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ABSTRACT

The characteristic frequencies for non-axisymmetric oscillations of an incompressible
viscous cylinder are determined. The viscous damping of the oscillations is discussed.

1. Introduction

The viscous damping is one of the important elementary processes for energy
dissipation in an oscillating body. The oscillation of a viscous liquid sphere has been
solved by Lams (1932) and Canprasexsar (1961). CHANDRASEKHAR (1961) has
also studied the effect of viscosity on the gravitational instability of an incompressible
viscous cylinder. In this study he has restricted himself to axisymmetric perturbations
because the cylinder is supposed to be stable for all non-axisymmetric perturbations.
The non-axisymmetric deformations are important in the study of the stability of a rotating
fluid mass (see Isaizawa 1974). In view of such possible applications, we shall study
the non-axisymmetric oscillations of a non-rotating viscous cylinder.

2. Characteristic equations and frequencies

We consider non-axisymmetric departures from an equilibrium cylindrical shape of
an incompressible fluid. A normal mode can be expressed uniquely in terms of the de-
formed surface. The deformed surface is described by the equation

y=R +}eel™®, (€)]

e==ege™"t, ¥3)
where 2 is the radius of the unperturbed cylinder, » is an integer, and o is a characteristic
frequency to be determined.

The characteristic frequencies of an inviscid fluid, namely, the cylindrical Kelvin
frequencies are obtained by OsTrRIkER (1964) as

2=2nGp(m—1), m=2,3,4, . 3)

The characteristic frequencies in the viscous case are determined so that the velocities,
the solutions of the perturbation equations governing the departures from an equilibrium
state, satisfy the boundary conditions: (a) the radial component must be compatible with
the assumed form of the deformed surface given by equation (1); (b) the tangential viscous
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stresses must vanish at »=2~; and (¢) the (», #)-component of the total stress tensor must
vanish on the deformed surface. The method is in main that of CHANDRASEKHAR

(1961).
Putting
B=(2nGo) L 2R2), )
a=voRy, )
Qm(x) =5/ m+1(x)[/m(), - ©
we obtain the characteristic equation
(m—l)B2=2m('m——1)x2[1+x72;_:2—27%%:?+0§)]—x4E@m(x). @

This characteristic equation is closely analogous to that in the case of a viscous liquid
sphere (see CHANDRASEKHAR 1961).

The curve of @,,(x) is divided into an infinite number of separate sections by its sigular
points at the roots of x—2Qn(x)=0, gm,s. The root gm,s is just before the root of /u(x),
JFmss- In the first section between the origin and gpm,1, the value of @p(x) gradually in-
creases with x and reaches a maximum and then decreases, as shown in Figure 1.
Between ¢um,s and fm,s, Pm(x) rapidly falls down from a positive infinity to a negative value.
In such a singular part, we can always find an aperiodic mode, decaying without oscillation.
However, we restrict the following discussions to the lowest modes found in the first section
because these modes can survive the longest.
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Fig. 1. The function ®Pp,(x) plotted against x for the orders of the mode m=2, 3, 4 and 5.
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From Figure 1, we observe that for any B<Bmax there are two real roots of equation
(7) which lead to the two aperiodic modes of decay : a creeping mode decaying very
slowly for large viscosily and a viscous mode decaying ver rapidly for large VlSCOSlty
When x>0, we have

D () =2(m — 1) (me+-1)x2+ O(x4). (8)
From equation (7), we find the solution satisfying x<1,
e B?

From equations (4), (5) and (9), we obtain the characteristic frequency for the creeping
mode

o B
VonGp ~ 20m—+1) "

The characteristic frequencies of the lowest aperiodic modes of decay for m=2, 3, 4 and 5
are given in Table 1 and plotted in Figure 2.

For B>Pmax, the characteristic frequencies of the lowest modes of decay are complex.
If x is the root of equation (7), the complex conjugate & also is the root because /(%) =/ (%)
and Qp(x)=0m(®). When lx}—>oc0 and x> |Qm(x)|, we obtain from equations (4),
(5) and (7) : ‘

(10)
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Fig. 2. The real parts of the characteristic frequencies of the lowest modes of decay in the
oscillations of a viscous cylinder. The curves are labelled by the order of the mode »:.




T. ISHIZAWA

278

8902 °T 890,°T  985°0T 625 °'T 1€25°T  TV6L L 9862 T 9g62°1  €6¥2°S L9T96°0  L9T96°0  S868°%
87881 €575 °T 01 92LL"T ¥80€ T Ll 6087 T 6621 T 2's 01S2°T  8T6EL°0 82
95702 SHYY T 70T £466°T 09T T S 86€9°T 20201 'S 0507 °T 118590 L2
S8ve g v8€2°1 0°0T 880¥°2 0609670 02 - 029L°T €266 °0 0°s TZ¥S'T  SS665°0 92
12862 2S2L6°0 06 ¥SLT'S  OTL2L°0 09 0¥92°2  V6LEL'O S¥ §729°T 12850 52
£8T9°¢  €S66L°0 08 T060°%  82€95°0 0°'s 229L°%  €Z¥09°0 0% £268°Z 689850 0z
18.2°S  ¥I9%S°0 09 695€°S 28627 °0 0y 8€50°F  FOTIF 0 0 L0SV'S 8269270 ST
2rIe’s  09S¥E°0 0¥ VIL€°L  SSTIE0 0'¢ 02179 956520 02 08L8°S 06TLT 0 01
S%0°LI  TT89T°0 02 182°TT  LBE0Z0 02 98T°€T  €T92I°0 01 000°TT  865€80°0 50
© 0°0 0°0 © 0°0 0°0 o 0°0 0°0 0 0°0 0°0
dougple g dgug Mo g d9#g e g dougMeo g
g=wu p=wu g=w g=u

ISPUIA])) SNOJSIA © JO SUONEB[[IOS() 8Y3 Ul
£e0a(] jo sapoIy otpourady Jsemo-T 9y Jo saousnbary ousweleIey) oYY, T 2[qel



279

THE OSCILLATIONS OF A VISCOUS CYLINDER

8229 T+ 066%2°0 0°0e €238 "1+ $6YTS 0 0°0¢e L8081+ S¥0vE "0 0°Sz  GT1996°0F 680910 0°03

29vS T+ €64¥8°0 0°s3 €8V T+ 015985°0 0°Szg 0TL2° T+ TOV0¥ 0 00z  21256°07F 9¥505°0 0°¢1

692V "1+ 55966 "0 0702 L0V T+ 9.989°0 0°0g LIS T+ 9290S°0 0°ST 2€226 0+ ¥0¥62 "0 0°0T
190€ T+ PIET'T 0°LT 8S8Z T+ G€L58°0 0°'ST 6160 T+ LECTL0 0701 28568 0+ €809€°0 0'8
T8LT'TF 6€52°T 0°stT £SeT I+ 8280°1 0°2T  L6896°0F ¥5048°0 0'8 996¢8 "0+ €28L7°0 0°9
T9E96 "0+ [ANANE 0761 62166 °0F €21g’T 0°0T  QSEP8'0F 16¥86 "0 0°% G908L 0+ LB8E9S°0 0°S
99€8L°0+ 20281 072l 081¥.°0+ 9gee’1T 0°6 GG9T9 "0+ 48T 09 0/649°0+ 2500470 0y
29297 "0+ 9T 01T LET6S "0F $807 1 S'8 69680+ 1282°T ] 8€9¢G 0 2586470 §'¢
88892 0+ 8989°T L0 08€€¢ "0F 998% T 0'8 286LT0F 81821 £'s SL9%¢ 0+ £9626°0 0'e
0°0 8904°T  958°0T 0°0 T€28°T  TI¥6L°L 0°0 96621 €6V2°S 0°0 l9196'0 586872

dorghplloymy d9ugp(0)ey g dough(oymy dpugh(o)y g dpegMlouy dnughl(e)ed g doughleymr dpughilo)py ¢

Ge=t

p=1u

g=w

=

I9PUIAD) SUOISIA B JO SUOLE[[S( Y3 Ul
Aeda(T JO SOPOTA JIPOLIBJ ISOMO’T a3 Jo sotouenbary ousuLIOBIRY) Y], 7 el



280 T. ISHIZAWA

INUUO VRN JURUNE NN NN AU NN SN NN NN NN N NN NN NN NN UUNNNN NUNN SOURNNE SO SUOON SO N

|
0 5 10 y 15 20 25
B=(2nes) R v

Fig. 3. The imaginary parts of the characteristic frequencies of the lowest periodic modes of
decay in the oscillations of a viscous cylinder. The curves are labelled by the order of

the mode #.

SN e SR 4 Git OB
5ip =i Vm—14 8 . (11)
The characteristic frequencies of the lowest periodic modes of decay for m=2, 3, 4 and 5

are given'in Table 2 and plotted in Figures 2 and 3.
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