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ABSTRACT

Electro-magnetic corrections including the finite electro-magnetic structure effects
to the proton-proton scattering in the low energy region are calculated by means of
constructing the ““one photon exchange potential”. Except the vacuum polarization
effect, the electro-magnetic corrections cause negligibly small effects on the “central”
p-wave phase shift, 34.. But the contributions to the 1§, phase shift and the p-p
polarization can not be neglected, compared with the present experimental accuracies.

1. Introduction

The differential cross section in p-p scattering below 10 MeV have been mea-
sured with high accuracies, 0.1~0.5 %, at several laboratories?~®. Two phase
shifts, 1S, phase shift and the central p-wave phase shift, *4,, can be almost uniquely
determined from these data®,

The great accuracy of the data allows one to extract many important informa-
tions on the nuclear force. It has been pointed out that the %4, is the important
parameter to get the information on the “scalar” meson exchange or two-pion
exchange mechanism between two nucleons”.

But a correct estimation of the electro-magnetic (EM) corrections to the ordi-
nary Coulomb interaction is required in order to get informations on the nuclear
force precisely from the proton-proton scattering data. It is well known that
the vaccum polarization (VP) effect between two protons contributes to the p-p
cross section seriously in this energy region®.

The VP effect on p-p scattering is reviewed briefly and some numerical estima-
tions of the effect are shown in the next section.

The other EM corrections to p-p scattering have been neglected in most analyses,
although the correction to the scattering length was discussed in connection with
the charge independence of the nuclear force? and the contribution from the ma-
gnetic L-S and tensor interaction was discussed at higher energies®.

These contributions to p-p scattering in this energy region are discussed in sec-
tion 3. Here the ME potential between two protons are deduced on the analogy
of one boson exchange potential, according to the procedure of Kiang, Machida
and Nogami'®. The effect of the EM structure of a proton is included in this pot-
ential. Phase shifts due to this EM potential are calculated using the plane wave
born approximation.
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The contribution to the 24, was found to be negligiblly small at the present
experimental accuracy. But the contribution to 1S, phase shift can not be negle-
cted. The effect of the electro-magnetic L-S interaction to the polarization in
p-p scattering was found to be important in this energy region.

2. Vacuum polarization effect

Vacuum polarization (VP) effect on the p-p scattering has been studied by
several authors®9'1~19,

The VP potential to first roder in « was first derived by Uehling' and is given
by,
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with « the fine structure constant and &™! the Compton wave length of the electron.
The phase shifts caused by the VP potential is given by the equation,

tan 7= =22 1" FL@I0)50) Y (2)

with =¢e*kv, the Coulomb parameter. In eq. (2), S)(r) is the regular solution of
the radial wave equation in the Coulomb plus VP potential and has the asymptotic
form,

S(r) =2 Fr)+tan 7,G,(r) (3)

where F,(r) and G,(r) are the regular and irregular Coulomb functions respectively.
In the first order purturbation theory, eq. (2) becomes
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The numerical calculation of eq.(4) was done by Heller'®. Analytic expressions
of eq. (4), expanded in 7, were derived for z§ by Durand® and for zf by Eriksen,
Foldy and Rarita and they agree remarkably with the numerical calculation of
eq.(4) above 1 MeV. Sher, Signell and Heller® showed that results of the numeri-
cal calculation of eq.(2) agreed with the Born result 7 to within 1%. And the
error of the plane wave Born approximation is less than 4 %, above 1 MeV. Usually
errors of the nuclear phase shifts determined from present experiments are larger
than 10 9 of the VP phase shift, so the Born approximation are sufficient to calcu-
late the VP phase shifts.

The VP phase shifts below 10 MeV are shown in Fig 1. As seen in Fig 1, many
partial waves must be taken into account to evaluate the VP effect on p-p scattering.
1t is expected from the function I(r), which gives the potential a range of the order
of the Compton wave length of the electron, though it decreases exponentially to
zero for gr—o0,

The VP amplitude is given by,

So®)=35) QI+ DegmPicos6) (5)
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Fig. 1. The VP phase shifts in the Born approximation!®

where ¢, the Coulomb phase factor Durand derived the first three terms in an
expansion of f,,(0) in powers of 7. The VP contribution to the p-p cross section
can be evaluated using the following equation.

AGU;):UT—GN—H,‘

o= | Lot @ —Detima 2| f1 2
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, where the /7 and f% the symmetric and antisymmetric Coulomb amplitude and
8Y the 1S, phase shift.

The 4o,,/o; was calculated at 8 MeV using the available value of 1S, phase
shift. As shown in Fig. 2, the angular dependence of the 4o,,/q, is similar to the
4o 4./og, the contribution from the 34,. So the VP correction is very important to
extract the 34, from the p-p scattering data.

3. Electro-Magnetic potential and its contribution to p-p scattering

There are several methods to obtain EM potential between two nucleons® 17,
Sher, Signell and Heller” obtained the EM potential including the EM structure
effects of a nucleon, following to the method of Barker and Glover'™®. Recently,
Kiang, Machida and Nogami'® derived the EM potential in the S-state as the one
photon exchange potential which is the limit of one vector meson exchange poten-
tial with the meson mass m—0. Their results agreed with that of Sher, Signell and



88 K. IMAI

(%)

o VP Contribution 1o P-P Cross Section

08 I

— ARR/0

o8- N~ AO}&C/G\ {Ae=0.062)

Ok |-

02t

5" ~e0_ _ 70°. 80 o
° - 6
CcM

~02}

Fig. 2. The VP contribution to the cross section in p—p at 8§ MeV. The solid line
shows do,,/o. The dashed line shows do./o with *4,=0.042°

Heller for p-p. According to this procedure, the full EM potential between two
protons is deduced. And its effects on the p-p scattering at low energies are eval-
uated here

The EM potential (the one photon exchange potential) can be obtained from
the one vector meson exchange potential with m-—>0, g,—4dze and f,/m-—>dzu’ 1,
where g, and f,/m are the coupling constants of the vector meson and the nucleon,
and #’ is the anomalous magnetic moment in a unit of x4, nuclear magneton. The
one boson exchange potential with non-static corrections were studied in detail
by Hoshizaki, Lin and Machida'®.

The EM potential in a nomentum space is given to the order of M ~? as follows.

V=Vt Vi(is-gxp)+Vilor+ ) (02 0)+
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V= —dm 2 {1424 41/ (1 — g2 4 M2 —p2|2 M)}
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p=p;+0)2, q=ps—p;; 5s=(0,F05)/2

-> >
where p; and p  are the initial and final momentum of the proton and M is the proton
mass and the relation e/2M=u, is used. The potential including the EM structure
of the proton can be derived by putting e—eF,,(¢%) and #'—u'F,,(¢%) in eq (8).

Vom 4w F (1 +-1 M2)| -+ i~ FRy— 20 Fy By -1 2F 4 M9)
V,=4m (6 F% 81’ Fy, Fyy— 30 2}, [2MP) | g

Vy=4nu; {F?p+2ulFlpF2p+ﬂ/2ng(l — @ [AM*—p*2MP)} [
Vy=dnuin* F2,[2 M '

Vi=—G6mu" i F3, | M
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, where F,(¢?) and F,,(¢%) are the Dirac and Pauli form factor of the proton and
related to the empirical proton form factor Gg,,

Fi(@)=1+1+2)g/4M?) (1+¢*/4M?) Gy, (10)
Fop(q)=F,,(¢®) A+ +)g /aMH)™
Gpy=(141.24¢5 M?)2 . (11)

Eq.(11) is well established by experiments of electron-proton scattering to several
GeV2
By the Fourier transformation of eq.(9), one can obtain the EM potential in

a coordinate space.
For the present purpose, the term of the order of p?/M? and ¢?/M? can be ne-
glected and the form factor can be approximated to

Fy=Fp=GCp,

, and Gy, is approximated to (14-5¢°/M?)~"2 for a simplicity of the calculations.
This approximation is not valid in the inner region of the potential, but it does not
change the mean square radius of the charge and magnetic distribution. In this low
energy region, it will be sufficient.

The potential in the coordinate space is given as follows,

VEM(y=eX(1—e ) r— (1 + 24 ) 2a%e™ " [r

— (68 fr —(a+rNe o} 2+ (L S)
_(1 —I—/J/)Q,LL(Z){I‘AB—(I'_Z—Q—CZI‘_I~§~(lz/3)€""/l'} S12
(L Vi e (0, o) (12)
Sie=3(0;°1) (6 1)[r*—(01* 03)
where a:—Mr_ specifies the range of the potential due to the effect of the EM struc-

V'5

ture of the proton. For the point protons, this potential can be simplified as
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V(r)=e*r—m(1+2u")0(r)— (684 Yugr ~3(L- S)
(U Pl Sy 2 (1 P 2)0(0) (13
Eq.(13) agreed with the results of reference 15~17.
The EM potential except the ordinary Coulomb potential is so small that the

plane wave Born approximation is expected to be sufficient to evaluate the phase
shifts due to this potential, as it works well for the VP interaction.

SFM =——Mk’ZS:j?(p)V“’(p)pzdp (14)

with p=kr.
For the 1S, state, the EM potential except the ordinary Coulomb interaction is
given by,

W eM(ry=—etr = (120 + 20" ) idr “aPe™ " . (15)

The first term is due to the effect of the charge distribution of the proton and the
second is due to the magnetic interaction including the effect of the EM structure.
The 1S, phase shift due to this potential can be easily calculated, using the second
kind Legendre function.

lb\(fi‘leaoclmarge+16mag
Z%'/ng(aZ/ZkZJr D—Ma (1420 +20%)Qy(@?/2k*+ 1)[2k . (16)
<

This can be approximated at low energy,
16ocharge:aﬂM2/2a
13,8 = —a f(1 424" +204)/8 17

where g the velocity of the incident proton. The numerical results are shown in
Fig. 3. The 0,0**=® and !6,™%¢ are larger than errors of the 1S, phase shifts in
the present experimental status®®%, The net EM phase shift, 15,°%, is comparable
to the errors.

For the 3P, state, the p-wave phase shift combinations 4., 4,5 and 4, (Eq. 18)

> >

can be directly calculated from the central, L-.S and tensor potentials, respectively.
4c :";“ (3510 =+ 33611 + 53612)
dys=k (290,39, 50,,)
12
4y 3175—2(”‘23610‘*“33511_3512) . (18)

The central potential in the triplet odd state is given by

2
WEM = C omor (54104 420" bate™ " [3r . (19)
;
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Fig. 3. The EM contribution to the 1S, phase shift, | indicate the error of the 15,
phase shift. O are from ref. (9) and & from ref. (5).

This is essentially same at the potential for 1S, state except the eigen value of the
>
spin-spin operator (o;-0;). The ‘“‘central” P-wave phase shift is given by

3AfM=3ACcharge+SAcmag

=%{a+a2ﬂ§(5+10#'—{—2#'2)/3} 0,(a/2k2+1) . (20)
At the low energy, it can be approximated to
3AfM=Il—2—M“a‘4a/93+Ii—4M2a'2aﬂ3(5—{—10,u’+2,u’2) . 1)

The range of the potential due to the EM structure is characterized by the exponen-

tial factor a =\/L§>, which is about half the proton mass, so, roughly speaking,
the potential range is twice the Compton wave length of the proton which is fairly
shorter than the impact parameter of the P-wave scattering in this energy region.
Due to the short range charactor of this potential, the values of 34%¥ are smaller
than the errors of 34, obtained from available data, as seen in Fig. 4. This result
shows that the effect from the EM structure to P-wave and higher waves can be

neglected. So the finite structure effect can be neglected for the Z§ and tensor
potential.
> >
V= —(6+8u )k r (L)
WM = — (144 V=3 S, (22)
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Fig. 4. The EM contribution to the *Pr-wave. | indicate the error of the 4,
obtained in ref. (9) and (5) the dashed line show the 4227 which is calculated
by the one-boson exchange model.

The phase shifts 4% and 4% are given as follows,

34%:%(3 A ) il M==a S(3-+4u')16

B L (ks Yol M= p1-4 V32 : 23)

The 342% and 34%" are also shown in Fig. 4. The 4% is several % of the 34, by
one-pion exchange but the 345¥ is comparable to the 34,5 by one-obson exchange
below 3MeV.

>

The L-S and tensor potential (eq.(22)) has a rather long range tail, compared
with the potential due to the EM structure of the proton. So, in this case, higher
wave phase shifts must be taken into account to evaluate the contributions from
these potential to the cross section and polarization in p-p scattering.

The phase shifts due to the I: 6: potential (eq.22) can be obtained for the state | JL>
as
LSGEM — KCLT | Lo S| LIY/L(L+1)
—K/L (J=L—1)
={—K/L(L+1) (I=L) 24
. K(L+1)  (J=L+1)
K=G+4u" kM .

> >
If 2S45% is small, this L-S contribution to the scattering matrix can be written as
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, where the notation of M;; is given in the appendix of reference (20).
The contribution to the cross section and the polarization is as follows.

The 46%5(0) is negligible small, for example ~5ub/sr at 6,,,=10°, but the contribu-
tion to the polarization can not be neglected because of the interference term with

AULS(ﬁ)—’\-’éM{ |6 MG 124+ | 6ME° |2 =K?/k? sin? 6

A%HW>¥%?MUMM. 26)

k si

the Coulomb amplitude.
The polarization due to the EM interaction at §MeV is shown in Fig. 5.
It will be not impossible to measure the polarization with an accuracy of 0.1 %

absolute in

this energy region today.

93

In the case of the tensor potential, it can be easily verified that the interference

term with the Coulomb amplitude also vanishes for the cross section, if the phase
shifts is small enough to be able to replace (1-¢*®) to -2i8. The EM tensor con-

tribution to the cross section was found to be the same order as the L..S contribu-

tion.
0.1F
P-P  Polarization
(%)
- 2 9w g, % %o
0 , h . —
-0tk e
s
| ,
-0.2}- -
> >
Fig. 5. The EM i-S contribution to the p— p polarization at 8 MeV. The dashed

line shows the polarization calculated with the available phase shift set.5>
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4. Final remarks

For the estimation of the 34, in the p-p scattering below 10 MeV, only the VP
effect is important at the present experimental accuracies. The differential cross
sections in this energy region are less sensitive to the 4, and 34;, so, in the phase
shift analysis®'®, they are assumed by the one pion exchange model or one-boson

exchange model. The contribution of the L+S and tensor parts of the EM interac-

tion can be neglected for the cross section, but for the polarization the effect of Z@
part is important. Accurate measurments of the polarization are expected in this
energy region.

In addition to the VP effect, the effect of the EM structure of the proton on the
1S, phase shift is comparable to the experimental accuracies. But the EM structure
effect is importnat in the inner region of the nuclear force. So the effect of the
wave distortion by the nuclear force must be taken into consideration. The plane
wave Born approximation gives a very rough estimation of the EM structure eff-
ects on the 1S, phase shift.

The VP effect decreases at higher energies, but the EM contributions to the
phase shifts increase. So, when the accuracy of the data is improved, its effects
must be considered even in the higher energy region.
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