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                                  ABSTRACT

         The problem to seek for the convective growth rates of initially given distur-
     bances in the thin fluicl layer of varying superadiabatic temperature gradient is
     investigated. For some model variations of the gradient the growth rates and the
     eigenfunctions are obtained by solving a second order differential equation where
     the viscosity is neglected and the disturbances are assumed to be optically thin or
     adiabatic. The validity of the variational method is examined. When a suitable
     trial function (including only one variational parameter) is adopted, the approximate

     eigenvalue aggrees with the exact value for the fuRdamental mode within the limit
     of error of a few percent (except for very small wavenumbers of disturbances) for
     a variety of the superadiabatic gradient.

                               1. Intreduetien

    In ste!lar convectlen zone the superadiabatic gradient l9 varles witli depth x
and even chaRges lts sign due to the ionization of the eiements composing of tlke
stellar gas, whi!e the temperature gradient is constant in the initial state of the
parallel-plaee convection. To obtain an image ef tlte stel!ar convection, we should
discuss first how mucli grade of instability the gradient B(a) imp}ies. Spiegel
(1958) discussed the marginal stability of the convection zone of early-type stars,
approxlmating the actual profile of the gradient by box-type profile of equal area
and neglectlng the penetratien of the convective fiow into upper and }ower stable
regions. This approximation should be examined. In a paper to be publishecl
(Yamaguchi 1967) the effect of varying superadiabatic gradient on the marginal
stability problem is studied. In this paper tke problem to see!< for the convective
growth rates of initia}!y given disturbances in the thin fluid layer is solved for some
model varlations of tke gradient, wken the viscosity is neglected and the distur-
bances are assumed to be optically thin or adiabatic.

                        2. Equation of the preblem

    We consider a thin layer in the envelope of a star. Let the superadiabatlc
temperature gradient (along the acceleration of gravity) Bs(4)(C=g/d) be positive
in the layer (thickness d) and be negative in the layers extending above and below.
The system is supposed to be disturbed by the disturbance of sma!l ainplitude
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whose horizontai wavenumber is le==a/d. This disturbance will grow or damp as
exp at. We seek for the growth rate a for given l?s(4) and a =fed. This problem is
described by the fol}owing equation,

                      (D2-a2)W(C)=-R(C)a2W(a), •••-••••••••••••••(1)
where W expresses the dependence of tlie vertical velecity component w on deptlt
2=4d, l. e.

              w== IO"(2)F(x, y)exp aic, ( att',, +-aOt7i, )F= -k;'F. '•-••••-•••••••••••(2)

The other noeation is listed below'
                               '
                         R(c)==d(c)-gd- (.+lq), ,                                                             .....-.."....-(3)

        d(&) ""(1 tu -aO }},i: T!X)(7-LtD) IÅíl. =:(1 nd aO II.n 'Te`)Bs(&) Td, ,
                                                             •-•--••••••••••(4)

pt=the mean molecular weigl# of the stellar gas,
Hp=tke pressure scale 1ieiglit,

                                dlnT                             V=                                dlnP'
q =the characteristic inverse time for radiative cooling (see Spiege! 196tl, Unno and
Spiegel 1966),

                             D.. d
                                 dC '

In deriving equation (i) we have assumed that the disturbance is opticaily thin
(a>T, T is the optical thickness of tlie unstable layer) or adiabatic, that the Bous-
sinesq approximation is valid (i.e. Hp>d and the velocity field is solenoidal; see
Spiegel and Veronis 1961, Mihaijan 1962), and that the viscosity can be neglected.
When we pue q==O, equaeion (1) describes tlie case where heat excliange ls absent
and the disturbance is adiabatic. Tlie superadiabatic gradient or d(C) is given by
the mode! o'f stellar enve}ope for given Te (effective temperature) and g (surface
gravity). In this paper we study the model case where R(C) is expressed by the
following equation,

                     R(C) =Af(C; tu, P), -••••-••••••••••••(5)
                                         nv 1             f(C)==Q(expa(1-ICl")-i), Q=== ,.-1 • ''''''''''''''''''(6)

In equation (5) f(C) represents tke variation of superadiabatic gradient witli depth
and the parameter A is the maximum va}ue of R(C). We seek for the elgenvalue
of A for given di and P. Since A'i is proportional to o(o+q), the behavior of the
growth rate a(>O) as a funceion of the wavenumber a can be seen from tke de-
pendence of A on a.
    We consider first the case where the medium extends from C=O to C== oo and
a fixed boundary is set at C=:O (semi-infinite case). Next we treat the case where
the medium extends from (==-c>o to C= oo (infinite case). In the infinite case
the thickness of the unstable layer is 2d, and the nondimensionai wavenumber
should be replaced by 2a in comparing the resules obtained in both cases, since the
nondimensional wavenumber a is proportional to the thickness of the unstable layer
by the definition (a==fed). Tke eigenvalue A needs not be calibrated, since it does
not knciude the quantity d (see equations (3)-(5)).
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    The boundary conditions are taken to be .
               W==O, at &==O and oo (semi-lnfinite case), ••••••••••-•-•••••(7)

               W==O, at 4= i Do (infinite case). ••••••••••-•••••••(8)

           3. Methods giving the exact and approximate solutions

    We can apply various methods to solve equation (l) with boundary conditions
(7) or (8) (see Spiegel 1965). We iist them below.

    (1) Exact solution.

    For special sets of values ef p and ev, equation (1) is reduced to the well-known
equation whose solution was studied

    (2) The variatienal method.

    Multiplying equation (i) by W(4) and integrating over the entire regioit, we
obtain an equation,

                    <(DW)2>+aS'<W2>= Aa"'<f W2>, ••-••••••-•••t••••(9)
where the syinbol < > denotes the integration over entire region. We introduce
the following trial functions,

                     vv=cexp(- S"242), ••••••••••••••••••(io)

or

                      ... Igin bC(c. (zO <) i< Z )' -.........--ai)

for semi-,infinite case, and

                        vTx=exp(- S:'2C2), ••••••••••••••••••(12)

or

                      .=(gosb4(,,,Si35,2"b)'

                                                          -•-•ny---•--•(13)

for infinite case, where s and b are variational pariTieters. Introducing these trial
functions inte equation (9) and minimizing tke quantity A-' with respect to the
parameter s or b, we obtain an approximate eigenvalue A(a; ev, P).
                                                                       '
    (3) The WKB method.

   In equation (1) the fuRction R(O-1 has a zero 4og-$ll (turning point), at
wkich R(Co) :1, in the semi-lnfinite case. We seek for asymptetic solutien WJ(C)
in the reglon O;:SC<('o which satisfies tke condition Wi(O) :O, aRd look for the
asymptotlc solution Wu(C) in the region C>Ce which satisfies Wu(oo) =O. We
can connect botii solutions by the connecting formula in the WKB method. Then
the eigenvalue and the eigenfunction for the fundamental mode are obtaiRed as
below,
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                        af,`Ovp(oa4=:gn, ••••••••••••••-•••a4)

                W=:2PMt' sin(af,CP't'"dC) (Os-k"C<Ce), -•••••••-•-'''''''(15)

             w =(-p)-if' exp(-af,i(-p) '1"dc) (C> &o) , ''''''''''''''''''(16)

                    P(C)-R(O-1-Af(C)-1. •••••••-••••••••-•(17)
These formulae are valid if the behavior of .l'(C) near tlie turning point is linear
(i.e. P(C)oce-&o near C==4o). Therefore they can not be app!ied to the case
P :oo having a jump at the turnlng point C==go =1.
    The validity and usefu!ness of the WKB method were already pointed out by
Sp3egel (1965) in the study of convective instability in a compressible atmosphere.
It is, kowever, rather tedious in calcu!ating the eigenvalue especially in the case of
higher tkan second order differential equation. On tke other hand the variational
method is convenient to obtain the approximate eigenvalue (not the eigenfunction)
and was used in studying the marginal stability of a layer of varying superad}abatic
gradient with the same trial functions as given by equations (10)-(13) (Yamaguchi
1967). In this paper we wi!1 examine the validity of the variational method with
these trial functions in evaluating the eigenvalue of A.

                               4. Results

   First we list the exact solution for some special sets of values of the parameters
P and ev.

    (1) The case P== oo (semi-infinite).

               A,.a""i,,e2, w=-(gl:,e4.,.,B((OtTiriiCt'--/i)'(ck.i) -•-••••••••••-••••(is)

where 0's are the the positive roots of tl}e following equation,

                            0                                                          •••-•••••••-••••(19)                    tan 0 = - -ff, B =1/ Qrm(a,'rm+ 02) + a2' .

The fundamental mode is obtained by substituting the smallest posieive root 0i,
into equatien (18). The smal!est positive root 0i is the increasing function o'f the
wave number a, and z/2gE{0i(a, Q):i{za

   (2) The case P=:2 and ct :O (semi-infifiite).

    A,1•-,,.1.(--<"-SI-):1.."....a..l'.t.nv"ww'nvmeltil, w,,.,xp(-s22C2)H.(so (n==i, 3, s,••••-•)• '''(20)

             .1.where s==(ai'A)4' and .Eln are Hermite po!ynomiais of odd order.

   (3) The case P =1 and ev =O (semi-infinite).

   The eigenvalues of A are given by the equation,

                    (1-si2)3=(32tarz)"", 82xX ,                                                          .H..H.......••-•(2i)

and the eigenfunctions are
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                          JL. .R                     v•ff==[:.111.zle,:"/..'.]•,:':?-.X--C
                                                           ••-•••••••••••••••(22)

 where Z and X are expressed by the Bessel ftinctions as below,

                  Z(t) =J,(t)+J ,(t), ••••••••••••••••••(23)
                        g -3'
                  X(t) ==igJ-,(it)-ih'SiJ, (it) = V'ii-Ki (t). ••••••••••....••••(24)

                                           n '3'                                    n'                           i3'
 In equation (21) ,ct's are the positive zeros of Z. The smallest value of tt is
,cti==2.376. In equation (22), c =2a/3B. (When the WKB method is applied, the
equation for eigenvalue is obtained in the same form as eqaution (21) if 3pt/2--3.564
in the right-hand side !s replaced by 9n/8==3.534. Thus the WKB mehtod gives
a geod approximation.)

    (4) The case P=:1 and cu•itO (semi-infinite).

    The eigenvalues A(a) are obtained by the equation,

                        A=(1-e-tu)( S.pt )2, ''''''''''''''''''(25)

where As are the positlve zeros of the Bessel function Jv. The order ef the Bessel
function, v, is determined by the follewing equation for given a and av,

                         a"" -SIVv:'-,et""emat• ''''''''''''''''''(26)

The eigenfunctions are given by the equation,

                                  cac                         W= J.(ue--li-). ••••••••••••••••••(27)
                                                     .1                                                      ). Therefore, whenWhen v->)o, the sma!!est positive zero of Jv ls pti=:y+O(v3
a->oo, A->1 (for the fundamental mode).

    (5) Tke caseP= oo (infinite). •
    The eigenvalues A and the eigenfunctions W are given by the equations,

          A,., a2i,e2, w-(gggZ.g,.,B((iS-]i4i)i) a4]ki), ''''''''''''''''''(28)

where 0 are given by the foIlowing equation,

                    tan O = i; , S= 1/Q(a2 +02) -f- a2.                                                          ..........••••••••(29)

    (6) The case P=:2 and ev=:O (infinite).

    The expresslon for the elgenfunctions and the eigenvalues are the same as the
semi-infinite case (2), but in the present case n inc!udes also even integers (n =O,
1, 2, 3, 4, ••••••).

   The relation between A-ioca(if+q) and the wavenumber a is piotted in Figure
1 in the semi-infinite case, while the relation between A-i and a*==2a is plotted in
the infinite case to compare both cases.
   Secondly, we apply the variational methed and obtain the lowest eigenvalue
A(a). In this methed, the exponential trial function (10) or (12) gives the results
whlch agree wkh the exact elgenvalues within the error of drawing (a few percent
wken a>.-1) except the neighborhood of the case P= oo and Q= oo where the trigo-
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        Fig. 1 The eivgenvalues Ami as functions of wavenumber of disturbance,
             a, for some sets of values of the paraineters P and a contained in the
             superadiabatic gradient f(g). All curves represent the results in the
             semi-infinite case except the cttrve labeled by "infinite ". The daslaed
             curve labeled by "sin" is the result by using the variational method
             with the trigonometric function (11).

nometric ftmction (li) or (13) is tke exact solution.

                               5. Discussion

    First, we discuss the semi-infinite case. As A-i is proportional to o(6+q),
the behavior o'Åí A'-i(a) corresponds to that o'f the growth rate o(a).

    (1) The casep=oo.
    The parameter Q means the depth of the superadiabatic gradient'f(O in the
stable region (C>1). When Q decreases from oo (the classical case where definke
botmdaries exist at C=O and 4=1) to O, the superadiabatic gradient f(O becomes
O ln tlie stable region and remains constant (f =i) in the tmstable region (O<&<1).
Tkerefore tke system wi!1 become more unstable and the flow penetrates more
deeply into the stable region, as Q decreases. Correspondingly, the eigenvalue
Aiji(a) or the growth rate o increases when Q decreases (Figure 1).

    (2) The caseP=1.

    When a increases (av>!), the width •of the region where the superadiabatic
gradient f(C) is large (ffsl) decreases as inversely proportional to a and the other
region becomes convectively neutral (fksO). Both effects act in opposite direction
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on tl}e instabillty of the system. Asa whoie, the centraction of the unstable
region has the ctoiir!inant effect on the ifistabiliÅíy of tke system and k becomes less

unstable whenaincreases. '
    The case P=2 is guessed to have a similar tendency to the case P==1 when ev
varles.
   Secondly, in the infinite case the system is more unstable than in the semi-
infinite case. Especially, the behavior of Ami(a) near a=:O is linear in the case
p== oo and Q=O, while it is parabolic in all other cases. This may be due to the
fact tliat the region where Drv:bexrO goes away to infinity in that case (see equation
(9)).

   Now we examine an approximation in wkich the actual profile of f(C) is
replaced by a box-type profile (the case p :oo and Q= oo) of equa! area f,if(C)d4.

In Table 1 the values o'f Aa2 in the limit a->O estimated by this approximation
(third column) are compared with tke exact values (}ast coiumn).

          Table 1. The approximate and exact va!ues of Aa2 in the limit a-O.

cases

  te  ni  fi  in  l)<li-iili
area== f,if dc

112

213

213( Å~ 2)

1

Aa2, approximate

2•n2 =20

312•rr2 =15

312•n2=15
   Z2

Aaa, exact

   13
    9
Aa3,=:4

   n2

    Both values of Aa2 differ from each other by a factor 2tv4. Thus this app-
roximation is not so good. Another approximation tal<ing into account the profile
of f(C) in the stable region should be adopted. For example, the fo!lowing app-
roxlmation is suggested.

                      A<iwUl,}r.',O---A- (o:E{:]cl<l)

             Af(4) ->                                                          ••••-••••••••-ny•••(30)
                      Aifwes}'.`,O=-A-Q- (lc]>1)

  The validity of this approximation is examined by the author in the study of
the marginal stability problem (Yamaguchi 1967). Tke function W should be
guessed appropriate!y, e.g. the function given by equation (10) or (12) inay be
use'ful.

    When a-<>,), the eigenvalues of A approach to a common iimit A=1 in all
cases. This is dge to tiie fact that when the scale of disturbance becomes small
(a-oo) tke equality <fW2>=<W2> is realized ln equation (9). The equality
<fsw"S'> =<W2> means that the fiow is confined to a small region near C :O where
the gradient is large (f Jl).
   Finally, we mention the behavior of the eigenfunction. It is shown from
equations in section 4 that the penetration of the fiow into stable regions increases
when f(C) becomes O in the stable region (cr increases). When the wavenumber
of disturbance a increases, the flow is confined to a sma!ler region near C==O. This
agrees with tke consequence that A-}1 when a--> )6' 1 •
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                           6. Concluding Rerviarks

    In this paper we goe the e.xact soltitions (the convective growtli rates a and
the corresponding eigenfuAceions) for some profiles of the superadiabatic gradient.
The behavier of tke eigenvalue Ami(a) at smal! wavenumbers (O<aS5) depends
fairly sensltively on the shape o'f tke gradient (Figgre 1). Tkerefore, in discussing
the steliar convection the variation and the changes of sign of the superadiabatic
gradient shouid be tal<en into accouRt.
    The variational method gives a good approximtion to the eigenvalue within
the limit of the error of a 'few percent (except very sma!1 wavenuinbers of distur-
bance), if a suitable trial function (exponentia! function as given by equation (10)
or (12)) is used, though lt includes enly one parameter.
    Equation (!) is not of ordinary Sturm-Liouville type, since the parameter A is
multip!ied by tke 'function f(C) which is not positive definlte. It is noted that,
when we expaRd tlae field variab!es lnto Fourier-like series in the non-linear theory
(see Ledoux, Schwarzschild, and Splegel l961), the elgefifunctions obtaiRed in thls
paper should be used care'fully. If a function can be expanded by the system o'f
the eigenfunctions, this expaRsien is unique, but the coiif}pleteness o'f this system
and the convergence of tlke series should be carefully exainined. The above
remark wi!1 be appiied also to all investigaÅíions oi stellar convecSion, if we try te
take into account the variation and the changes of sign of the superadiabatic
gradient.

    It is pleasure to thank Prof. H. Wal<ita for his }<ind discussion and suggestions
and for reading the orlginal manuscript. I am also gratefui to Prof. S. Ueno for
readlng the manuscript and for his steady encouragement throughout the course of
tke work.

 • Note added in proof; After sencling the manuscript, we Iiave found tkat there
is another eigeRsolution belonging to negative eigenvalues o'f A-icua(o+q). This
mode gives an osci!lation daiT}ping in time and shows the character of gravity

wave.
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