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ABSTRACT

The problem to seek for the convective growth rates of initially given distur-
bances in the thin fluid layer of varying superadiabatic temperature gradient is
investigated. For some model variations of the gradient the growth rates and the
eigenfunctions are obtained by solving a second order differential equation where
the viscosity is neglected and the disturbances are assumed to be optically thin or
adiabatic. The validity of the variational method is examined. When a suitable
trial function (including only one variational parameter) is adopted, the approximate
eigenvalue aggrees with the exact value for the fundamental mode within the limit
of error of a few percent (except for very small wavenumbers of disturbances) for
a variety of the superadiabatic gradient.

1. Introduction

In stellar convection zone the superadiabatic gradient B varies with depth z
and even changes its sign due to the ionization of the elements composing of the
stellar gas, while the temperature gradient is constant in the initial state of the
parallel-plate convection. To obtain an image of the stellar convection, we should
discuss first how much grade of instability the gradient B(z) implies. Spiegel
(1958) discussed the marginal stability of the convection zone of early-type stars,
approximating the actual profile of the gradient by box-type profile of equal area
and neglecting the penetration of the convective flow into upper and lower stable
regions.  This approximation should be examined. In a paper to be published
(Yamaguchi 1967) the effect of varying superadiabatic gradient on the marginal
stability problem is studied. In this paper the problem to seek for the convective
growth rates of initially given disturbances in the thin fluid layer is solved for some
model variations of the gradient, when the viscosity is neglected and the distur-
bances are assumed to be optically thin or adiabatic.

2. Egquation of the problem

We consider a thin layer in the envelope of a star. Let the superadiabatic
temperature gradient (along the acceleration of gravity) B:(&)(=z/d) be positive
in the layer (thickness d) and be negative in the layers extending above and below.
The system is supposed to be disturbed by the disturbance of small amplitude
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whose horizontal wavenumber is k=a/d. This disturbance will grow or damp as
exp ot. We seek for the growth rate o for given (3;({) and a=*kd. This problem is
described by the following equation,

(D2=a)W(E)=—=R(O@EW(E),  cervereereeeeinnn D

where W expresses the dependence of the vertical velocity component w on depth
z=0d, i.e.

w=W(z)F(x, y)exp gi’ < 6896 -]-_6@3; )F— — B2 F e (2
The other notation is listed below ;
RO=4(O)-4- (d—l}q)a e, 3)
01n p d _(1_0lnpy d_
4©=(1-8 )y ) o =(1- 322380 7 @

#=the mean molecular weight of the stellar gas,
H,=the pressure scale height,
dinT
V= dlnP’
g=the characteristic inverse time for radiative cooling (see Spiegel 1964, Unno and
Spiegel 1966),

d
D-—C—ZE—.

In deriving equation (1) we have assumed that the disturbance is optically thin
(a>r, v is the optical thickness of the unstable layer) or adiabatic, that the Bous-
sinesq approximation is valid (i.e. Hp>»d and the velocity field is solenoidal; see
Spiegel and Veronis 1961, Mihaljan 1962), and that the viscosity can be neglected.
When we put ¢=0, equation (1) describes the case where heat exchange is absent
and the disturbance is adiabatic. The superadiabatic gradient or 4() is given by
the model of stellar envelope for given T, (effective temperature) and g (surface
gravity). In this paper we study the model case where R({) is expressed by the
following equation,

RO=AFE; a, Py, e 5
FO=Qexpai=[¢IN-1), @=—1r. )

In equation (5) f(&) represents the variation of superadiabatic gradient with depth
and the parameter A is the maximum value of R(&). We seek for the eigenvalue
of A for given « and p. Since A~! is proportional to o¢(s+¢), the behavior of the
growth rate ¢(>>0) as a function of the wavenumber & can be seen from the de-
pendence of A on a.

We consider first the case where the medium extends from =0 to {=cc and
a fixed boundary is set at {=0 (semi-infinite case). Next we treat the case where
the medium extends from {=—o to {=oco (infinite case). In the infinite case
the thickness of the unstable layer is 2d, and the nondimensional wavenumber
should be replaced by 2¢ in comparing the results obtained in both cases, since the
nondimensional wavenumber a is proportional to the thickness of the unstable layer
by the definition (¢=kd). The eigenvalue A needs not be calibrated, since it does
not include the quantity d (see equations (3)—(5)).
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The boundary conditions are taken to be
W=0, at {=0 and oo (semi-infinite case), oo )
WZO, at C: + oo (inﬁnite Case). .................. (8)

3. Methods giving the exact and approximate solutions

We can apply various methods to solve equation (1) with boundary conditions
(7) or (8) (see Spiegel 1965). We list them below.

(1) Exact solution.

For special sets of values of p and «, equation (1) is reduced to the well-known
equation whose solution was studied.

(2) The variational method.

Multiplying equation (1) by W({) and integrating over the entire region, we
obtain an equation,
<(DW)2>+42<W2>=A42<J€W2>, .................. (9)

where the symbol { > denotes the integration over entire region. We introduce
the following trial functions,

w=_{ exp<— 32262> . (10)

or

sin b¢ <0<c<-’;—>,
W: ..................
o (=),

for semi-infinite case, and
W= exp(—fz-zé/;“’-) . (12)
or

cos b¢ <[Cl<£—>,
2b
W= TN e a3
o (11>5),
for infinite case, where s and b are variational parmeters. Introducing these trial

functions into equation (9) and minimizing the quantity A-! with respect to the
parameter s or b, we obtain an approximate eigenvalue A(e; «, p).

(3) The WKB method.

In equation (1) the function R({D)—1 has a zero ;=1 (turning point), at
which R({;)=1, in the semi-infinite case. We seek for asymptotic solution W(&)
in the region 0=¢<¢, which satisfies the condition W:(0)=0, and look for the
asymptotic solution Wir(&) in the region {>¢&, which satisfies Wiz(e0)=0. We
can connect both solutions by the connecting formula in the WKB method. Then
the eigenvalue and the eigenfunction for the fundamental mode are obtained as
below,
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ofvEDa=3n, a9

W=2P tsin(a['PIE)  (0=€<E), e a5
W:(—P)"Jlexp[_afc:(_p)é“dc] (ESED, e 16
PO=RO—-1=AFO~1. e an

These formulae are valid if the behavior of P(&) near the turning point is linear
(i.e. P(Q)ocf—C&y near &=¢,). Therefore they can not be applied to the case
p=0co having a jump at the turning point ={=1.

The validity and usefulness of the WKB method were already pointed out by
Spiegel (1965) in the study of convective instability in a compressible atmosphere.
It is, however, rather tedious in calculating the eigenvalue especially in the case of
higher than second order differential equation. On the other hand the variational
method is convenient to obtain the approximate eigenvalue (not the eigenfunction)
and was used in studying the marginal stability of a layer of varying superadiabatic
gradient with the same trial functions as given by equations (10)—(13) (Yamaguchi
1967). In this paper we will examine the validity of the variational method with
these trial functions in evaluating the eigenvalue of A.

4. Results

First we list the exact solution for some special sets of values of the parameters
P and a.

(1) The case p=co (semi-infinite).
[sin ¢ 0=z,
sin0-exp 81— R (18)

where {’s are the the positive roots of the following equation,

ALt
a

tan0=—~g—, B=VQ(@ 0 Fa>. e 19

The fundamental mode is obtained by substituting the smallest positive root 6,
into equation (18). The smallest positive root §; is the increasing function of the
wave number 4, and 7/2=0:(a, @)=m.

(2) The case p=2 and a=0 (semi-infinite).

\/m-}-n-l-%— s

A‘E: R W=exp< 5

>Hn(SC) (n=1, 3, 5,-er), -+(20)

a
g
where s=(a*A)* and H, are Hermite polynomials of odd order.
(38) The case p=1 and a=0 (semi-infinite).
The eigenvalues of A are given by the equation,

(1—52)3_ 3u\? 2 oo ] U UTTTT
G2=(55), &= b

and the eigenfunctions are
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HZ(er®), w=1-5—C
W=y B e 22)
x*X(ex?), x=C+6—1

where Z and X are expressed by the Bessel functions as below,

Z<t>=]%<t>+j~é~(t> L e (23)

T

X(@) =i'%]~%_(it) —-i"”‘l’]%(it) :V—g—]{é‘(t) .................. 24)

In equation (21) u#'s are the positive zeros of Z. The smallest value of u is
m=2.376. In equation (22), ¢=24/38. (When the WKB method is applied, the
equation for eigenvalue is obtained in the same form as egaution (21) if 3,/2=3.564
in the right-hand side is replaced by 97/8=3.534. Thus the WKB mehtod gives
a good approximation.)

(4) The case p=1 and a0 (semi-infinite).
The eigenvalues A(a) are obtained by the equation,

A=<1_e-w)<_62¥%>z, .................. (25)

where u#'s are the positive zeros of the Bessel function Jy. The order of the Bessel
function, v, is determined by the following equation for given ¢ and «,

a:fZK_VW. .................. (26)
The eigenfunctions are given by the equation,
_at
W=J,(ue™2). 27N

.. . &
When v->s0, the smallest positive zero of J, is w=p+0(?). Therefore, when
a—>co, A—1 (for the fundamental mode).

(5) The case p=co (infinite).
The cigenvalues A and the eigenfunctions W are given by the equations,
S0 [cosﬂé’ ¢l=D

A= sy W= T e
a cos0-exp BL—[C])  (1¢]=D), (@8
where ¢ are given by the following equation,
tan0=%, B=V Q@+ +ar. e 29

(6) The case p=2 and a=0 (infinite).

The expression for the eigenfunctions and the eigenvalues are the same as the
semi-infinite case (2), but in the present case # includes also even integers (n=0,
1, 2,3, 4, o .

The relation between A-'ecg(o+¢) and the wavenumber ¢ is plotted in Figure
1 in the semi-infinite case, while the relation between A-! and a,=2a is plotted in
the infinite case to compare both cases.

Secondly, we apply the variational method and obtain the lowest eigenvalue
A(a@). In this method, the exponential trial function (10) or (12) gives the results
which agree with the exact eigenvalues within the error of drawing (a few percent
when a2=1) except the neighborhood of the case p=-oco and @=co where the trigo-
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Fig. 1 The eivgenvalues A1 as functions of wavenumber of disturbance,
a, for some sets of values of the parameters p and « contained in the
superadiabatic gradient f({). All curves represent the results in the
semi-infinite case except the curve labeled by “infinite . The dashed
curve labeled by “sin” is the result by using the variational method
with the trigonometric function (11).

nometric function (11) or (13) is the exact solution.

5. Discussion

First, we discuss the semi-infinite case. As A-! is proportional to ¢(e-+gq),
the behavior of A-'(a) corresponds to that of the growth rate o(a).

(1> The case p=oo,

The parameter @ means the depth of the superadiabatic gradient' Sf(&) in the
stable region (£>1). When @ decreases from oo (the classical case where definite
boundaries exist at {=0 and {=1) to 0, the superadiabatic gradient f({) becomes
0 in the stable region and remains constant (f=1) in the unstable region (0<<{<<1).
Therefore the system will become more unstable and the flow penetrates more
deeply into the stable region, as @ decreases. Correspondingly, the eigenvalue
A-(a) or the growth rate ¢ increases when & decreases (Figure 1).

(2) The case p=1.

When « increases (a>1), the width -of the region where the superadiabatic
gradient f(&) is large (f=1) decreases as inversely proportional to @ and the other
region becomes convectively neutral (f=0). Both effects act in opposite direction
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on the instability of the system. As a whole, the contraction of the unstable
region has the dominant effect on the instability of the system and it becomes less
unstable when « increases.

The case p=2 is guessed to have a similar tendency to the case p=1 when «
varies.

Secondly, in the infinite case the system is more unstable than in the semi-
infinite case. Especially, the behavior of A~!'(e) near a=0 is linear in the case
p=-co and Q=0, while it is parabolic in all other cases. This may be due to the
fact that the region where DW=:0 goes away to infinity in that case (see equation
oN.

Now we examine an approximation in which the actual profile of f(&) is
replaced by a box-type profile (the case p=co and =) of equal area folf(C)dC.

In Table 1 the values of Ae¢* in the limit ¢—0 estimated by this approximation
(third column) are compared with the exact values (last column).

Table 1. The approximate and exact values of Aa? in the limit a—0.

cases area= fo 1f ac Ad?, approximate Aa?, exact
p=1, =0 1/2 2.72=20 13
=2, a=0 2/3 3/2.-n2=15 9
p=2, a=0, infinite 2/3(x2) 3/2.72=15 Add=4
p=co, = OO 1 fi<d 72

Both values of Ag? differ from each other by a factor 2~4. Thus this app-
roximation is not so good. Another approximation taking into account the profile
of f(&) in the stable region should be adopted. For example, the following app-
roximation is suggested.

W20 _ 4
A=A 0<I¢]<D

”‘Z‘W?S}ZO“’:—AQ (g=n

The validity of this approximation is examined by the author in the study of
the marginal stability problem (Yamaguchi 1967). The function W should be
guessed appropriately, e.g. the function given by equation (10) or (12) may be
useful, ‘

When @ — <o, the eigenvalues of A approach to a common limit A=1 in all
cases. This is due to the fact that when the scale of disturbance becomes small
(a — o) the equality {fW»H=(W?. is realized in equation (9). The equality
FW2y={W?*> means that the flow is confined to a small region near =0 where
the gradient is large (f=1).

Finally, we mention the behavior of the eigenfunction. 1t is shown from
equations in section 4 that the penetration of the flow into stable regions increases
when f(&) becomes 0 in the stable region (« increases). When the wavenumber
of disturbance ¢ increases, the flow is confined to a smaller region near {=0. This
agrees with the consequence that A —1 when a — oo,
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6. Concluding Remarks

In this paper we got the exact solutions (the convective growth rates ¢ and
the corresponding eigenfunctions) for some profiles of the superadiabatic gradient.
The behavior of the eigenvalue A~'(a) at small wavenumbers (0<<e<5) depends
fairly sensitively on the shape of the gradient (Figure 1). Therefore, in discussing
the stellar convection the variation and the changes of sign of the superadiabatic
gradient should be taken into account.

The variational method gives a good approximtion to the eigenvalue within
the limit of the error of a few percent (except very small wavenumbers of distur-
bance), if a suitable trial function (exponential function as given by equation (10)
or (12)) is used, though it includes only one parameter.

Equation (1) is not of ordinary Sturm-Liouville type, since the parameter A is
multiplied by the function f(&) which is not positive definite. It is noted that,
when we expand the field variables into Fourier-like series in the non-linear theory
(see Ledoux, Schwarzschild, and Spiegel 1961), the eigenfunctions obtained in this
paper should be used carefully. If a function can be expanded by the system of
the eigenfunctions, this expansion is unique, but the completeness of this system
and the convergence of the series should be carefully examined. The above
remark will be applied also to all investigations of stellar convection, if we try to
take into account the variation and the changes of sign of the superadiabatic
gradient.

It is pleasure to thank Prof. H. Wakita for his kind discussion and suggestions
and for reading the original manuscript. I am also grateful to Prof. S. Ueno for
reading the manuscript and for his steady encouragement throughout the course of
the work.

Note added in proof; After sending the manuscript, we have found that there
is another eigensolution belonging to negative eigenvalues of A-'wo(o-+q). This
mode gives an oscillation damping in time and shows the character of gravity
wave.
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