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ABSTRACT
   The critical wavelength of tlie gravitational varicose instability in a compressible

polytropic cylinder is found for various halo pressures. It is found that the halo pressure

stabilizes the varicose instability.

1. IntroductioB

    Chandrasekhar (196i) has found that an infinite cylinder of an incompressible fluid is

gravitationally unstable for all axisymmetric varicose deformations with wavelengths ex-
ceeding six times as large as its radius. In the case of a homogeneous compressible cylinder,

the varicose instability is not manifested as a separate mode but appears to enhance the
instability of the convective modes (Ostriker 1964). However, in a polytropic compressible
cylinder the varicose instability is isolated when the cylinder is convective stable (Robe 1967).

    In this paper we consider a compressible and polytropic cylinder surrounded by the
halo gas with a finite pressure, which is light and has a large sound velocity so that it will

continue to exert a constant pressure on the perturbed surface of the cylinder, and study

the effect of the halo pressure on the critical wavelength of the varicose instability. We

confine ourselves to a polytropic configuration of equilibrium with r==2 and suppose
that the perturbations also obey a polytropic equation of state with the same r. The con-

vective modes are then critically stable according to Schwarzshild's criterion and so the

varicose instability is separated from them. Overstability never occurs in our case. In
fact, the proof that to2 is real can be easily made in a way similar to Goldreich and Lynden-

Bell (1965). Here exp (itot) is the time dependence of the perturbations. Therefore we
may discover the critical wavelength by examining only the behavior of the solution which

has to ==O.

2. BasicEquations

The equilibrium distribution of density for r==2 is given by

p  == Je (kJr), (1)

Pa

where pa is the density on th e axis and kJ is the Jeans wavenumber
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           k, .. ( 4n,G, p )l12 (2)
which is constant across the cylinder. The cylinder ends at the surface r==R where the halo

pressure ph is attained. Thus the radius of the cylinder is given by

           Je (kJR) ""(;i' )i12 (3)
where p. is the pressure on the axis. '
    The method adopted in the sequel will in main be that of Goldreich and Lynden-Bell
(1965).

    The pertkirbed quantities of density, pressure, velocity and potential are shown by

pi, tt,pi and Åëi. Therandzcomponents ofu are denoted by u, and u.. Using the as-
sumption that both the perturbations and the equilibrium configuration obey the same
polytropic law and the reiation pi=c2pi, the equation govering the perturbed quantities are

            apl                +div (pu) =O, (4)             ot

            Oo't' =-grad(Åë,+c2 Ppi ), (5)

           v2Åëi==4zGpi. (6)
    We consider only the normal modes in the form exp (ikz+itot). We shall introduce
a new variable e defined by

           e -- c2 Pi . (7)
                   p

Equations (4), (5) and (6) are reduced to

                        ld           itoPi+ikPU:+7 d, (rpUr) =O, (8)
                    d           ito"r"" rm d, (dii+e), (9)
           idiu, =-ik (ipi+e), (IO)
           + dd, (r ddÅë,i)-k2Åë,== 4ncgP e. (ii)

    One of the boundary conditions is derived from the fact that the pressure on the surface

is always equal to the halo pressure, i.e., the Lagrangian change in pressure vanishes on

the surface. Let the radial Lagrangian displacement of the surface element be er, which
is related to ur as ur ==itoer. We have

                     ddi           e.=:er d, .- (12)
Another boundary condition is determined by continuity of potential and Gauss flux theorem.

Because the halo gas is light, the perturbed potential outside the cylinder is expressed by

Åëi(r)t-K.(kr). Thuswehave
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              K,(kR) dipi- •           imkKo(k.R) ÅëiRnv dr .==4ZG6'P .' (l3)

3. Critical Wayelengths

   As stated in Introduction, we consider only the critical modes which have tu ==O. When

to == O, we found from equation (IO) that

           Åëi =-e. (l4)
The substitution of equation (14) into equation (11) gives us

           "dd, (r dde,)+(kJ2-k2)e--e. . as)

The solution finite at the origin is given by

           e(r) :I;8`,:I2i,:i,"il :;211 '(i6)

where we take e(O) ==l.

   The critical wavenumber may be determined from the requirement that the solutions
(l6) satisfy the boundary conditions (12) and (13). The combination of the two boundary
conditions and equation (i4) gives

            Ki(kR)                           de 4nGp           kK,(kR)e.+ d, .== dip e.• (17)
                                     dr

From the equation of hydrostatic equilibrium we obtain

           dip c2 dp           dr =:-p dr , (18)
Making use of equations (i6), (17), (18), (i) and (2) and defining

           Z==kJR, K--kR, (19)
we obtain the equation determining the critical wavenumber K,

                               Ji (VZ2-K2)             Ki(K)                                                Je (Z)
          -kr K,(K) - VZ2-K2 J,(vtz,rmK,) ==Z J,(z) , Ksi:Z, (20)

           K:ii[",,l + vK2=z'2 f,i[filltl E-Z.Zg))- =-z ',o, [Sl-, K>z• (2i)

   In Figure 1 we plot the critical wavenufnber XI against the radius Z. Notice that O:{{;

Zs{;2.405, as judged from equation (3). The case Z== 2.405 corresponds to the limit of

zero halo pressure. The critical wavenumber in this case is K==l.7527, whose wavelength
is 3.6R. The case Z==O means an infinitesimal thin cylinder withp.==ph. In this case,
equation (20) is reduced to
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   Fig. 1. The critical wavenumber K,plotted against the radius Z.

                          1           Ko (K) Io (K) =" i, (22)
which offers Chandrasekhar's critical wavenumber K== 1.0667 for an incompressible cylinder.

As Zdecreases, i.e., as the halo pressure increases, the critical wavenumber decreases. Thus

the halo pressure stabilizes the gravitational varicose instability.
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