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                           ABSTRACT

   The structure of Freeman's two dimensional elliptical collisionless stellar systems is re-

studied in the revised range of the parameters bla and 9212TGp(the axial ratio and the angular

velocity of the cylinder). It is found that Freeman's systems contain rigidly rotating eircular

(Maclaurin) and elliptical (Jacobi) cylinders and that, if the angular velocity is less than

that of the Jacobi elliptical cylinder, the mean circulation is in the direction of rotation and

otherwise it is counter to the direction of rotation.

1. Introduction

    FREEMAN (1966) has constructed self-gravitating infinite homogeneous rotating
elliptical cylinders of stars under the condition that every stellar orbit touches the surface

of the cylinder. However, he misunderstands this condition and imposes an unnecessray
restriction upon the parameters(the axial ratio and the angular velocity of the cyl2nder)
to obtain a uniform density. The aim of this paper !s to show that, if this restriction is

removed, the FreemaR's cylinder can be a unified model of homogeneous cylinders in-
cluding particulars so far known.
    In the following sections, we use the same notations as FREEMAN. Equation numbers
from FREEMAN (i966) appear in square breackets such as equation [2].

2. The restrictions upon the parameters bla and 2212rrCp.

    IR a rotating uniform elliptical cylinder of axial lengths a, b (a>b), density p and
angular velocity 9, the orblt of a star, referred to axes rotatlng wlth the cylinder, is given

by equation [9]:

           x ==Aa sin (al+Ea) +Ap sin (Bl+ep),

          y-rmfeaAa cos (al+Ea) -kpAp cos (Bl+ep). (1)
This orbit represents the superpositlon of a guiding center drift around an ellipse sc2+y21

fe.2==A.2 with frequency a in the sense of rotation and an epicyclic motion around an
ellipse x2+y21k2p ==Ap2 about the guiding center with frequency B(P>a) in the sense
counter to the rotation. In general, the orbit occupies the doughnut-lil<e area aiong the
ellipse of the guiding center.

    The condition that the orbit (1) touches the surface of the cylinder is given by equation

[40]:
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f E! (kp2-fe ..2) {H- Aa2 2+ Ap2
a2kp2-b b2-a2ka2

} :1.
(2)

FREEMAN (1966) has found that the distribution function

f(f) ..a
      T

abA2
kakp

8(f-1), (3)

A2...
(kp2-ka2)a2

(b2-a2k.2) (a2kfi2-b2) '
(4)

satisfies both the time-independent collisionless Boitzman equation and the Poisson equation

and produces a cylinder ofuniform density p. However, he has considered that the cylinder
shouid be formed only from stars really touching the surface of the cylinder. This is not
true. The conditionf== 1 is the necessary condition for a steilar orbit to touch the surface

of the cylinder, and not the suthcient condition. It also contains the non-touching cases
when the sc- orr-coordinate of the touching point is purely imaginary(that is, when 72 or p2

given by equation [38] becomes negative). Even in such cases, the whole orbk is inside
Åíbe surface fo the cylinder. Because, when the orbit is inside the cylinder, the velocity
satisfing the condition f = 1 always exists as seen from equation [43], stars moving in the

non-touching orblts contribute to the integral

ff(1)d2c ==p,
(5)

FREEMAN's restriction given by equation [52], meaning that the cylinder is formed only
from stars really touching the surface and some of them necessarily pass the center of the
cylinder,

rk2' + ii),i !> -t-ba2-2- ,
(6)

therefore becomes unnecessary. There are always orbits which pass the center if the
non-touching orbits are included. As ani11ustration, we show in figure 1 the areas occupied

by the orbits satisfying.1 =1 fora== b and S?fV2TGp==cos-(}, in which case the condition (6)

is satisfied. The conditionf =1 then leads to

         44 (A ala)2+-g" (A a/a) 2 == 1, (7)

(see Section 3). It is found from figure 1 that the orbit for (A.la, Apla) x(1/4, 314), which

is the only one touching case, does not pass the center and the orbit for (A.la, Ap/a) ==
(Vg14, Vg14) does not touch the surface though it passes the ceRter. It is clear from this

that the cy}inder of uniform density can not be constructed only from stars touching the
surface. The Freeman's second restriction that the gravitational force along the x-axis is
equal or superior to the centrifugal force

92x<
4rrGpb

a+b '
(8)

is assumed again. This restriction ensures the zero or positive velocity dispersion as shown
later. Without loss of generality, we can restrict ourseives to
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(tJx) (o,g)
The areas occupied by the orbits for a =b and S?/V2rrGp m cosg.

The epicycle gyration and the guiding center orbit are shown by

the solid line ( ) and the broken line (----), respectively.

          b/.a<xl and

Except these restrictions,

 9->o.

the parameters b/a and 9* EEi S?IV2rrGp are arbitrary.

(9)

3. The structure ef Freeman's cylinders

   Let us study the macroscopic dynamical structure of the cylinder in the revised range
of the parameters. Using equations [49] and [50] with the identitles for a, B, k. and kp
[12]tw[19], we can express the mean velocity and the velocity dlspersion in terms of b/a
and 9*. The mean velocity. in the rotating fra me is

          c-x=: .2a+2b2 gy, (io)
          c'[y==- .212b2 4x, ai)
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where g is the vorticity in the rotating frame given by

           4=-<.k2tke2>i-i2a.+b).r2g(g,2-u.2+%b)-,}. a2)

The velocity dispersion is glven by

          crxx==rrGpH("72b)4[.2tbb- rmS2}*2](S?*2 um (.{iibb)2]2(1- :: - i22 ), (l3)

          cryy=rrGplaf2b)4{'a .b "S2*2][S?*2-"(.fbbiiTt}2(1- :22 im -imu22nv')) (l4)

          axy==O. . (15)
    Ifa=:b or S?*2== 2ab/(a+b)2"), we find rigidly rotatiRg cylinders with isotropic velocity

dispersion: the Maclaurin circular cylinder and the Jacobi elliptical cylinder as foilows.

(1) The Maclaurin circular cylinder

    Xn the limit a->b, we find from equation (2) and equation [10] and the identities [12]tw

[19] that the conditionf== i becomes

                                                             '           2(g.+sl) 2(1hg.)( Aa")2+ 2(g.-t) 2(1+g,)( A.P )2 == 1ny (16)

The mean velocity leads to

           c-. ==-49(S?,2-g)i, (17)
                                               '          cM, =49(9*2--lir)x. (18)
The velocity dispersion is reduced to

                    '                                                    '           '           axx =6yy =16rrGp(1-S?*2) (S?*2--i})2(a2-x2-y2). (lg)

If the angular velocity S?* is transformed into S?*MAc defined by

           S?.MAc=-4S2.(S?,2--ll-), (2o)
                           '
equation (16) leads to

           i+s?2, .., (Aa" )2+ ipts?2..., ( AaP )2 == 1• (2 o

It can be easily shown that this is the mono-energy coltdition for a uniform circular cylinder

of stars rigidly rotating with an angular veloctiy S2MAc that every star has one and the same

energy referred to the rotating frame for which the surface of zero velocity eolncides with

the surface of the cylinder:

*) These are deduced from the condition b2-a2ka2kp2==O (see equation [50] ).
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Fig. 2. The relation between 9* and 9*MAc•

          a2(27TCGX2p+-`st?2..,2)+ec2.+tX2-1"=O• (22)

The mean velocity, referred to an inertial frame, is

          c-"x+9L3, == 9MAcy, (23)
          c-y-S:}xx-9MAcx. (24)
Also, the velocity dispersion becomes

          crxx =ayy==Gp(1-S?*MAc2)(a2-oc2-jy2). (25)
Thus we find a rigidly rotating uniform circular cylinder (Mac}aur!n ciycular cylinder)
fouRd by BisNovATyi-KoGAN (197i). As S2* increases from O to 1, S?*MAc starts
increasing from O, attains a maximum of 1 at 9*==ll2, and then decreases to --l at 9* =1
as shown in figure 2. At 9*MAc=Å}1, the gravltational force is equal to the centrifuga}
force and every star moves in a circular orbit so that the velocity dispers!on vanishes, as

seen from equation (25).

(2) The Jacobi elliptical cylinder

   When 9.2=2abl(a+b)2, the condition 1= 1 2s reduced to

          a2k."Act2+t-2k.SAp2=-il-a2Ai2=:-ill+b2Bi2.*) (26)

The left-hand side of this equation is the Hamiltonian referred to the rotating frame given

by equation [27]. This condition is in agreement with the mono-energy condition for a
rigidly rotating uniform elliptical cylinder of stars. From equatlons (le)N(14>, we then
find that

*) Here we make use of the equality

          Plep(b2rma2k.2)-ak.(a2kp2-b2),.. b2nya2ka2kp2 ..,o.

                                    a
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CX=CY"=O7

2frGpa2b2 (i-:S-fS)•
(27)

Vxx"= cry2/ur  (a+b)2
(28)

Thus, in this case, we have a rigidiy rotating uniform eiliptical cy!inder (Jacobi elliptical

cylinder). This elliptical cylinder bifurcates from the Maciaurin circular cylinder with
S2, =S?*MAc =lfV2 as an incompressible elliptical cylinder (Jeans 191•9).

    There are other 2nterest2ng particular cyl!nders. First, at S?*2==2bl(a+b), the
gravitational force in the x-directlon is balanced with the centrifugal force and the velocity

dispersion axx vanlshes as found from equation (13). Even then, ayy remains positive as
a>b. Remember that we have before assumed that S?*2<x2bl(a+b) in order to assure
that the veleclty dispersion is zero or'positive. Second, at S?.2 =abf(a+b)2, which is half

the angular ve}ocity of the Jacobi elliptical cylinder, we have a cold cylinder in which
crxx =ayy==O. It is found from equations (13) and (14) that, for angular velocities larger
as well as smaller than thls angular velocity, the velocity dispersion is positive. Third,

in the case of no rotation, we find that Freemalt's cylinder ls reduced to a stationary el-

liptical cylinder found by BisNvATyi-KoGAN and ZELDovicH (1970)•
    The angular momentum per unit length of an elliptlcai cylinder L is

L
VGLtV3ab

= : vS= g* (a fbb)2{-i;- + ab
(a+b)2 -9*2

} ,
(29)

where

M =nebp. (30)

At 9.2==lf2+abl(a-i-b)2, the angular momentum is zero although the elliptical form
reminds us of non-zero angular momentum. For 9*2>ll2+abl(a+b)2, the angular
momentum is in the opposite direction of the angular velocity. For a fixed value of bla,

the angular momentum attains a maximum at 9*2= {ll2+ab/(a+b)2}13.
    In figure 3, we show the revised range of the parameters b/a and sa*2 and plot the
loci ofpartlcular cyllnders discussed above:

Maclaurin circu}ar cylinder

Jacobi ellipticai cylinder

cylinder of balance in the sc-direction

cold cylinder

cylinder of zero angular momentum

cylinder of maximum angular momentum

a==b
    )
9.2xx2abl(a+b)2,

S;}rk, 2 == 2bl(a+b),

9,2 ==abl(a+b)2,

9,2ur112+abl(a+b)2,

.9.2== {112+abl(a+b)2}f3.

If the angular velocity is smaller than that of the Jacobi elliptical cylinder, that is, if 9*2<

2ab/(a+b)2, the mean circulation is in the direction of rotation and, if 9*2>2abl(a+b)2,

lt is ceunter to the direction of rotation, although IFREEMAN have considered that the mean

mot2on in his cylinder is a circulatlon counter to the direction of rotaÅíion. In the case of

an incompressibie elliptica} cylinder, the angular velocity and the vorticity in the rotating

frame g' satisfy the relation

       a2b2             4*,2..,,9.2+     (a2+b2)2
2ab

(a+b)2 )
(31)
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Fig. 3.

where

           g*'== 41V27rGp, (32)
(LAMB 1932). Its angular velocity is always less than that of the Jacobi e}}iptical cylinder.

This difference from collision}ess stellar systems is caused from the chayacteristic of the

fluid that the pressure is isotropic.

    The total kinetic energy referred to an intertial frame per unlt length of the cylinder

Kis

K,..g ff[(cx+9y)2+(cy-9x)2]fd2rd2c, (33)
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               1            ==-2- GM2, (34)
which is constaRt for a fixed value of M. The potential energy per unit length, normalized
to that of the circular cylinder with the same M, Uis

                    a+b            U           GM2== I" 2v.wwt, (35)
(IsHizAwA 1974). The total energy per unit length, normallzed as above, is

           K+U                     a+b           -Gi 2 = ln 2vXt, (36)
which depends oRly on the axial ratio. It is found from equations (34) and (35) that the

virial theorem does not hold for the two-dimensional infinite body.

2Vote added in proof: After this paper was submitted, it is found that the sarne results have been
   obtained independently by C. Hunter (1974, Mon. Not. R. Astr. Soc. 166, 633).
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