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                           ABSTRACT

   In this paper we review most recent developments in various fields of pheno-
ipenological Regge pole theory of high energy scatterings.
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Sl Intreduetion

   This paper, second in a seyies devoted to Regge phenomenology, concerns
mainly with theoretical topics whieh have been now calling our attention in
relation to Regge pole phenomenology.
   In the first issue of this work, entitled "Present Status of tlte Phenomenolo-
glcal Regge Pole Theory'',i) we have presented the close connection between
the characteristic properties of Regge pole modei and the observed features of
high energy reactions. Further we have made in the last seetion in J several
comments in concluding the systernatic and criticai review. Let us survey the
recent developments in the phenomenologica! Regge po!e model, referring to
those comments.
    (1) As for the spin dependence,2) no prominent results havebeen obtained
slnce then. Experimentally, by use of tke polarized targets, the measurernents
of the po!arlzation parameters of the receil nuc!eons in rcP processes are re-
ported by Argonne group3} in the momentum range 3.2tv5.2 GeV/c, !ower than
CERN grottp (5.6 GeV/c and 11.2 GeV/c).
   The former group analysed these diSa on the basis of the interÅíerence
model,`) which we have already presented ln g5.3 oÅí I (Regge pole exchanges
+direct channel resonances).
   The non-vanishing value of the density matrix element poo of ta mesons
produced by TN collisions seems to be obtained by adding other poles or ab-
sorption corrections.
   On the whole the trouble of the spin dependence is avoided by introducing
the additional non-Regge effects which come from suclt as s-channel resonances,
absorption corrections or Regge cuts. It will be an interest!ng problem to see
how tke Regge pole model can cooperate with these non-Regge effects and how
these non-Regge effects are interre!ated each other.
    (2) Much attention has been devoted to the processes where the conspira-
tors of T or K Regge poles5) are expected to play important roles. Detailed
analyses are made in Pn and PP charge exehange processes and photoproduction
processes, and the sharp forward peaks observed in tkese processes seem to be
rather beautifully reproduced by ac conspiracy mechanism.
   The successes in this dlrection bring us two important questions. The first
is the question of evasions versus conspiracies, In the usual Regge exeltange
amplitude, we have treated a Regge pole as if lt were independent of others,
and then each Regge exchange amplitude shou!d satisfy the conservation of
angular momentum by itself. In this case we must always take the case oÅí
evasions. On the other hand, in the case of conspiracies, the kinematical con-
straint is satisfied in non-trivial ways by Åíhe coexistence of two or more Regge
poles. Then it would be necessary to understa.nd the individual Regge pole in
a more unified way.
   The second is the question about the existence of the conspirators. At
present, we ltave not yet ebserved any particles that can be regarded as con-
spirators. Phillips, who first introduced tke consplrators into the phenomenologi-
cal stage, suggested that the conspirators might play the part for the absorptive
effect. Then we are again met by "the absorptive cerrections".
    (3) It must also be noted that the experimental data are being accumulated
day by day. Especially the data for rather high momentum transter in addition
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to the forward data might give us information on the properties of the trajectory
and, residue iunctions of the Regge pole.s.6} We observed the second or third
dips in some processes, whic.h seem to indicatel us the fall!ng meson trajectories
as far as we take the assumption that the Regge poie exchange mechanism
dominates even at !arge momentum trans' fers. We had usually taken the tra-
jectory function to be rather flat at large negative t as seen from the Pignotti
fprm7) for exarnple. Further we have not yet found any reasonable foundations
to assume the Regge pole dominance in the region of large negative1 values.
Nevertheless such unified understanding of the dip mechanism seems to us very
fascinating on account of the fact that the dlp-bump structure occurs regularly.
Another possible explanation of the dip mechanism had been proposed elarlier

in connectiQn with the direct channel resonances. .
    How can we discriminate these two mechanisms experimentally or theo-
retically ?

    Is there any interrelation between the s-channel resonances and the Regge,

pole exchanges?. , .
    (4) The possibility of rising meson trajectories8' has been recently investi-
gated in the framework of S-paatrix theory, stimulated by the argument made
by Van Hove.9' Experimentally it appears very plausible that the observed
resonances lie olt CheW-Frautschi plot.'O) Furthermore meson and baryon-
trajectories have their own characteristic feaeures: In the meson trajectories
the. exchange degeneyacy'i}, holds in a ggpd approximation, whereas it does not
for bagyop. trajectories. On the, otheg hand, the baryon trajectories seem to.
satisfy• the $o-called "MacDQwell sypametry".i2)
    By use of these, properties,.several attempts are now in progress to obtain
the "dynamical equation of the Regge parameters". At this stage, however,
we have no complete theories to predict all the Regge parameters.
    Thus whole situation seems to require us to understand thq Regge poles in
a deeper level, and sqme orientationsi3) are now proposed by several authors
to the problem :• "Where Regge poles come frpm?"
    In the part I, we announced that in this issue we would treat rnainly, the
subject of, conspiracy. Since then, the several compact ieviewsi`) are.prepared
by seveqal authors. Now we teel !t ls necessary to systematige the complicated
gi?cttiautgO?o.?fie4s2rgugcetuPrheeonfO aednrO.gOngs\ from a more criticai point of view and get

    T.he aim ot this paper is, therefore, to present a review of some topicg'

which seem important for our purpose. The recent progress of the phenome-
nological analyses are shortly reviewed only in g2 and the following sections
(S3Ng6) are devoted to the interesting topics•mentioned above. In the last
section (g7) we shall present some orientations recently proposed by several
authors.

g2. Recent analyses with Regge pele-medeli5)

    Up to the present numerous experimental data have been accumulated on
the forward scatterings of elastic processes at high enetgies. The data on the
quasi-two-body forward scatterings and the elastic backward scatterings, though
they are not at so high energies, have been also accumulated to some extent.
On the other hand, those at intermediate and large angles are less abundant,
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but they are increasing at present.
    Regge pole analyses of elastic scatterings are rather complicated, as more
poles can take part in this case than in inelastic processes. Several analyses
with many poles have been carried out in the forward elastic scatterings, and
it has been found that Pomeranchuk pole is necessary to have very fiat trajec-
tory in contrast with others'6). Rarita et al.i'} have made fits to the rtÅ}P, PP
and PP data above PL==5.9 and up to about -t=1 in a new model, in which
oniy P, Pt and p(to) with linear trajectories are taken into account for xÅ}P (PP
and PP) processes.
   Now, in this section, we present a review whose main part consists of the
following topics ;

    (1) Conspiraey (forward scatterings of inelastic two bedy reactions and
photoproductions).
    (2) Dip mechanism (the higher momentum transter scatterings of elastic
processes) .

    (3) Application of Regge pole models to large angle scatterings of PP elastic

process.
    (4) Fermion trajectories (backward scatterings of zP elastic processes).

2. 1 Forward scatterings of inelastic two body reactions and PhotoProductions

   The most striking among the sucesses of Regge pole models in the last
year is the explanation of the very sharp forward peaks in Pn charge exchange
scattering as well as charged T photoproduction in terms of the exchange oÅí
conspiring pion trajeetory. Let us first consider the Pn charge exchange scat-
tering. As mentioned in gg3.2 of l, Pn and PP charge exchange scattering data,
especially the very sharp forward peak (--exp(-50Itl) for [tl<O.02) in the
former, can not be reproduced in the Regge pole model with only p and R
poles. This circumstance can not be improved as far as one insists on the
conventional Regge pole model, as fully discussed by Phillips.'8' Once one con-
siders a mechanism based on conspiracy of Regge poies, the sitttation changes
drastically, however.
   The story is roughly as follows. Since p and R poles are not suthcient to
explain the experiment, one has to invoke another mechanism in which Regge
poles of unnatural parity may play a prominent role. The most important
among them is the pion pole because of its closeness to the physical region
together with its known strength of coupling to nucleons. The pion is known
to contribute to the following s-channel helicity amplitudes

                        Åë2s=fs..;-" ipas =fs..;-. (2.1)
which are expressed at t==O by the t-channel helicity amplitudes via the
Trueman-Wick crossing relations :i9)

                         1                    gb2S=:lr(gbi`-Åë2"+g63`-g64`)
                                             at t=-O (2.2)                         1                    Åë4S":-2-(g6i`-g62`-g53`+Åë4t)

with standard notations.20) The pion contributes only to Åëi`-Åë2e in the form
Bn(t)sar•(t), and so

                      Åë2s(T) ==Åë4s(x)=-O(t) as t--+O, (2.3)
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the latter equality being a consequence of angttlar momentum conservation in
the forward direction. Hence we conclude that the pion by itself contributes
nothing at t=O. This is not coksistent with the experimental data.
   The constraint Åë4S==O(t) is satisfied w!thout requiring Åë2S==O(t) as well,
however, if in addltion to the pion trajectory one considers2i} a natural parity
Regge pole, say Te, contributing to Åë3`-Åë4` in the form Ba(t)sac(`) in such a way
that arr(O) ==cr.,(O) and Brr(t)-B.,(t)-=O(t), while B.(t)+B..(t)===O(1). In this
case the double helicity-fiip amplitude Åë2S contributes with normal size at t==O,
thereby helping to circumvent the difficulty above, This ends up a rough des-
cription of the pion conspiracy.
   Phillips22) was the first to point out the important consequence of the pion
conspiracy in the processes ttnder consideration. More refined treatments were
carrled out by Arbab and Dash23' and a!so by Fukui and Morita.2`' A typical
fit to tke data is shown in Fig. 1, quoted trom Ref. 24.
   In the high energy rt" photoproduction from proton a sharp forward peak
similar to the one ln Pn charge exchange scattering seems to exlst.25} As no
single-particle exchanges contribute to photoproduction at t==O, the conspiracy
mechanism has been suggested to explain the peak. Models with pion conspira-
tor have been presented by Ball et al.26) and Henyey;27) these models predict
      dathat s2      dt (t==O) is almost constant at hlgh energies. Tlte experimental data up

to 16 GeV, however, show that it decreases considerably as s increases, with
different rates at different -t values. In order to explain these ieatures and
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to avoid the strong t-dependence of residue functions several attempts have
been presented with conspiracy rnechanism, Dietz and Korth28) have employed
a pair of conspirator, C and 0, with G=m -1 and l==1, and obtained good fits with

                       a. (t) =:-O.O07+O.4t, (2.4a)
                       ae (t) -=cret (t) -- -O.12+O.78t; (2.4b)
here, pion is assumed not to conspire. Borgese and Coloeci29) have given a
modei with B meson conspiracy in addition to pion conspiracy, whose trajec-
tories are taken as

                         arr (t) == cr.,(t) -- t-O.02, (2.5a)

                         a"(t) =-crB.(t) =-t-O.32. (2,5b)
    On the other hand a model without conspiraey reproducing the peak has
been presented by Amati et al.;3e) the background, which can be originated
from a Regge cut, or from absorption correction, or from fixed poles, has been
taken into account. They have formulated the contribution of the background
as fixed pole contribution and taken

                           a.(t) ==t-e.02, (2.6a)
                           cr.(t) =-t-O.3, (2.6b)
                           aA,(t) =-O.5t+O.4. (2.6c)
The comparison of their results with experimental data is shown in Fig. 2.
    Since the rc and K mesons belong to the same octet of SU(3), if pion has
its conspirator, it is expected that the K meson also has its conspirator Ke.
Experimental data on the strangeness exchange processes are scarce and Regge
pole analyses in these processes are few at present. Several models with K
meson conspiracy, however, have been presented to the K meson photoproduc-
tion; it seems that K meson conspires weakly or evades26},27} for lack of the

forward peak. •    Furthermore the experimental data of charged pion photoproduction at the
higher energies might turn out to show the forward dip, as maybe suggested
by a slight fall in the forward direction of the differential cross section at 16
GeV/c. Ader et al.3') have investigated the process rP-.T"n as well as rP-TOP
and rP--,K'AO(ZO) in nonconspiracy model with T+B, r+ca and K+K* exchange,
respectively.
    On the other hand Frautschi and Jones32) have investigated Reggeization of
pion exchange without conspiracy, analyzlng the differential cross section of
the process TNopA in detail and other processes in which pion exchange is
expected to dominate the forward peak as suggested by experimental density
matrices, i.e., TN-pN, KN-.K*A, TAT--,feA and rrN---,fON. Taking the trajec-
tory as

                             a. (t) -= -O.e2+t (2.7)
and the reduced residttes as linear functions of t, they have reproduced the
experimental data fairly well.
    As pion conspiracy mechanism has worked successfully for Pn and PP
charge exchange processes, from the stand-point of Lorentz-pole classificatiQn it
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should work also in other processes to which pion can contribute. More detail-
ed analyses as well as experimental data are now required for the definite
conclusion on the conspiracy.
   Several other attempts have been presenÅíed in the analyses of the forward
scattering data of inelastic two body processes. Various processes have been
analysed in various models witkout conspiracy rnechanism, Here we enttrnerate
Only some of the processes; z"P-zOA++,33} T-P--rren,34) rc-p---lfn,34) z+n-tup,34),35)

T"Pm'K"=".36)

2. 2 DiPs at the higher momentum-transfer scatterings of elastic Processes

   As mentioned in I dips have been obseerved at -IRfO.7 in nÅ}P elastic scat-
tering differential cross sections up to about PL=t4, accompanied with secondary
bumps at -tsul.2. Chiu et al.37) have investigated Fratttschi's proposa138} that
the vanishing of helicity-flip amplitttde of P' at crpt(t) ==e can be used to explain
the secondary bttmp (see also gg3.3 in I), extensively by fitting the bumps together
with the otlter high-energy data of PP and Pnt P as well as rrÅ}P processes. They
have tound that their solutions with this mechanism do not have good x2 values
and that the dip-bump structure can be exp!ained naturaliy by the vanishing of
the helicity-nonfiip arkplitude at crpt(t) =O (no-compensation mechansim).
   Recent experimental data3") show several additional structures in differential
cross section of elastlc scattering ; for rc'-P process a prominent dip is seen at
-tfs3, for PP there is an evidence for a secondary dip at -tfxl.8 (the first dip
at -tptO.5) and for K-P there seems to be some structure at -tf\O,9 (see Fig.
3). On the contrary the PP data are relatively smootk except for a slight break
near -t=1.6 and the K"P data also seem to be smootlt.
   Barger and Phlllips`O} have suggested Shat the dipbump structure can be
explained in terms of the zeros of the Regge pole amplitudes associated with
the exceptional points cr(t) an non-positive integer, and given a model which con-
tains essentiaily energy independent Pomeranchul< amplitude and two Regge
poles Pt and to with a singie degenerate trajectory. In their model, as cr(t)
goes through zero or negative integers, the P' and to amplitudes come alterna-
tively in and out of phase with P because of the opposite signature of P' and
te, and the interference terms in the dfferenSial cross section tend to oscillate.
In order to reproduce plaus!ble structure for TÅ}P and PP and smoothness for
PP, the residue functions must have cyclic character whlch have double zeros
at right signature points and are correlated between P' and w. Tkis model
suggests the following predictions ; K"P and K-"P scattering should qualitatively
resemble PP and P-P; the oscillations shou!d disappeaic as sa"i as s--,co ; similar
dips should occur at large -t in inelastic two-body reactions associated with P'

or tu exchanges. ,   There is another way te interpret the dip-bump structure, especially for
the lower energies. For example Hoff`i} has proposed an interpretation in the
interference model, l.e., the secondary maxima result from the presence of
the resonance amplitude. This mechanism may be applied to the interpretation
of the possible dip-bump series. According to this the ratio of the differential
cross section at two points of the series should not have suchastrong s-
dependence as that predlcted by Barger and Phillips.
   There are many ambiguities in Regge pole analyses (not only at relatively
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large -l but also at forward scatterings). In ordinary Regge pole analyses it
is assumed that several Regge poles dominate the scattering amplitude, but, as
there is possibility that, in the region under consideration, a lot of poles with
the same quantum numbers may contribute or other effects may exlst, we should
consider the obtained Regge parameters as the effective ones. Therefore, when
we extend the Regge pole model to the higher mornenturn-transfers, we have
little definite inÅ}ormation on the behavior of Regge poles.

2. 3 Large angle scatterings of PP elastic Process

    Although experimental data of large angle scatterings at high energies are
insuMcient for detailed study of Regge pole theory ln !arge angles, but rather
accurate data in PP scatterings have been accumulated to some extent. The
large angle PP elastic scattering data`2),`3) show that the angular distribution is
nearly isotropic and the energy dependence is. as follows;`2) •

                          Zlg (o..-geo) -Ae-"PCM2, (2.s)

where

                         a - i il s2 91 ' for pL >< & , (2.g)

                              '                                                    tt
    Several authors have aÅítempted to explain the break of energy dependence
within Regge pole model. Huang et al.") have tried to reproduce the break
assuming that Pomeranchon with linear trajectory is dominant in the smaller
-t region and its contribution vanishes at -ts:7 because of wrong-sjgnature,
and then the moving cut associated with P becomes dominant. They have as-
sumed that tke contribution of the moving cut with branchpoint cro(t) is the
same as that of Regge pole with the trajectory aC(t), and found ap(t) =1+O.29t
and consequently aC(t)="1+O.145t. Subsequently Huang and Pinsky`5) ' have
analyzed the process in detail with two trajectories, which have been found
Consistent with 1+O.5t and 1+O.25t, and suggested that they correspond to the

Pomeranchuk pole andaRegge cut generated by it. •
   In these analyses the Regge pole terms have been assumed to behave as
sa(t}, but it is not correct because cosee approaches to a finite value as s ap-
proaches to the infinity with c.m. angle fixed. Therefore explicit form must be
used for Regge pole terms. Sakmar and Wojtaszek`G} have employed Pd'(coset)
as the Regge pole term and attempted to reprodttce the break with only
Pomeranchon whose trajectory is rnade cttrved suitably- and approaches to zero
in the infinite limit. Though they have not discussed the angular distribution,
it was pointed out`7) that their model, as well as that of Huang et al., predicts
wrong fixed-s angular dependence near the break region. 'There is another
attempt`8} in which trajectories are assumed to be linear in t and Q--a-i(cos 0t)

is taken for the Regge pole term. This model, under the assumption of one
pole dominance, can reproduce both the s- and t-dependence of the experiment-

al data falrly welL •   On the other hand• there, is a discussion on the total contribution of moving
cuts arising from many Regge poles exchanges to relatively high momentum
transfer scatterings`9} and another based on dipole exchange.5e}
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2. 4 Bacfeward scatterin.crs of TP elastic Processes

   As for the ffÅ}P backward scatterings at low and inÅíermediate energies (PL
S6) a lot of papers have appeared in interference model with considerable
sttccess (see g3). At high energies simple Regge pole models with only baryon
Regge poles have been presented (see also g4 in I).
   Recent experimental data5i} show that n-P differential cross section has a
dip at -u sO.2 with sharp backward peak and T-`P has a wide backward peak,
Then Barger and Cline52} have analyzed these data along with other high energy
data above PL ==4 on backward zÅ}P elastic seattering ; they have found that both
Nd and A6 trajectories are in agreement with straight line extrapolations through
the known resonance region, appearing to deviate at large -u, and that pos-
sible contribution from Ny amplitude necessarily must be small. Figure 4 shows
the fits to the new data with

                        aN. (V zt)=-O.38+O.88u. (2.10a)
                        ad, (V u) -- O.19+O.87u. (2.lob)
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  T-P with A6. 'lrhe solid curves show tke case of liner trajectors and the dashed curves
  nonlinear traj,ectories.

The dip near -u=O.2 of T"P is reproduced by the zero associated wiÅíh wrong-
signature nonsense vaiue of Na trajectory, and on the other hand that of a6
produces dip near -u = 1.9 in T-P differential cross section, which has not been
observed experimentally (as the contribution of A6 in T"P is much smaller than
that of Nd, the possible dlp due to A6 is bttried in the IVct amplltude). In order
to avoid this trouble the case of nonlinear trajectories has been also investigat-
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ed. The fit with

                                   O.21+O.9tt                         crdi(V-lint)== 1-1.6. , (2.11a)

                                   -O.37+O.9u                         aN.(i/'ii") == !-o.s. , (2,11b)

is also shown in Fig, 4. Another analysis53} based on the same mechanisrn has
appeared with

                    ad,(VU)=O•15+O•90u, (2.12a)
                    aN. (V u)- -O.33+O.11Vu +1.06u. (2.12b)

    On the other -hand an alternative explanation of the dip of fl'P has been
proposed by Contogourls et al.5`} In this model two fermion trajectories Nct
and Ny contribute with comparative real parts, and then an interference term
oscillates with the difference beÅíween the imag!nary parts of the trajectories.
Neglecting the A6 exchange as suggested by the smallness of its contribution to
rc- P scattering (the differential cross section at 1800 of T-P, the amplitude of
whlch is expected to be dominated by the A6 trajectory, is srnaller of one order
than that of rr"P) and assuming

                      aN, (V U) "= -2•0871/ ze +2.03zt, (2.13a)

                      aN. (i/'li) -= -O.5+i?i 2m2., (2.i3b)

they have had good fits to the differential cross section data. This model has
the following teatures which are in contrast with the models mentioned above ;
the value of -u at which the dip occurs decreases with s, and polarization of
recoil nucleon has rather large value, osciiiating with u.

g3. Interference medel

    As we saw in I and the previous section, Regge pole exchange model pro-
vides very satisfactory descriptions in many processes at high energies. On
the other hand, tl}e extrapolation of this model to lower energy region can not
be justified neither 'from theoretical nor experimental point of view : The Regge
pole term does no more dominate the scattering amplitude and other terms
such as background integral can not be neglected in lower energy region. In
fact the experimental data show a typical behaviour of resonance amplitude
near the resonant energy and the scattering amplitude should have poles cor-
responding to the resonances in the unphysica! sheet of the complex s plane,
which are never included in the Regge pole exchange arnplitude.
    The scattering amplitudes are, therefore, generally represented by two
terms, the resonance amplitudes, fs, and the bacl<ground amplitudes, fB (usually
represented by Regge exchange amplitude, fR) for lower energies. This is the
basic ldea of the interference mode!.
   In the following, we shall give a historical review of the interference model
and its applications. Further some arguments recently made in connection with
interference model are presented.
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3. 1 Historical review of the interference model

    The phenomenological analyses are made mosÅíly in TAI scattering data. In
the following, the main results of the interference model are presented.
   From the data of the total rc"P and T-P cross section (aÅ}), H6hler and
Giesecke55} analysed the charge exchange total cross section from 1 to 6 GeV/c
in laboratory momentum. The experimental data show resonance-like structures
as shown in Fig. 5, and at the energy of the maxima of at the curve in the Argand
diagram describes an arc of a circle in the counterclockwise direction. The
background amplitude is calculated and it was found that its energy dependence
is the same as the one of p Regge exchange amplitude. This seems to indicate
that the background amplitude is not very different from p Regge exchange
amplitude. This fact is confirmed by more detailed analysis of zAI charge ex-
change scattering data by H6hler et ai.56)

iii,,
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               f •2 3456       Fig. 5. The cross section of rc-P charge exchange scattering at Oe via the
         incident laboratory energy. The curve shows resonant-like structure.

    From the detailed analyses in rc--P charge exchange data in forward direc-
tion about 2 GeV/c by the interference modell, Carroll et al.57' determined the
spins of N*imi/2 (2190), N*i.3i2 (1920) and AI*i..3/2 (2360), and further showed
that the process can be well described by the interference model. Aiso dip
and the secondary maximum of z'"P elastic scattering cross section in the region
from 1.7 to 2,5 GeV/c are interpreted as being due to resonance effects.`i),58}
This may be confirmed by the analysis of Barut and Kleinert,59) according
to whlch only a Å}ew partial waves contribute to the cress section near the se-
condary peak whereas all partial waves together make up the diffraction peak.
   In order to get information about the spln ot a resonance frorn the be-
haviour of the differential cross section near the resonant energy, the magnitude
of the background amplitude should not be much larger than that of the re-
sonance amplitude. For higher resonances, the situation is favourabie in the
backward reglon. Heinz and Ross60) analysed the backward TÅ}P cross sections
between 2.1 and 5.5 GeV/c, where they assurned the background ampiitude is
primarily due to N exchange.
   Systematic analyses are made by Barger, Cline and Olsson6i) in differential
cross section at 1800 of n-p elastic scattering, the difference of a" and a", and
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the difÅíerelttial cross section at OO o'fi T'"p charge exchange, scattering, Some
analyses are made by this model in connection with the finite po!arization effect
observed in rcm"P charge exchange scatteriRg.62)
    In all cases, the resonance aniplitude is assttmed to be represented by the
sum of Breit-Wigner resonance tormulae, acnd the sum of the amplitudes, fS
and fR, does not guarantee the unitarity.63} We s•hall glve an irnportant com-
ment on this point in gg3.3.

3. 2 The validily of the interference model-double counting

    ObjecSions are made against the interference model in regard to the pos-
sibility of double counting from two polnts of view. One is the formal sugges-
tion made by Sckmid,6`) and the other is the overall phenorrienological analyses
ln the zN data made by Chiu and Stirling.65'
    (a) Tlte Regge amplitude is usuai!y expressed as

                         f.-21,l,:.im,.e.//zia.B,:t)(-i-u)a l, (,.b

where the residue function B(t) vanishes at the polnt where cr(t)==O, -1,
-2,••••••, akd the residual factor of B(t) is usually taken to be consÅíant unless
more strongly ghost-killing factor is assumed. According to Schmid6`) the parSial
wave amplitudes fe in the s channel describe circles in the Argand diagram as
the energy increases, which are usually associated with resonances. For the
z- P charge exchange, the energy at the top of the circles ls plotted tor each l
and he concludes that these series correspond to IV": Regge trajectory in the
direcÅí channel. Thus ke argued thae the direct-channel res,onances are already
contained in the Regge amplitude of the crossed channel and the sum of the
two terms leads to double counting.
   In order to understand tke situation qualitatively, let us take the residue
function as

                              B(t) =sinzcr•r. (3.2)
Then the partial wave expansion is obtained,66)

         fe = -S-fL, (1 Å} e- ina) e"i"(E/Eo)p, (2) d2

          ..(-iu)eve-2fe2a'ie(-2le2a'lnE/Eo)

          Å} (-,EEirrm, ) "'O -2le2cr' e- ire(crO-2fe2ev' - Ml)7', (21e2cr'v-(imut ]E)/wwE"U)-2 + rr2)

           (tan mrr == 1.(i}fE,)), (3.3)
where we used the following formulae,

                        S.1,aET.llilS2Ll,}.li.1i:,Pt(2) l. ,,.,,

Frorn Eq. (3.3) we see the oscillating propery ls due to the spherical Bessel
function l' e. '
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    (b) Chitt and Stirling65) analyzed all the available data on zN scattering
and divided the experimental datE lnto three groups.
(i) The data with which the interference medel is compatible :
       rc"P total cross section, r-"P forward differential cross section, f-P
    polarization, and Tm"P charge exchange differential cross section.
(il) The data of which the interference rnodel does not give a unique quanti-

    tative description :
       n-'P dlfferential cross section at 1800.
(ili) The data for which the interference modei does not work :
       T"P differential cress section at 1800, x"P polarization, and the sum ot
    a" and ap.
    In most cases of grottps (i) and (ii), there are iarge cancellations between
nearby resonances, or resonance contributions are very small. In the case of
group (iii), the prominent resonances enter with the same sign in the scattering
arnplitude. Especially in the sum of the a" and a-', the resonances contribute
constructively to the background Regge amplitude and Åíhe total amplitude does
not oscMate arouRd lt, contradictorlly with the experlment.

3. 3 The validily of the interference model-againt the possibilily of double counting

    The unified understanding of the phenornena in the intermediate energy on
the basis of the interterence model has been disturbed not only on account of
the ambiguity of tke qualitative description, but also on account of the larger
and constructive contributions of the resonances. How can we eliminate the
double counÅíing or overestimations?
    (a) As was pointed out in gS3.1, unitarity is not guaranteed by the sum of
ainplitudes fS and fn. It is well known in nuclear physics67} that the resonance
amplitude is not in general described by the simple Breit-Wigner Serms with
constant widths acnd elasticities except when the incident energy is near the
resonance energy and the bacl<ground contribution is neglibible. The more
general expression6S} for resonance amplitude can be expressed in elastic case

as

                          fs... ;, >l]E!'i!.'f`,(,E')ie2i6`p,(g), (3.s)

                             2(lee-k)                                     , (3.6)                          ec = r(fe)

where le is the c.m. momentum, let corresponds to the mass of the resonance,
1'(Ie) is the total width and xt is elasticity. The important factor 6L is the
phase of ' the bacl<ground amplitude and f,(le) ls the form factor, which satisfies
the following relations by definitioR,

                               IEts,ll'i",ig""' l•' (3•7)

and in general ft(le) is decreasing function of (fee-le)2. These two factors fi(le)
and e2i6`, are omitted in the usual Breit-Wigner approximation.

    In order to see tke difference, we sl)all show in Fig. 6 the typicai behavior
of these total amplitudes in the Argand diagram.G9) If we use thls general
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Fig. 6. The Argand diagram of Si=e2iopt.

  (i) The Breit-Wigner type of reso-
      nance formu!a are used.
  (ii) The phase factor is taken into
      account as is seen in Eq. (3.5).
 Note that the curve in the case (ii)is
 always within the circle with its center
 in origin and radius vi.

expression, the interference model reproduces the experimental data on the rr"P
backward scattering and the sum of zÅ}P total cross sections70) (these belong to
group (iii)). More overall calculation will be desired by the modified model.
Another modification, due to Takagi and Miyarnura?i) is to put

                              fum-fs+ (1-R)fR, (3.8)
where R depends on the incident energy.
    (b) We have already seen in the previous section that the circles in the
Argand diagrams are direct consequence of the phase factor exp(-iTa), and
not the result of a particular form of a Regge amplitude. The phase factor
is a general feature of the amp!itude behaving asymptotically like sd(lns)B
(ln lns)r•••••• for fixed t and tollows from the crossing symmetry.72) Further-
more one should not associate the circles with resonances in the direct chan-
nel,73) since there are not poles in the unphysical sheet in the partial wave
amplitude of Regge exchange terms.

3. 4 Some comments in connection with the interference model

    In concluding thls section, we are to make some comments on the finite
energy sum rules and propose some problems in connection with the interference
model.
    Finite energy sum rule was first proposed by Igi and Matsuda,'`) who as-
sumed that the scattering amplitude is approximated by the sum of resonance
amplitude (fS) in !ow energy region and by the Regge pole amplitude (fR) in
high energy region : i.e.,

                        fumumliil'+fR f;.oOi iit-leil)'i<--ko (3.g)

and make use of the following superconvergence relation,

                            f:Im(f-fR) dk-e. (3.10)



                          REGGE POLE TKEORY. II 71

Recently it is proposed that finite energy sum rule mlght be used for bootstrap-
like caiculaÅíion.75},'G} In order to determine the Regge parameters frem the
lnformation of the crossed channel, the Regge amplitude should vanish !n the
low energy region. We have no reason, however, to make Åíhis assumption.
In fact we have already seen in gg3.1 the background amplitude is well represent-
ed by p Regge exchange amplitude at least in rr"-P charge exchange process.
Accordingly we must put

                           f=fn+fs for lesfe,, (3.11)
and then Eq. (3.10) leads

                               ke                              J, Im fsdle-o, (3.12)

where we have no Regge parameters.
    Even if we do assume

                            (f7,f,,S6, (for lesleo). (3.13)

then superconvergence relation reduces to the foilowing relation,

                        i:OIm fsdk -- jeOIm fRdk t.-v• o. (3.14)

Thus we can not get a bootstrap-llke equation.
    Dolen, Horn and Schmid75) proposed the modified representation of the fol-
lowing form,

                            f=fR+fs-<fs>. (3.l5)
In this case superconvergence relation leads to a triviai result as follows,

                          i, J50imfsdle == im<fs>. (3.i6)

In order to get a usual finite energy sum rule, we must assume the bootstrap-
like equation itself, i.e.,

                          J50imfsdle=:J,kOimfRdk. (3.i7)

From the above discussions, the question75) about the interfefence trnodel from
the view point of finlte ene.rgy sum rules seems to have no clear cut meaning.
    Next we must note tlaat the separation of the amplitude into the resonance
and background term is not unique as is well known ln nuclear physics. The
most general definition of the two terms are that the resonance term fiuctuates
very ra. pidly with energy and the bacl<ground term is the sum of effects other
than those contained in fs. The far-away resonances can be included, there-
fore, either in fS or fn.6') In order to see more detailed mechanism of these
two terms, we are obliged to study the origin of the resonances, and then we
might be able to see the structure of the so-called "elementary particies".
    The third comrnent is on the crossing symmetry. Overall representation of
Regge poie amplitude valid both in the direct and crossed channels is not yet
obtained. In particular, the full amplitude ls not approximated by the t-chan-
nel Regge pole terms alone in low energy reglon in s-chi.nnel or ln the case
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of direct t-channel, since background integral can not be neglected. Some at-
tempts are now in progress, in relation to the modified Regge amplitude,77) the
interpretation of the Regge pole model discussed77},78) by Van II[ove7") (see g7)
or unusuall properties of Pomeranchuk trajectory8e) (see g2).

4. Contribution from others than moving po}es

   In the complex 1 plane, in addition to the moving poles, there may exist
fixed singularities or moving cuts of kinematical or dynamical origin. Several
theoretical argttments for the existence of these singularities, based on Man-
delstam representation or in the field theory, have been presented. Tlte esti-
rnation of their contribtttion, however, is difficult in Regge pole analyses be-
cause of little information abouttheir behavior and of many ambiguities in tke
experimental data.
   On the other hand the unusual behavior of Pomeranchon is widely known.
This may have relatioR not only with the singu;arities montioned above but
also with other effects lil<e absorptive correction.
   In the following we take up these prob!ems.

4. 1 Fixed singularities8i)

    It has been pointed out that partial wave amp12tudes have fixed singularities
in the complex J plane at nonsense points of wrong signature which come
from singularities of second kind rotation function and the existence of the
third double spectral function in the case of relativistic scattering. Gribov and
Porneranchuk82} have argued that the unitarity relation, when such fixed singu-
lariÅíies exist, is respected only by the appearance oi essential singularities
(Gribov-Pomeranchuk singuiarities). Mandelstam83) has shown, however, that
in the presence of cuts in the 1 plane the arguments for the essential singtt-
larities must be modified and that the essential singularities do not occur on
the real axis of the 1 plane. Jones and Teplltz,8"} and subsequently Mandelstam
and Wang,85) have suggested that even in the presence of cuts fixed poles can
exist where the Gribov-Porneranchuk singularities would be expected in Åíhe
absence of cuts.
    Such poles rnal<e on!y smal! contributions to the asymptotic behavior but
would modify in effect the form of the moving pole contribution. In the case
that the coktribution of the third double spectral function is not too small, they
invalidate the old mechftcnism (see g3 in I) for the presence of dips at wrong
signature polnts, whieh are expected to occur in the absence of the fixed poles ;
they bring about shifts of the dips away from the points where the trajectory
actually crosses the i`eal points, or fillings of the dips. Experimentally there
is no clear-cut evidence for such shifts or fillings of dips due to fixed poles.

4. 2 Cuts contribution

    There are sorne theoretical argttments for the existence of moving cuts in
the frame of field theory.83),86) We have no reliable tools in studying the be-
havior of the possib!e cuts, and so the behavior of cuts obta!ned from Feynman
diagram calculation is usualiy consulted.

    It ls expected that simultaneous exchange of several Regge poles87) gives
rise to moving cues. The branch point of the cttt arising from the exchange
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of two Regge poles with trajectories ai(i) and cr2(t) is given by the maxirnum
Of ai(t')+cr2(t")-1, under the constraint that t', t"Å~<O and (-it)i!2+(-lf')ii2Å~<
(-t)i/2. For linear traiectories iÅí is given by

                 aC(t) - cri((.,,a+2'.,v)2t] + cr2[(.,,a+".-,,)2t) -1, (4.1)

where cri' and cr2' are slopes of original trajectories. In the case of simultane-
ous exchange of n identical poles with trajectory cr(t), the branch points of the
induced cuts are given by

                  crCcn}(t) :na("t,-.)-n+1 (n=:2, 3, ••••••). (4.2)

    The contribution of the cuts to the 1iigh energy scattering amplitudes tal<es
the following form ;
                                '                  fc(,, t) ..feve(t)dl c(1, t) (-iilr)'ki-;r7J, (4.3)

where C(1, t) is the reduced discontinuity of the t-channel partial wave am-
pliSude in the 1-plane with the Åíhreshold dependence (qei qtf)" factored out.
    Two attempts are made to explain the experimental data, !n which moving
cuts play important role: One is the problern oÅ} the energy dependence of
recoil neutron polarization in the process rc'"P->r,On. In additlon to p-pole the
leading cut associated with the p- and P-exchange is taken into consideration
by Lany et al.SS} The model gives increas,lng energy dependence of thepolari-
zation, while• alternative explanations predict decreasing polarization;89} the
experimental data are so scarce and ambiguous that we can not exclude either
of them.
    Another is the atÅíempt to reproduce tlie differential cross sectlon of PP
elastic scattering at c.nz. angle 900, employing the eut arising from the exchange
of two Pomeranchons in addition to the Pomeranchuk pole. Experimentally,
in the vicinity of incident rnomentum 8 GeV/c, a remarkable break has been
diseovered in Åíhe differential cross section at 900. Huang et al."} have explain-
ed the break by the scheme that P pole exchange contribution dominates the
scattering arnplitude in the smaller -t region, vanishing at -t==7 (GeV/c)2
because ot the zero of the sigkature factor, aRd that tken the moving cut
dominates in the larger -t region. In Åíhis model, bowever, it hasbeenassum-
ed that the cut is treated ina simple way as if there wereaRegge pole at
1=:cre(t).

    As for the total contrlbution of all the cuts arising from multi-Pomeranchon
exchange, Anselm and Dyatlov`9} hft`ve estimated it; the contribution to the
amplitude is written as

              A(s, t) ==stlll.),B.(t, 6)(4fSn,)evC`n'(t)rmi, e :ln--4-iSn,, (4.4)

and the coethcients Bn(t, O are estimated as

           Bn (t, O -m (-i)n exp (-n•a(!n T, ln g) ), T--ap' (O) t, (4.5)

with an unknown well-behaved function a(lnr, ln6). Then they have obtained
for the dfferential cross section at intermediate angles a formuia like Orear's,
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i.e., it decreases exponentially with (-t)i/2 and also exhibits additionftcl oscil-

lations,

   On the other hand under the assumption that scattering amplitude behaves,
for large s, as

                  f(s, t) tg(t)sa`t' (ln s)B"' (ln ln s)r(`,••••-•, (4.6)

Gervais and Yudar6in90) have shown

                           a(t)iiiil for t<O, (4.7)
if all the cuts arising from Pomeranchul< pole are taken into account. This
means that the diffraction peak hardly shrinks; this result is favorable for
elastic scattering. In inelastic two body processes, however, shrinl<ings have
been observed experimentally, for examp!e, in TN charge exchange scattering,
whereas the result of non-shrinking properties can be obtained also for inelastic
processes in a similar way.
    Akhough it can not be excluded at present the possibility that the slow
shrinl<ing due to logarithmic faetors in Eq. (2.4) can reproduce the experiment-
al data, a way out of the above situation is to assume that the Pomeranchuk
intercept is

                           ap (O) =1-E, E> O, (4.8)
Then, the branch points arising from exchange of a po!e with trajectory a(t)
and many Pomeranchons no longer accumulate at ap(e), but rather give an ef-
fective twisted trajectory creff(t) which becomes flatter as -t increases. In this
case one obtains again a behavior similar to Regge pole type diffraction peak
(not only for inelastic processes but also for elastic processes), but the total
cross section should tend to zero as s--oo (it can not be excluded experimental-
ly at present). The twisted trajectories9i) may correspond to the bended tra-
jectories which are sometimes employed in phenomenological Regge pole analy-
ses ; present experimental data do not give any definite answer to the question
how the trajectories behave at larger -t value, linear or bended.
    Now, leaving aside the difliculty of the infinite accumulation of branch
points associated with multi-Pomeranchon exchange, let us continue to present
another aspects of moving cut contribution. As for the !atter in the forward
direction Freund and O'Donovan92) have estimated the cut effect due to simul-
taneous two-pole exchange, by calculating simple AFS cut86} contributions to
the unphysical amplitude; they have suggested that it is srnaller than 5JO)6o in
inelastic zrr scattering at twwO, while it is seizable, i.e., up to 15--30P06 in elastic

na channel. We note also that the presence of cuts introduces spin-dependent
effects in the forward scattering, which are absent in pure Regge pole models.
Dunne93) has investigated the processes PP-}PP, KP---,K*P, rP-nOP and TP-A2P,
and pointed out Åíhat these effects are actually present only if one considers
cuts generated by three- or more-pole exchange ; the spin dependent amplitude
of PP scattering can behave as s/(lns)5 at t=O (pion conspiracy mechanism
predicts that it behaves as sa:(O); see also Eq. (6.10)), Various discussions on

the tests of moving cuts have been presented also in othey processes ; we refer
the reader to Refs. 94 and 95 for IVN scattering, Ref. 96 for photoproduction
of TO from nucleon and Ref. 97 for the reactions T-(K-)P-K'(rc")Z'.
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4. 3 Unusztalily of Pomeranchon and absorPtive correction

    In ordinary Regge pole analyses the trajectory of Pomeranchuk pole must
be taken to have very small slope in negatlvetregion, which is not even in-
consistent with a fixed pole ; this particular behavior comes from the nonshrin-
kage of the forward peaks in the elastic scattering differential cross sections.
Extrapolating this trajectory function to the positive t region, we can not find
any known resonances which correspond to the Regge recttrrence of Porneran-
chon. Other trajectories can have, in negative t region, slopes not too dlfferent
lrom the almost universal slope of 1 (GeV/c)-2 and be associated with series
of known resonances which correspond to their Regge recurrences. The as-
surnption of the existence of Pomeranchon has been requested solely from the
behavior of total cross section, that is to say, the latter seems to reach to con-
stant value in the high energy limit. Therefore we should now consider that
the Pomeranchuk trajectory does not belong to Regge trajectory but corresponds
to other effect,

    HarariSO} has suggested, using the resonance approximation to finite-energy
sum rules, that the Pomeranchuk pole is mostly built from the nonresonating
background in the Iow energy amplitudes, while the other poles can be usually
described in terms of the resonance approximation for the low-energy region.
The starting point of his argument is the observation that some processes such
as K"P, PP scatterings Seem not to involve any important resonances in the
low energy region whereas others such as K"P, P- p exhibit very rlch resonance
structure, and on the other hand that the Pomeranchuk pole dominates the high
energy scattering of all these processes. According to this, in case of the scat-
tering with no important resonances, cancellations should occur between the
imaginary parts of the Regge pole contrlbutions. Subsequently Gilman et al.98)
have given quantitative discussion along this scheme, considering the C== +1, I
==O t-channel amplitudes for nN and KN scattering to find Regge pole para-
meters of Pr.
    Oehme9") has suggested the possibility that the Porneranchuk pole is a fixed
pole, but subsequently Finkelstein and TaniOO} have pointed out that Mandelstam's
mechanism, wltich was suggested by Oehme, is noÅí sufficlent to allow the
Pomeranchon to be fixed pole. There are some other arguments'O'),'02) in re-
lation to the possibility that Pomeranchon ls not a usual Regge pole. In these
arguments it has been intended to avoid the essential singularity at t=O which
comes from the series of branch points arising from simultaneous exchange of
many Pomeranchuk poles in the case of ap(O) ==1.
    There is an attemptie3) to replace the contribution of the vacuum pole by
shadow scattering in elastic scattering; 2n this attempt the absorpÅíion correc-
tion works also in inelastic processes (see g5 in I). On the other hand SquiresiO`)
has derived a formula for cut contribuion to inelastic amplitude, which looks
like absorption correction. Furthermore Phillips'05} has suggested the possibility
that absorption correction piays, as the singularitles in the cornplex 1 plane,
some part in generating a conspiracy of poles.

g5. Dynamical determination of Regge parameters and rising trajecteries

    Regge parameters in potentlal scattering can be calculated either by solving
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direcÅíly Schr6dinger equation or by using Cheng-Sharp equation`e6},i07) for Regge
parameters themselves. The latter scheme is based upon general principles
such as analyticity and unitarity and so can be easily generalizediO') to a re-
lativistic case. .There are, however, essential differences to be noticedbetween
nonrelativistic and relativistic Cheng-Sharp schemes :
   1) Only one channel in potential scattering but many in relativistic scat-
tering.

   2) Potential deterrnines subtraction constants, while they should be de-
termined by crossing in relativistic case.
   3) Regge trajectory turns over above some finite energy in potential model,
whereas all evidence points to infiniteiy rising trft.jectories in relativistic scat-
tering.

   Let us first discuss nonrelativistic Cheng-Sharp scheme, then extention of
iÅí to a relativistlc cftcse with a particular attention to the asymptotic behavior
of Regge parameters, and final!y rnention a few applications.

5. 1 Analyticity proPerties of cr(s) and B(s) and unitarity

   In potential scattering with a superposition oÅí Yul<awa potentials we 1<nowi08)
that a(s) and B(s)/(4q2)a`S), trajectory and reduced residue functions of a Regge
pole, are real analytic in the cut s-plaiie with one cut extending from O to +oo
unless the pole collides with another one (this case will not be considered
here). Here, s=rm q2/2m, q=relftc tive momentum, and m==reduced mass==1/2 (put).
Moreover, we 1<now that for s-,O

                         }Ia,g(be-st=,,o.si,g{,o'""2)•) (s.i)

and for s->oo

                         cr (s) -} -n- ig2/2V s , 1

                         B(s)- b,ffl, i (5•2)

fQr n-th Regge pole (denoted by crn and Pn). g2 is glven by an integral of
spectral function entering in a superposieion of Yul<awa potential. We then
write dispersion relations for crn(s) and Bn(s) subtracted at infinity :

                      a,, (s) - -n+ -il;-f,co,il"mcrgtES,'.,) ds,, (s.3)

         R. (s) == -ii7- lll./7i (S :I; S`) exp (-il;- l: ai'g B" (S') I],I-M, crww"i.(,S')1'i (S'/S) d,, ). (s.4)

One rnay also write down dispersion relations subtracted at finite s=se; sub-
traction constants then depend on so. Note that Bn(s) has (n-1) zeros on the
negative real axis which are explicit in (5.4).
    Unltarity

             a(1, s) -a*(1*a,s) -2iVsa;':(1*, s)a(f, s) (s>O) (5.5)

relates Iincr(s) to B(s). The relation depends on the representation of the
partial-wave amplitude a(1, s) and on how many poles are retained in,uniin` rity
relation. The simplest approximation is to tal<e only one trajectory an(s) and
write a(1, s) == Bn(s)/(1-an(s)) ; in this one-pole approximation one obtains
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                    Im crn (s) == VsBn (s), Bn (s): real. (5.6)
Combining this relation to (5.3) and (5.4) provides us a set of integral equa-
tions for Regge parameters (Cheng-Sharp equations). It is not hard to include
more po!es and improve the representation of a(J, s) in order to get more re-
liable numerical results on cr(s) and B(s); we refer the reader Åío the litera-
tureie9),iiO} on this point.

    A set of infinitely many coupled Cheng-Sharp equations is, ln principle,
eqttivalent to Schr6dinger equation. In practice, one- or two-pole approxirna-
tlons are made with appropriate represen`tations of a(L s). Agreement of such
crudely approximate so!utions to the exact one'ii) is not bad and in some
CaSes excellent.i06),iio}

    The above CheBg-Sharp scheme can be easily extended'07} to a relativistic
case. If we assume the validity of Mandelstam representation, we can provei07),ii2)
(1) one-cut real analyticity of a(s) and Btj(s)/(4qiqj)a`s', (2) holomorphy of the
partial-wave amplitude aij(Ls) for Re1>Arkl)-O and (3) the validity of once-
subtracted dispersion relations for a and Bij (the subscripts i, 1', distinguish
two-particle channels and qi denotes relative momenÅíttm in the channel i).
Here, and in the following, s is total c.m. energy sqwared. Two-particle uni-
tarity ureads

           aij(1, s) -aii*(1*, s) =2iXpk(s)akt"' (1*, s)aieJ• (L s)0(s-sre), (5.7)
                                k
where pk(s)=:2qic/Vs and sic means threshold of the channel fe. Frorn (5.7) one
can prove factorization of residttes : Btj2==BiiBjj•.

    In exactly the same way as in a potential model, one writes down a set of
coupled integral equations for a's and B's; the relation of the latter two
now depends also on how many channels are taken into account. This seÅí of
eqttations, we stress, is valid only for trajectories which turn over above some
finite energy. We also note that at this stage subtraction constants are free
parameters to be determined from experiment.
   There are, however, a number of experimental indications that Regge trajec-
tories rise indefinitely with energy, We shall give a few in the next subsection.
For such trajectories one needs two subtractions in the dispersion integral for
a(s). Aiso the boundary condition on B(s) may be quite different frorn what
we would expect for Regge trajectories which turn over above some finite
energy. On the other hand, there is a theoretical question as to whether in-
finitely rising and falling trajectories are allowed in the present frameworl< of
S-matrix theory. We shall come back to thls question later.

5. 2 Rising. tra7'ectories

   It is possible to determine a(s) and B(s) at two or three points by rneasure-
ments of the spin and width of the appropriate particles or for sE$IO of the
asymptotic beliavior in the crossed channel.
   Strictly speaking, it is only p trajectory that a(s) and B(s) have been pre-
cisely determined for -1 (GeV/c)2Ss;:$IO, a(s) is cieariy linear in s and B(s)/
(4q2)a(s) has an exponential dependence for s<O. The trajectory may or may
not be projected linearly to s>O. The former seems to be more likely; many
resonances found by Focacci et al.ii3) seem to lie on the p trajectory if the laÅí-
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 ter increases linearly with s.

    Regge dip mechanisms, applied to larger momentum transfer region as
 described in g2, if correct, wold constltuÅíe the first evidence for falling trajec-
tories (also linearly in s) in the space-like region up to, say, -s s3 (GeV/c)2.

    As Åíor baryon trajectories, the situation is less elear regarding the s-
dependence of a(s) Å}or s<O, while we have more information on cr(s) for s>O
than for meson trajectories. Thus lt appears that many zN resonances as well as
KN ones lie en Regge trajectories which also increase like s with increasing s

 (up te about 32 (GeV/c)2). Fig. 7 depicts the situation for baryon resonances.
    Now we are in a position to ask whether Regge trajectories which satisfy

                         a(s)--+Å}oo as s---+Å}oo (5.8)
coexisÅí peacefully with the standard assumptions of the S-matrix theory, as
first raised by Khuri.i'`) The standard assumptions mean the following. Let
f(s)==exp(lsli'2He) with e>O. For the simplest case of equal mass (m) spinless
particles, (1) the scattering amplitude f(s, t) is analytic in the cut s-plane and
bounded by f(s) in lsl as Isl-"oo for fixed finite t; (2) f(s, t) is bounded by f(s)
in Isl as lsl-oo for fixed -1$cos es$1 ; (3) the parÅíial-wave amplitude a(1, s)
satisfies necessary condltions for the Sornmerfeld-Watson transform to be valid ;
(4) a(1, s) is bounded by f(s) as [si.oo forf not near a Regge pole. Moreover,
(5) both a(s) and r(s) =B(s)/(s-4m2)"`S' are real analytic with one cut from
s==4m2 to +oo and cr(s) but not r(s) are bounded bY f(s) as ]sl--oo in all direc-
tions. We purposely did not lnclude in (5) polynomial bottndedness of B(s)
since it is clearly violated for trajectories (5.8).ii5) Khurii'`} showed that the
above assumptions imply, in a single pole approximation, that

                  lirnIB(s)Pa{s}(coses)1<f(s) (fixed cosO,). (5,9)
                  S-yos
Since Pd(z)<eCa as a.+oo where C>O, (5.8) is consistent with (5.9) if and
only if B(s) decreases exponentially or faster as s-+oo. Thus Regge trajec-
tories satisfying (5.8) are noÅí inconsistent with the standard assumptions if the
residues B(s) show an exponential or faster decrease with cr(s) as s--.+oo.
Tlien how fast can Regge trajectories increase as s--->oo ? They cannot do more
slowly than ]sl'i2/lnlsl as [sl-oo as shown by Kkuri. It ls shown by Idaii6) that
under physically plausible assumptions on a(s) (but not any on the residues
B(s)) Regge trajectories cannot increase faster than linearly in s and more
slowly than Isli!2"e, with an arbitrary e>O. For such trajectories one can write
the dispersion relation

                a(s) -A(s-sb) +B+S rm.SbJ,co, (,, I-ngi(s9 'rm) s,) ds', (5•10)

where sb is tke subtraction point. This is consistent wiÅíh experlmental indica-
tions discussed above. We tal<e (5.10) as being valid for Regge trajectories to
be discussed below.
   In passing we remark that an exponenÅíial decrease of B(s) is consistent
within the present experimental errors for zN resonances, as pointed out by
Goldberg.ii7}

5. 3 Dynamical determination ofRegge Parameters

   Our next task is to find an integral representation for B(s) in accord with
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the boundary condition (5.9) and the Mandelstam symmetry. The 1ftctter (see
gS4.1 in I) 'is usually guaranteed by assuming

                           B(s) b, (s)                         '('4'if2')wwctV' =I"(a(s)+3/2)' (5•11)

If we put bi(s)-=e-CSb(s) with c==d+A(1-lnA) and b(s) being a polynomial,
then we have B(s)->e-ds as s-,+co :

                    B(s) e--dse A(lnA-l)s b(s)
                                             (d>O). (5.12)                   (4g2)aCs)- T(a(s)+3/2)

(Note that cr(s)-}As as s-+co and r(z)->eZinZ'Z-(i!2)i"2.) For this choice of

                                     :-}oeB(s), one has the following integral representatioh subtracted at s ==sb :

    B(s) ..b(s,)e--dse-A(l-l"A)(4e2)A(S-Sb)+Bp-i (a(s) +3/2) Å~

      X exp (S -rcSbi,Oe, (s, -s -g•eS)' (s, -s,) {er (s') -l- 0B (s') - Im a(s')ln(q'2/e2) }) , (5.13)

where r(a(s) +3/2) -= 1l'(cr(s) +3/2)le`Op`s' and B(s) - IB(s)ie`ee(s).

   Ifi we now use the unitarity (5.7) to the expression aij(1, s) ==Btj(s)/(1-a(s))
and go to the pole position f==a(s), we obtain

           Irri a(s) BiJ• (s) - XO(s-ste) pk• (s)Bki(s) BkJ• (s) (Bo• : real). (5.14)
                        lt
Integral representations of the type (5.13) for Bij(s) and (5.10) together with
this relation (5.14) constitute a set oE coupled integral equations for Regge
parameters a(s), Bij(s).
    The simplest case is to take elastic channel only (i==j--fe); (5.i4) reads
then

                           Im cr(s) == p(s)B(s), (5.15)
but this is not consistent witk (5.12) and the fact that Im cr(s)oc reoeata
particttlar resonance position and Lot has rather small s-dependence as impli-
ed by experiinent. In order to avoid this inconsistency, we can invol<e the
explanatlon that in (5.14) sum over le7ii--1' cannot be neglected as well as
contributions from multiparticle intermediate states. One has then effectively
instead of (5.15)iiS}

                           kin cr (s) =p(s)B(s) edS (5.16)
where d is defined by (5.12). Then Irna(s).s-i as s-,+oo.
    The set of eqttations (5.10), (5.13) and (5.16) was used by Epstein and
Kausii8) for calculating the p trajecÅíory in f rr scattering. Subtraction constants
bi(sb) and A (since Reap(mp2)==1, B=1 if sb ==mp2) are determined from Tp-.rr
and the intercept ap(O), the latter being wel! determined Erom fit to z-P-}xOn
as seen in L Their soluÅíion for a typical case is depicted in Fig. 8.
    Mandelstamii9) has pointed out that in relativistic scattering the subtraction
constants are not free parameters to be determined fz"om experiment but are
determined by crossing. From the latter point of view ke proceeded by em-
ploying tke narrow-resonance approximation (Ima=O and the absence of ex-
ponential in (5.13) for B) and introducing the generalized superconvergence
relation as crossing relation in a framework o'f bootstrap dynamics. Kis result
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 Fig. 8(a). The p-trajectory calculated by Fig.8(b). Thereducedresiduefunction,b(s),
  Epstein and Kaus (Ref. 118) in terms of of the p-trajectory as calculated by Epstein
  the Cheng-Skarp equations described in the and Kaus (Ref. 118) with the same para-

  text (gg5,3). meters as in Fig. 8(a). b(s) is defined by
                                       Eq. (5.12) in gg5,3.

!s only preliminary and more Tealistic case should be carried out as to whether
the above scherne is useful for calculating Regge parameters.

g6. CoRspiraey of Regge po}es and related problems

    As briefiy mentioned in I, it has been recognized'20},`2'} that relativistic
Regge pole theory has unsuspected conspiracy features. Roughly speaking, this
amounts to saying that Regge poie does not exist as an isolated one at zero
energy, that is to say, a set or sets of infinite Regge poles but not a single one do
form an irreduc!ble state at t=O. This will be made clear in the subsection 2.
    It has been also realized that the Regge reptesentation kas a simple and
natural group theoretical meaning. Joos' remarki22} on this point has been fol-
lowed by much worki23)-'28} on the so-called little group decomposition of the
S-matrix elements which we shall summarize in the first part of this section.
    It is to be noted that a possible conspiracy (in a narrow sense) was first
realized by Volkov and Gribov20) who studied restrictions imposed on Regge
pole model due to crossing and analyticity. The case they considered turned
out to be a particular case of more general phenomenon which one encounters'29}
in the normal Regge theory. It wM be treated in SS6.3.
    Phenomenological applications of conspiracy of Regge poles to those reac-
tions where norinal Regge pole model fails to be applied have been rather suc-
cessful as seen in g2. In the last paert of this section some qualitative features
of conspiracy will be revealed.

6. 1 Little groaP decomPosition of a iwo-body scattering amPlitude

    The littel group decoinposition of a two-particle scattering amplitude is the
diagonalization of the S-matrix elements S(P3R3, P4R4 ; PiRi, P2P,2) for fixed energy
PmmPi+P2==P3+P4 or fixed momentum transfer Qww=Pi-P3=P4-P2. For fixed P",
we put together particles 1 and 2 into in-state and 3 and 4 into out-state. The
in- and out-states are decomposed into partial waves each of which belongs to
a unitary irreducible representation (IR) of the litt!e group SO(3) which leaves
P" unchanged. Since S is an invariant operator which maps in-state onto out-
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state, Wigner-Eckart theorem states that S is diagonal in J, the Casimir value
wltich specifies a unitary IR of SO(3); '30) this corresponds to the usual partial-

wave expansion of Jacob and Wick.i3i}
   Alternatively, one may mal<e S diagonal according to a little group to which
Q. !s stable. This case corresponds to expansions of the S-matrix elements in
terms of unphysical representations of the Poinear6 group and Joosi22) was the
first who recognized any possible relevance of this expansion to Regge theory.
              -}For -Q.2==Qo2-Q2==t<O, the little group is SO(2,1) ; its IRi32' !s specifted by a

parameter a which takes the significance of complex angular momentum in
Regge theory; this IR is unitary and infinite-dimensional if (a+1/2)2<O or -1
<cr<-1/2 or a==integer or half integer. Grouping particles 1 and 3 to pseudo
left-state and 4 and 2 to pseudo right-state and expanding each pseudo state
into "crossed" partial waves which are characterized by cr, one sees that S is
made in a bloek form, each blocl< being specified by cr. Since pseudo states
are not ordinary physical states, it is not necessary Å}or ct to be in the ranges
of the unitary representations.i33) It !s worth noticing, however, that the Regge
background integral corresponds to the integral over one oE unitary domains of
a (a=-1/2+ia, -oo<a<+co ; principal series).i23),i25),i26)
   For t== O, tke little grottp depends on the external masses since the apex of
the light cone Q.2utO is a physical point in the s-channel on!y Åíor pair-wise
equal mass cases. For the latter, therefore, it is the homogeneous Lorentz
group SO(3, 1); thus ior this partlcular case S is diagonal in the Casimlr values
a, M where a is continuous and M discrete. A pair of parameters (a, M)
specifies an IR of SO(3, 1).i3`} Submatrix elements Sa,,v may be assumed to be
analytical!y continued in complex a-plane and be meromorphic in a; poles of
S.,nt in a-plane are called Lorentz po!es. For unequal mass particles, on the
other hand, the little grottp is E(2), the Euclidean group ef a plane. The ex-
pansion oi S into unitary M's of E(2) is similar to the impact parameter re-
Presentation.i35)

    Since the scattering amplitude is analytic near txO, the expansion according
to SO(2, 1) for t<O should in some way go over into the one at t==O (and
eventually be continued to t>O). If we restrict ourselves to the unitary re-
presentations of the Poincare group, this is the case in Åíhe general mass con-
figttratlon, as shown by Feldman and Mathews.'27) It should be noted, however,
that any Regge pole contribution does not have this property unless mi=m3 or m2=:
m4.i36} We shall come back to this problem later. !n a particttlar case oi pair-
wise equa! mass particles, this continuity leads to the conclusion, due to Toller
and Sciarrino,i37) that Regge poles appear in families and one or more famllies
should degenerate lnto a single Lorentz pole at t==O, This arrangement of Regge
poles at t=O (conspiracy) was implicit in Domol<os and Suranyii3S) and en-
countered also by Freedman and Wang,i39} and should not depend on the ex-
ternal mass configuratlon since unitarity of tke S-matrlx requires Regge pole to
cottple with any pair of pftc rticles irrespective of their masses unless some se!ec-

tion rule forbids the coupling. This point of view has actually a deeper mean-
ing as will be soon stated below.

6. 2 Classillication grottP of Regge boand states al zero energy

    As mentioned above a Regge-pole contribution to a scattering amplitude
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for unequal-mass particles is not analytic at t=O. In fact, it is proportional to
the quantity

               1?A. -= lg(t) {Ii-(Åé:i"' (o, e,, e) Å}opDiit' (e, z-o,, o) }, (6.1)

where

               D:.(Åë, o, -Åë) == --l;--tanz(1-R) E:1:1(Åë, e, -Åë), (6.2)

and E'a" is a rotation funcÅíion of 2nd kind defined in Ref. 140. (rp is a suitable
phase factor.) Note that the D'A.'s are identical to the fuBctions entering in
Mandelstam's Reggeizatlon procedure. In particular, ED'oe (Åë, e, -Åë) == -1/T tan zl
xQ-J-i(cose). Now the t-channel c.m. scattering ang!e 0t is related to the
invariants, s, t, and external masses by

                    t(Xm,2 - t - 2s) + (m,2 - m,2) (m,2 -m,2)                                                                   (6.3)   cos 0t          ({t- (Ml + M3)2}{t - (ml - m3) 2}{t - (m2 + m4) 2}{t m (m2 - ma) 2}]112 .

Unless miurm3 or m2==m4, cos0t(t=O)=s((mi-m3)(m2-m4)) (e(x) ==+1 for x>O
and -1 for x<O). On the other hand, d'x.(0) =D'A.(O, 0, O) has a logarithrnic
singularity at cos0== -1, as is easily seen by expressing it by a hypergeometric
function. Therefore, if mi 7S'm3 and m2 7km4, Ra" is singttlar aÅí t=O since B(t),
the residue, cannot have zeros of infinite order.
   Of course, the total amplitude should be analytic near t=O and hence the
above singularitles have to be cancelled in some way.
   The origin of the above trouble may be phrased in a group theoretical
language as follows. According to Domokos and Tindle,'36) in order to investi-
gate analytic property ef a scattering amplitude near the trouble point, it is
necessary to define the feur-momentum Qg in such a way that 1) it !s analytic
near t#=e and 2) it goes into the light-like momentum (P, O, O, P) for t--.O which
is the case for the general mass configuration. They proposed the choice Q.
      ->== (Qo, Q) x= (Vt+P2, O, O, P) and investigated the structure of the algebra of the
little group which leaves this Q. invariant as function of t. It is found that
the little group changes its structure for t->O, in other words, it contracts.
This contraction of the little group is the origin of the appearance of the sin-
gularity above.
   In order to avoid the occurrence of the unwanted singularlties in the tran-
sition amplitude, they proposed that a correct spin algebra of Regge bound
states at t=-O should be such that 1) it is sttbalgebra of SL(2, C) and 2) it is
preserved at a contracSion point (t==O). They have shown that only the algebra
which has all the required properties is the algebra SL(2, C) itself.i`')

   In consequence we have the following results :
   1) Regge poles at t ==O should be classified according to SL(2, C) whatever
the invariance group of an ampliÅíude is at t=maO. It is thus necessary to dist-
inguish the latter from the classification group of Regge bound states at t ==O.
   2) Slnce an IR (a, M)i`2) of SL(2, C) contains an infinite number ot angular
momentum states, 1==a-rc, rc =O, 1, ••••••, a set of Regge poles at 1==a-rc, rc=O,
1, •••••• (a family) iorrns an irreducible state at t==O, called a Lorentz pole as
the last subsection.
   3) A Lorentz pole contribution to a scattering amplitude is regular at t==O,
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while a Regge pole one is not.
    4) If parity and PCT operation are included as symmetries, then each ir-
reducible state is characterized by a set of parameters (a, rt, v) if M==O or (a,
ri,M) if M>O. Here Tt is the Lorentz signature, op the intrinsic parityi`3) o'S a
Lorentz pole. In each irreducible state (a, Te, M) there are at least two series
of Regge poles with different 'o (parity doubling).

6. 3 Invariant and helicity amPlitudes and their relationshiP

    Let us now try to understand what relation exists between the above
SL (2, C) classification of Regge poles and kinematic constraints on Regge am-
plitudes at t==O. The latter are derived in various ways.'"} Here we want to
discuss them on tlie basis of the relationship between invariant and helicity
amplitudes. It may be written as

                          f,s == (Kis) -- ifis ur= XSijFj, (6.4a)
                                       j
                          f,t -= (K,t) -- if,t -= XT,jFj, (6.4b)
                                       j
where Fi(s, t) are invariant amplitudes free from kinematical singularities and
zeros, while fiS and fi` are parity symmetry conserving helicity amplitudesi`5)
of the s-channel 1+2-3+4 and t-ckannel 4+2-3+1 scatterings, respectively.
Each ftS is of the torm

                         fS23A4; ka2+VfS-a3-z4; A,a,, (6.5)

w!th a suitab!e phase factor op, wkere

             fS?,,R,; A,R, ww (1 -cos es) -`Il- paI (1 + cos e,) -' [i+ fi [fSA,2,; R,l,, (6,6)

and similarly for fit. Sij--KisSij and TiJ=Ki`Tij are transÅíormation coeMcients
where Sii and Tij are polynomials in s and t. Equations (6.4) state that fis and fi`
are free from kinematical singularities and zeros. It should be emphasized
here that additional zeros wil! occur in certain !lnear combinations of fis or ft`
at a point where detS or detT vanish.i`4},'`6) In such a way we have kine-
matical constraints among otherwise independent amplitudes ft.
   Let us confine ourselves to the t-channel where Regge po!es are assurned to
appear. Kinematlcal constraints are written as

                     X(T)ijfi`=O(tmto) for tre>te, (6.7)
                     i

where (T)ij isacofactor of T belonging to Tij and we have assumed that
detT=O(t-to) for t-to. In the general mass case te is equal to eitker (miÅ}m3)2
or (m2Å}m4)2 or O. A conspiracy relation corresponds to the last case slnce
only in this case there are involved helicity amplltudes which receive contribu-
tions from different Regge Poles.
   Let us now suppose that each ftt in (6,7) is replaced by its Reggeized form

                                   1 + e"trra(t)                         i`m' (K")d'2 s\'n rcct (t-)' Rxra (6'8)

wlth appropriate R, pe, where RA,, is given by (6.1). Before applying (6.7) (with
to=:O), we invoke the daughter mechanism (the SL(2, C) conspiracy) in order
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to have Reggeized fi` regular at t-O since otherwise (6.7) loses its meaning.
Then one sees that a conspiracy relation enforces a definite relationship between
different Regge families unless it is satisfied in a trivial way.i`?) (The equal mass
case ls not an exceptional case since Regge poles must be treated in the frame-
work of SL(2, C) at t-O.)
    Such a relationship will correspond to the one which exists between dif-
ferent Regge families within an irreducible state (Lorentz pole) of SL(2, C). By
tlte same token, Cosenza et al.i`8) have shown that any kinematicai constraint
of the type discussed above ls automatlcaily saÅíisfied if one considers a Lorentz
pole contribution in a generalized sense. Roughly speaking, the latter means
that we calculate lt as iÅí the scattering amplitude at t--O were invarlant under
SL(2, C).
    Various auShors have worked out some special cases; we refer the reader
to Ref. 20 for IVLrV--)NN, Ref. 149 for IVAi->YY, Ref. 146 for TN.VIV and Ref.
150 for rN---"TIV.

   Extension of the Lorentz pole concept to tt-O is belng tried by Salam et
al.,i5i) Cosenza et al.,i48} and Domokos et al.i52)

6. 4 Physical meaning of the Lorent2 quantum nufnber M

   The quantity 114 of a Lorentz pole has a simple physical meaning other
than its group theoretical one. First of all we note that

                        M.<..-min. of <Si+S3, s2+S,}, (6.g)
where Si is the spin of the i-th particle. Hence M=meO, i for NAr-->NAr. There
are thus three types of Lorentz poles which couple to IVN system. Class I:
M==O, op=+1. Class II: M=:O, rp==-1. Class III:M==1 (Lorentz signature ls
dropped out).
   The asymptotic forward s-channel (not vanishlng) helicity amp!itudes due
to a Lorentz pole exchange is given byi`8)

                 fSA3),4; A,z2(S, 0s "= OO) ->(;A,mA,; A,-A,sa-IM' [A3-iill, (6.lo)

                                S-}eo
and the same for al! the mass configurations. (Note that 7,i-?,2=23-R` implies
angular momentum conservation.) Thus in the forward direcÅíion a single
Lorentz pole with a given value ef M contributes asymptotically only to the
arnplitudes with helicity fiip equal to Å}M. The normal Regge theory, on the
contrary, predicts no spin dependence in the asymptotic forward amplitudes.
    The behaviour for t--)O of the helicity amplitudes due to an exchange of a
Lorentz poie (o,M) is given byi53}

          fSx,a,; R,A, oc t• (1!2)IRMPt[{" (Am'" -M) for ?,.i,, 21i). .M,

          fSa,a,;A,?.,oct(1/2)MM"i-}-(112)Amt" tor ?,...dix:..M>2.i.,

          fsx,a,;a,l,oct(1!2)IA"t`l-t+M-(l/2)(Am"xffRmi") for 2,...<M, (6.ll)

where 2ma.==rnax. of (i2i, ]sel) and 7,min== min. of (I2i, lptI) with 7,=2,i-7,2 and a=

A3-R4. It shouldbenotedthat the helicity-non-fiip amplitude is suppressed by a
factor tM, whlle the amplitudes with R?nin=M or O and R,,.x2M are aliowed to



86 M. BANDO, K. MORITA and T. YOSHIDA
contribute with the nornial strength. It is due to thls property and (6.10) that
conspiracy works so well for the reactions Pn-mP and rP-nn' at high energies
(cf. g2).

g7. Medels for Regge poles and further outlook

   So far we have presented the review of recent progress in the phenomen-
ological Regge pole theory and some related toplcs which would become irn-
portant in the course of future developments in the Regge pole theory.
   The Regge pole hypothesis, combined with unitarity condition, leads to many
interesting resu!ts. The recent deve!opment of phenomenological analyses in
the high energy reactions of hadrons and the discovery of various kinds of
higher resonances seern to make clear of the validity ol the Regge pole hy-
pothesis.

   It seems that we are now in a stage to investigate the Regge pole model
from a more fundamental standpoint.i5`) As is we!1 known, the Regge pole
theory is originated from the bound state problem in the non-relativistic po-
tential theory.i55} We may understand, therefore, that the Regge pole behaviour
has its origin in the composite structure of hadrons. Much efforts are being
made to connect the possible lnner structure with the Regge bekaviour.
   In the following, we shai! give a brief review of several suggestions in
connection with the interpretation of Regge po!es.

7. 1 The early stage of the 1?egge Pole model

   A few attempts were made to interpret the Regge poles in the early stage
of Regge pole theory. Tanal<a and Inoue'56} pointed out that the propagation
of a particie with a finite extension might be closely related Åío the Regge pole
behaviour. They found that both a particle with finite extension'57) and a
"Regge field"J58) are equivallent to an assernbly of the infinite local fields with
different spins. A similar idea was a!so proposed independently by Licht.'59)
He discussed severac1 non-relativistic models in field theories, such as the rigid
rotator models, the spherical harmonic oscillator modei or the hydrogen-like
atom model. He showed thaÅí the propagators of the second quantized fields,
which depends on additional quantum numbers, exhibit Regge pole behaviour.
These attempts are interesting in the sense that the Regge pole behaviour is
understood to be due to the propagation of particie with internal structure.

7. 2 Models for the Regge Poles

(a) Non-local models for Regge poles
   Tanaka et a!.'GO} further investigated the bi-loca! field proposed by Yukawa
in 1949i6i} acs the simplest model of an extended particle, where the bi-local
field is quantized so as to represent the Regge pole behavior and compared
with the one quantized due to Fierz'si57) decompositions. The interesting fact
was pointed out that the bi-loca! fie!d thus quantized takes the dupllcate roles.
First, when it arises with a tlme-like four momentum, it can be decomposed
into local fields with different spins and masses. Second, when it is exchang-
ed with a space-like four momentum between two colliding partic!es, it gives
to the Regge pole behavior and the decomposition !oses its meaning. In the
tormer case, among the decornposed local fields only several ones belonging to
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low-lying masses and spins rnay be effective in the low energy region.
    It becomes now imporeant to exarnine the propagator of particles with in-
ternal structure especially for the case when the particles propagates with a
space-like four momentum. We refer to the reader for the paper of Shira-
Å}ujii62} where the Green's functions of bi-local fields are investigated.
    Tanaka and Hamamoto, and Salam et al. further proposed the idea of the
Reggeization of unltary spin.i63}
(b) Feynman-diagram models for Regge poles

    Another attempt to interpret the Regge pole behaviour ls made in terms of
an infinite tower of elernentary particles.72},i64}--i66}

    Van Hove?2) noticed the considerable success of single particle exchange
models with absorptive corrections in the two body reactions in lower energy
region, and tried to seek for conditions in whlch two models can become equi-
valent. He considered a series of particles with a mass spectrum M(f) which
satisfies the fol!owing property,

                          M(1) -" co for 1-> co. (7.1)
Under the single partic!e exchange approximation, the scattering amplitude is
given as follows,

                                   b(1, t)                        f(s, t) -- puM, (--1) --tPcr(cos et). (7.2)

With suitable analyticity ProPeriies of b(1, t) and M(1) in the complex 1 plane,
the scattering arnplitude for s-oo is obtained by applying the well-1<nown Som-
merfeld-Watson transtormation in agreement with the Regge behaviour. Also
the Regg-pole amplitude is obtained by summing the most divergent terms re-
sulting from an infinite set of single-particle exchanges.i64} .
    It is suggested by several authors'65),i66} that this model mightbe useful as
a guide to undierstand suclt aspects of Regge pole model as daughters or con-
spirators.

    On the other hand, some interesting comments are given by HalperniG7) to
which we only refer the reader.
(c) Infinlte component (local) models for Regge pole
    The above argument leads us to further conjecture, which may be phrased
as follows : Each elementary particle in the above infinite series can never
be lndependent of each other, but strongly be related as if they are by nature
sorne kind of unified entity. Therefore it seerns natural to consider that such
a series of particles can be described by the infinite-component field theory.
    The first attempt was inade by Cocho et al,,i68} who showed that the Regge
behaviour can be obta2ned by calculating the amplitudes related to the ex-
change of the infinite multiplet which belongs to the IR of SL(2, C). Later
more detailed and systernatic investigation have been made by Fronsdal,i69}
considering the infinite multiplet of the groups SO(3,1) and SO(4,1). We can
thus obtain the vertex function and compared it with the experimental data.
We note that in these theories, the cftc lculation was made in the time-llke case
and then analytically continued to the space-like region. The relationship of
the locality of the infinite component theory and the non-local field ls under
discttssion by several authors.i70),i7i)
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(d) Cornposlte models for Regge poles
   en the other hand, we should notice the recent development of composite
model of hadrons.
   In additlon to the considerable success in the classification of hadrons based
on the composite model, eager attemptsi72} were made successfully to understand
the high energy reactions in terms of the cornposite model. Tlte "additivity
assumption", that the scattering amplitudes are given by the sum of the scat-
tering amplitudes of individual constituent particles, ltas given many successful
explanations, especially for the forward or backward scatterings.
   Further this model gives some rernarl<able results which are not predlcted
by Regge pole modeli73} such as the spin dependence of the scattering amplitude
or the ratio of the total cross section of baryon-baryon scattering to that of
meson-baryon scattering.
   Machida and Yoshida'7`} lnvestigated the relation between the exchange of
a composite system and that of a Regge pole. For simplicity, they use a quftc rk
model and investigate the behavlour of the arnplitude in the case when p trajectory
is exchanged. The quark-antiquark scattering amplitude are Reggeized and
TP charge exchange amplitudes are calculated by use of the additivity assump-
tion. They concluded that the residue function rnust have an exponential de-
pendence in Iin order to fit the experimental data.
   Another atternpt was made by Squires'75} to calculate the p trajectory as a
series of bound states of quark-antiquark system. Here the n-n channel is
treated a. s to give a small correction to the q-q"" system.
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