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ABSTRACT

The structure of Ireeman’s two dimensional elliptical collisionless stellar systems is re-
studied in the revised range of the parameters &/a and £22/27Gp(the axial ratio and the angular
velocity of the cylinder). It is found that Freeman’s systems contain rigidly rotating circular
(Maclaurin) and elliptical (Jacobi) cylinders and that, if the angular velocity is less than
that of the Jacobi elliptical cylinder, the mean circulation is in the direction of rotation and
otherwise it is counter to the direction of rotation.

1. Introduction

FreemaN (1966) has constructed self-gravitating infinite homogeneous rotating
elliptical cylinders of stars under the condition that every stellar orbit touches the surface
of the cylinder. However, he misunderstands this condition and imposes an unnecessray
restriction upon the parameters(the axial ratio and the angular velocity of the cylinder)
to obtain a uniform density. The aim of this paper is to show that, if this restriction is
removed, the Freeman’s cylinder can be a unified model of homogeneous cylinders in-
cluding particulars so far known.

In the following sections, we use the same notations as FRegman. Equation numbers
from FreEman (1966) appear in square breackets such as equation [2].

2. The restrictions upon the parameters b/a and £2/2zGp.

In a rotating uniform elliptical cylinder of axial lengths a, & (¢>4), density p and
angular velocity £, the orbit of a star, referred to axes rotating with the cylinder, is given
by equation [9]:

x== A sin (af+ea) -+ .Ap sin (Bt-+ep),
y=Fadacos (af+ex)—rkpdp cos (Bt+ep). )]

This orbit represents the superposition of a guiding center drift around an ellipse x24-y2/
k=42 with frequency « in the sense of rotation and an epicyclic motion around an
ellipse x2--p2/k2,=4,2 about the guiding center with frequency B(B>a) in the sense
counter to the rotation. In general, the orbit occupies the doughnut-like area along the
ellipse of the guiding center.

The condition that the orbit (1) touches the surface of the cylinder is given by equation
[40]:
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/ (kﬁ '“'é"z){ 2ﬁ 2 52+52_22k02}=1- (2)

FrEEmaN (1966) has found that the distribution function

F=E S5 s-, 3
A2= (kﬁz—kaz)az (4)

BE—0%2) (a2 —5%)

satisfies both the time-independent collisionless Boltzman equation and the Poisson equation
and produces a cylinder of uniform density p. However, he has considered that the cylinder
should be formed only from stars really touching the surface of the cylinder. This is not
true. The condition /==1 is the necessary condition for a stellar orbit to touch the surface
of the cylinder, and not the sufficient condition. It also contains the non-touching cases
when the x- or y-coordinate of the touching point is purely imaginary(that is, when 42 or p2
given by equation [38] becomes negative). Even in such cases, the whole orbit is inside
the surface fo the cylinder. Because, when the orbit is inside the cylinder, the velocity
satisfing the condition /=1 always exists as seen from equation [43], stars moving in the
non-touching orbits contribute to the integral

[Faze=p. ®)

FrEEMAN’s restriction given by equation [52], meaning that the cylinder is formed only
from stars really touching the surface and some of them necessarily pass the center of the
cylinder,

Za
therefore becomes unnecessary. There are always orbits which pass the center if the
non-touching orbits are included. As an illustration, we show in figure 1 the areas occupied

by the orbits satisfying /==1 for =4 and R/V2nGp=cos %, in which case the condition (6)
is satisfied. The condition /=1 then leads to

4(Aa/a)2+§ (Aefa)2=1, )

(see Section 3). Itis found from figure 1 that the orbit for (A+/a, 4s/a)=(1/4, 3/4), which
is the only one touching case, does not pass the center and the orbit for (4.je, 4s/e)=
(¥3/4, ¥3/4) does not touch the surface though it passes the center. It is clear from this
that the cylinder of uniform density can not be constructed only from stars touching the
surface. The Freeman’s second restriction that the gravitational force along the x-axis is
equal or superior to the centrifugal force

dnGpd

2
< atd ’

(8)

is assumed again. This restriction ensures the zero or positive velocity dispersion as shown
later. Without loss of generality, we can restrict ourselves to
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Fig. 1. The areas occupied by the orbits for a=4 and Q/y/2rGp = cos-g“.
The epicycle gyration and the guiding center orbit are shown by
the solid line (——) and the broken line (----), respectively.

bla<l and R>0. )

Except these restrictions, the parameters 4/a and 2, =0/V2xG)p are arbitrary.

3. The structure of Freeman’s cylinders

Let us study the macroscopic dynamical structure of the cylinder in the revised range
of the parameters. Using equations [49] and [50] with the identities for a, B, £. and 4,
[12]~[19], we can express the mean velocity and the velocity dispersion in terms of 4/a
The mean velocity in the rotating frame is

- . 42 1
fx—mcy, ( 0)

- 52
y=—"j5 12 % (1
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where { is the vorticity in the rotating frame given by

Z:_(gz_—i:_ﬁf)ﬂ({l—Fé)ZQ{_Q*z 2ab } (12)

a2y (a+5)2

The velocity dispersion is given by

ogp=nGp et or {ié _Q*z}{g*z T }2<1 _ﬁ -—%—:J, (13)

T8 \atb T (at0)? a?
4 2 2 2
om0 oo Sl -5 ) a9
Opy=0. ) (15)

If a=b or Q,2=2ab/(a+-5)2%, we find rigidly rotating cylinders with isotropic velocity
dispersion: the Maclaurin circular cylinder and the Jacobi elliptical cylinder as follows.
(1) The Maclaurin circular cylinder

In the limit e—4, we find from equation (2) and equation [10] and the identities [12]~
[19] that the condition /=1 becomes

1 A\2 1 4i\,
2(9*+—§—)2(1—9*)<7> i 2(2,— 1) +~Q*)(‘Zzﬁ'>2—1- (16)

The mean velocity leads to

Ew=_49(9*2—--%—)y, (17
zy=4g(9*2_713«)x. (18)

The velocity dispersion is reduced to
. Ly
pn—oyy—167Go(1—24) (9*2 —-—4—) (a%—x2—y?). (19)

If the angular velocity 2, is transformed into £,uac defined by

Q*MA0=—4Q*<.Q*2 --"z—), (20)

equation (16) leads to

m‘im(%“‘)%r o ) =L 1)

It can be easily shown that this is the mono-energy condition for a uniform circular cylinder
of stars rigidly rotating with an angular veloctiy £uac that every star has one and the same
energy referred to the rotating frame for which the surface of zero velocity coincides with
the surface of the cylinder:

#) These are deduced from the condition 62—a2k.2£g2=0 (see equation [50]).
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Fig. 2. The relation between £, and Qmac

cx?+cy? x24y%
a?(2nGp—Ehaack) + a? —1=0. (22)

The mean velocity, referred to an inertial frame, is
cx+Qy=80uacy, (23)
ey—8x=—yacx. (24)
Also, the velocity dispersion becomes
Oz =0yy=Gp(l—Qemac®)(a2—x2—y?). (25)

Thus we find a rigidly rotating uniform circular cylinder (Maclaurin circular cylinder)
found by Bisnovarvi-xoGaN (1971). As £2, increases from 0 to 1, Q,mac starts
increasing from 0, attains a maximum of 1 at 2,=1/2, and then decreases to —1 at Q,=1
as shown in figure 2. At Qumac==-1, the gravitational force is equal to the centrifugal
force and every star moves in a circular orbit so that the velocity dispersion vanishes, as
seen from equation (25).

(2) The Jacobi elliptical cylinder
When Q42=2a5/(a-5)2, the condition /=1 is reduced to

ke go  Phs g0 1 540 1o 2 %)
20./1« +20_A,e—-2a¢41——2531. (26)
The left-hand side of this equation is the Hamiltonian referred to the rotating frame given
by equation [27]. This condition is in agreement with the mono-energy condition for a
rigidly rotating uniform elliptical cylinder of stars. From equations (10)~(14), we then
find that

#) Here we make use of the equality

Bha(b62— a2e2) — alala®hst—52) = L2 ALRE ¢
[e2
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cx=cy=20, @27

2 Goa2h? %2 2
awm=0y?,=—(ac_1_}_——£%-§-—< - —-%%—) . (28)

Thus, in this case, we have a rigidly rotating uniform elliptical cylinder (Jacobi elliptical
cylinder). This elliptical cylinder bifurcates from the Maclaurin circular cylinder with
Q,=Q4mac=1/¥2 as an incompressible elliptical cylinder (Jeans 1919).

There are other interesting particular cylinders. First, at £,2=28/(a-}-8), the
gravitational force in the x-direction is balanced with the centrifugal force and the velocity
dispersion oy, vanishes as found from equation (13). Even then, ¢y, remains positive as
a>6. Remember that we have before assumed that 2,2<25/(z+8) in order to assure
that the velocity dispersion is zero or positive. Second, at £2,2=ab/(a-+5)2, which is half
the angular velocity of the Jacobi elliptical cylinder, we have a cold cylinder in which
Ozp=0yy==0. Itis found from equations (13) and (14) that, for angular velocities larger
as well as smaller than this angular velocity, the velocity dispersion is positive. Third,
in the case of no rotation, we find that Freeman’s cylinder is reduced to a stationary el-
liptical cylinder found by Bisnvarvi-xkocan and Zerpovicu (1970).

The angular momentum per unit length of an elliptical cylindér Z is

I 1 (etd2(1 ab
T =TT g T ey 29)
where
M =mabp. (30)

At 2,2=1/2-}-ab/(a-8)?, the angular momentum is zero although the elliptical form
reminds us of non-zero angular momentum. For £2,2>1/2-+ab/(a-8)2, the angular
momentum is in the opposite direction of the angular velocity. For a fixed value of 4/a,
the angular momentum attains a maximum at £,2=={1/24-ad/(a-}+5)%} /3.

In figure 3, we show the revised range of the parameters 4/a and £2,2 and plot the
loci of particular cylinders discussed above:

Maclaurin circular cylinder a=b,

Jacobi elliptical cylinder 02,2=2ab[(a--5)2,
cylinder of balance in the x-direction £2,2=25/(a-+5),

cold cylinder R.2=ab/(a-5)2,
cylinder of zero angular momentum 0,2=1/2-abl(a+5)?,

cylinder of maximum angular momentum .£2,2= {1/2-+aé/(a--5)2} /3.

If the angular velocity is smaller than that of the Jacobi elliptical cylinder, that is, if £2,2<
226/(a+8)?, the mean circulation is in the direction of rotation and, if £,2>2ae8/(a-2)2,
it is counter to the direction of rotation, although Frepman have considered that the mean
motion in his cylinder is a circulation counter to the direction of rotation. In the case of
an incompressible elliptical cylinder, the angular velocity and the vorticity in the rotating
frame ¢’ satisfy the relation

252 , 2ab
P @ = Gtae

(3D
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Tig. 3. The revised range of &/a and £22/27Gp in which the velocity dispersion
is zero or positive and the loci of particular cylinders. The angular
velocities of rigid rotation for the Maclaurin circular cylinder 2yac/
V2aGp are given for Q2/2xGp=0, 1/4, 1/2, 3/4,1. In the shaded
area, the mean cinculation is counter to the rotation.
where
L =0 |V2aGp , (32)

(Lams 1932). Its angular velocity is always less than that of the Jacobi elliptical cylinder.
This difference from collisionless stellar systems is caused from the characteristic of the
fluid that the pressure is isotropic.

The total kinetic energy referred to an intertial frame per unit length of the cylinder
K is

=5 /[ leat@yr-(cy— Q)2 fdorae, (33)
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— 3 Gar, (34)

which is constant for a fixed value of #7. The potential energy per unit length, normalized
to that of the circular cylinder with the same ¥, Uis

u

a-t+b
Gare (35

ab’

=In

(Ismizawa 1974). The total energy per unit length, normalized as above, is

K+U | atd
Gz =1In oz’ (36)

which depends only on the axial ratio. It is found from equations (34) and (35) that the
virial theorem does not hold for the two-dimensional infinite body.

Note added in progf : After this paper was submitted, it is found that the same results have been
obtained independently by C. Hunter (1974, Mon. Not. R. Astr. Soc. 166, 633).
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