ti

l
l-----

364
S08ww'ww

291

X((p)

iiii

z
.giF

f'i,

a

,.L"Zt/xT'I'c

  11
.-'

i

    tN   tt x/ c
   tl  il  iN  tl         d tj 'R 1
 ttt      eN ,ff /'x.k x

 tt -t'i./' e NF,N ,i ,.. 7.7 mf sec

    g N,            Q/r? ==• 1ooo

          1
          'xtiIN

           'xNX,: b.

          d ", Q,x bea
          c1)N ..li(g,"....

               Ns
      10 O --- IO               EIevation (f) (deg,)

6. Graphical illu$tration of theoretical values of N in
  terms of elevation angle (q) for fixed value of
  x (==30em), t-{ (==7.7m/sec), ]t (=140m) and Q/tl
   ( -1000).
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   This solution is graphical!y illustrated in -Fig. 6 in terms of anguiar elevation

with respect to the sogrce (i.e., the angle q given by g==tan-i(z/x) instead of

g) for fixed x. Here we have taken h:r-140m, x==300m, rk(O)=7.7rn/sec and
Q/za(O)==1000. The values of ro's are estimated from 2L and J/'Aiirt in the following

manner.
   If we assume 6 in Eq. (53) to be unity, then the eddy diffusiv2ty Kz ur.der

the condition of neutral stabi!ity becomes identical with the eddy viscosity, and

the eddy viscesity at the height of h can, as it is we!i established, be expressed

as Kg=v*rch, where zig: is the friction velocity ap-d rc is the Karman constant near!y

equal to O.4. 0n the othey hand, the eddy diffusivity (K) for large dispersion

times in the locally homogeneous, isotropic turbulence fieid can be expressed as

K=w'2To/4, where re is the life-time of effective largest eddy as was shown in

Part I in this papey (see the expression (18)). Accordingly, it seems plausibie
under near-neuSral conditions that v;fi,tcltftzv'2To/4 and then rofkt4v*rch/]/l21i/'i

==4/7, rclz/}/'Li7r, . IS must be noticed that this expression for re lead$ to the fact

tkat Ka(S) expressed by Eq. (60) rri-ust be a function of keight. However, we

suppose "that the variation of To with height can be neglected, as stated before.

   The theoretica! result of Eq. (62) can be verified, at least partly, by Hay

and Pasqu211's experimental data (48) in the following way.

   Hay and Pasquill's experiment on the frequency distribution of diffusing

spores is concerned with the flux of spores, as they state that "the coilection

eMciency in tlte number of particles impacting the cylinder, expressed as a per-
                                                            scentage of the number which would kave Passed through the same cross-sectional

area* if the cylinder had not been there". Hence, their resu!es may be compared

with the theoretical values of the mean longitudinal flux of diffusing materials.

   Now, Åíhe fiux uz can be evaluated as follows:

                     F(x, e) =- rk7-F u'z' == a7.-ZK.7./a2

                           ==: zanf(1-,2teSfe.,) ,

and such a function G(x, if) as F(x, e) da =G(x, q) dq becomes

           G(x, g) == F(x, x tan g) x sec2 q

                 == ,/gt}io exp (-X2 Saog29){i-?`t.x(xot)a.n,g}xsec2q

                 == tiff{1-?`tli.lg(Xo)taa? op}xsec2 g ,

where
                 '
* The italics here are the present author's.
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                                        '        K. .., i57'i2x(1ti-y(6L)tan op) {1-+2-X(IS,lritoa)n q)

                           -- x(ii",2ii-aon) op) iog x(i.-i.flt6-a)n opi} ,

and
        ., =, w'2x2(i..-,F(8)tan gp)2{i-l/gx(i.-F,diX(toa)n• q)

                           "X(i3".,R,t(aon)-92iogx(ii,2L(toa)nop)},

Then we can compare G(x,q)dg (in case of dq==10==1.745Å~10-2 rad, Q==100)
with Hay and Pasquill's experimentai results. We wi!l choose the experiments

in case of x==300 m because their experiments invo!ve the largest number of ex-

periments in this case and are rathey successful as they state. Among these

experiments, the experiment 12 seems to be in the near-average state of the

source height and meteolorogical conditions. Therefore, we choose the experi-

ment 12 as a representative case ef al! the experiments of x=300 m. Then, from
their Table 1, we have x -- 300 m, h == 140 m, ti (O) :== 7.7 m/sec. Assuming di ffere nt

values for i/M"]'2/af(O) and 1, and using the estimated rough values of To, the

corresponding theoreticai values of G(300,op)dg are graphicaliy i!lustrated in

Fig. 7 as a function of q and are corapared with the resu!ts of ali experiments

in case of x= 300 m, including the result of the experiment 12, the experimental

values having been read frem Fig. 3 in E[ay aRd Pasquil}'s paper. Fig. 7 skows

that the theoretical and the observed values are statistically in good agreement

with each other, if we take suitable vaules for 2,, }/E'ffimet-2/a(O) and 7o.

   In addition to the above verification, the theoretical vertica! distribution of

concentration of diffusing matter <or gas) given by Eq. (62) could be compared

with Stewart et al.'s experimental resuits (49). According to them, the character-

istic feature of the vertica} concentration distribution is that "the adiabatic and

unstable curves are of approximately Gaussian form, somewkat extended in the

direction of increasing height." Tltis feature is manifested by our theoretical

curves in Fig. 6.

  ' However, they state that their experirnents were conducted with warm air

containing a smali amount of radioactive argon (`iA) emitted from 61-m chimney

of BEPO reactor aRd so the a2r cioud has considerably gyeat buoyancy, and
therefore the agreement of the featgre of the expefimental results with our
theoretical resu!t cannot be so conc!usive.

   The characteristic feature of such skewness of the vertical distribution of

concentration was also discussed and manifested by Hinze (39) in shear fiow of

laboratory scale.
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10. Discussions

    (i) Our basic concept of modification of the conventional general diffusion

equation comes essentially from the fact that in the atmospheric surface Iayer
u'  and w' are negatively correlatecl not only in the Eulerian way but also in the

Lagrangian way at least during certain periods, and seems to be essentially in

agreement with Hinze's concept (39). The two new terms introduced in the
ordinary diffusion equation by tke a"thor signify such interrelation, wliile Lettau

(5e) introduced only one of these terms. That is, he concluded, without giving

any exp}anation, that u'z'=t=O but w'x'=O. He (50,51) ca}led this term the

"shearing advection term". However, the other term which has been newly
derived by tke author does not mean the "shearing advection". The author be}ieves

that the two new terms should be interpreted as an effect of the change of
structure of turbuience associated with shear velocity.

    (ii) From s%g8 and 9, it is clear that in the general application of the

k•

"+ e
   +N.
Nma5}]o
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present theory Ku must be a function of height above the ground as well as the

dispersion time even in the case of large dispers}on times. Therefore, seme cor-

rection may be necessary to give the corrected value of concentration at great

distances downstream. One method of correction is to use a virtual origin at

some distance downwind from the real source. Quantitative or qualitative
treatments were made by Inoue (e.g. 19) and Graltt (28). The correction does

not seern necessary iR the case of grouRded $ource, since Te for the grouncl level

may be zero judging from our method of estimating ro, and in thaÅí case the
probiem seems to be alWays in the case of large dispersion times in spite of

Grant's assertion.

    (iii) The estimation of the va!ue ef 7, together witli )/raT 'E2/za(O) may be made

by comparing the probabil!Åíy distribution- of wir.d inclination derived by the

present model of turbulence structure with the observed frequency d!stributlon

of wind inclination, in the following way.

   If we assume that the probability distribution ef w' at a poiRt is normal, and

we put the probability that the value of,zv' lies between w' and w'-l-dw' to be

p(tv') dw', then, referring to the fact that tan e--zv7(a(O)ktt') where e is the angle

of wind inclination, we have

           P(W')dw'"",/27."-,/i-ziiriT,exp(ptZL2/ww(uC'ttle4,+2)2)--(-EC-.OtS//C-:it2-.-)-,dfi.

Therefore, if we put the probabllity that the angle of wind inclination lies

between e and e+de to be f(e)de, we have

           f(e)dO:=:,/2-.ii'/lfbifi,exp(--g!'r•2/(//9iS.ltg-:tii--jL)2)a,TC.OtSee-2Elze,),dfi.

    IR Fig. 8, the theoretical distributions of f(O)A5 for dfi=:10 are shown in a

few cases of combination of 7, and )/iV'imu2/iz which correspond to some cases in

Fig. 6 or Fig. 7, vL7ith the observed values corresponding to the data Mustrated

in Fig. 7. Fig. 8shows tltat the optimzim values of 7L aRd i/tt,/zz to fit the

observed data seem to be very close to tkose in Fig. 7. Accordingly, if we

prepare a catalogue of correspondence of the frequency distribution of wind
inclination to l and i/- w-,i/zz, we can. readily determine appropriate values of ?,

and )/lt2i T,/ti from the observed frequency distributlon of wind inclination.

    (iv) The theoretical resules in bR9 may be compayed with Sutton's famous

semi-empirical formula (11, 52) in two dimensions for the elevated source }n tlie

case of s"Mciently small x,

                   7•(x, e) =r- J/rr- cgt-x,--.7-pi exp (-e})Xx2,wa,i) ,
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where the coordinate system is taken as in b99. His argument in the course of

der3vation of this formula seems to partly confuse this with the probiem of re!a-

tive diffusion, but lastly he applies this formula to the problem of continuous

cross-wind infinite line source of fixed type.
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Fig. 8. Graphical illustration of theoretical values of wind
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      ef particle elevation in Fig. 7.

his formula with the present one (62), we have the foliowing
:

                 Cz e i/EVJ,li/ti ,

 xi-'ii2e(xsu}-xe){1-}1ge-tt-,ilL-g-yX-tltiS/{,'?logX.-iti7'-4-}ii2,

 n having rather obscure physical meaning corresponds to the
tke eff.ect of A is not taken into account by Sutton. His recom-

  N   x   NX

 AX
   Å~ "NN

DX nAÅ~ Xx
    Aa X.+ +
       exs.

    Comparing
correspondence

and

where, Sutton's

effect of TD and
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mended value of n=r-O.25 seems to correspond to the va}ue of

                dlb-g'4('-.lt' /r,) leg {nv/'mm, (1"ill/ve.S'T- 36-,,}og S, )ii2},

at the va!ue of g"N•--O.3 To (i.e., xftyO.3 Teti) in the formu!a of a, putting formally

2 -O.

    (v) Since the solution of the new equation gives, on the level of source,

the same values of ff with the values of the solution of the classical diffusion

equation :

                          di(g) 0alil- "= oO. (Kz Oa-X,),

    '
the verification can be made by comparing the tkeoretical values ef the con-

centration at that level with the experimenta! values. Such verification was

successfully done in the case of grounded source by Sutton (8) and Ca!der (44).

Therefoye, their is ne contradiction between our theoreticai result and their

experimental result in. that case. However, in the case of elevated source, as

was stated before, the soiution of our new equation must not be in agreement

with that of tlte classical equation. It is high}y desirab!e that experimenta! data

for the verification in such cases are pubHshed. The author ls now making pre-

parations for certain experiments which are capable of verifying our proposal.

   It may be added here that, Davies (53) soived Lettau's (50) equation which

contains only one new term additively and obtained the soiution for the case of

grounded source, and that he thus found that there is a littie, though practical!y

negligible, difference between the values of concentration at tke ground level

and those given by She classical equation, in contrast to the exact agreement

between the values ef concentration at the ground level given by the soltttlon of

the classical equation and these given by the solution of the present new equation.
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