Memoirs of the Faculty of Science, Kyoto University, Series of Physics, Astrophysics, Geophysics and Chemistry, Vol. XXXVI, No. 2, Article 4, 1982

SYSTEMATIC STUDY ON THE ELASTIC SCATTERING OF 65 MEV POLARIZED PROTONS

By

Harutaka SAKAGUCHI

Department of Physics, Kyoto University, Kyoto 606, Japan

(Received October 15, 1981)

ABSTRACT

Elastic scattering of 65 MeV polarized protons from 25 nuclei ($^{16}O^{-209}Bi$) has been measured. Systematics of the optical potential, which reproduces both the analyzing power and the differential cross section data remarkably, was persued. The volume integral of the real central part of the optical potential (J_R) shows a behavior similar to the binding energy curve for the target mass number. The mean square radius of the real central part of the optical potential is found to obey the relation $\langle r^2 \rangle_{pot} = (0.937 \pm 0.012) A^{2/3} + (6.42 \pm 0.21)$ fm². By comparing with the systematics of the charge distributions obtained from electron scattering data, it is found that the effective two-body interaction range between an incident proton and a nucleon in the target has a target mass number dependence given by $\langle r^2 \rangle_{int} = (0.132 \pm 0.013) A^{2/3} + (4.24 \pm 0.24)$ fm². Assuming this relation, root mean square radii of the point nucleon distributions are obtained. The dependences of the J_R -value and the $\langle r^2 \rangle_{pot}$ -value on the mass number and energy obtained here are compared critically with recent microscopic optical potential calculations.

CONTENTS

1.	Introduction	306
2.	Experimental method	307
3.	Data reduction	309
4.	Optical potential fitting	310
5.	Systematics of the mean square radius of the real central part of the optical	
	potential and the effective interaction range	314
6.	The mass number dependence of the effective two-body interaction range	
	deduced from the optical potential for deuteron, helium-3, and alpha	
	particles	319
7.	Comparison between experimentally obtained $\langle r^2 \rangle_{pot}$ -value and microscopic	
	calculations	321
8.	Root mean square radius of the point nucleon distribution of the target	
	nucleus ·····	323
9.	Volume integral of the real central part of the optical potential	323
10.	Anomalous isotope dependence of the real central part of the optical	
	potential in the <i>f-p</i> shell region nuclei	327
11.	Conclusions	329
12.	Aknowledgements ·····	329
13.	Appendix: Numerical values of the measured differential cross sections and	
	the analyzing powers	331
L4.	References	340

1. Introduction

Recent progress in nuclear matter theories has made it possible to understand the nuclear optical potential microscopically in terms of a two-body nucleon-nucleon interaction. Jeukenne, Lejeune and Mahaux (JLM)^{1)~4)} at Liege and Brieva and Rook^{5/~9)} at Oxford have calculated the nuclear optical potential microscopically. In order to check critically these global optical potential theories and to extract new aspects in many body problems, it is necessary to measure accurately proton elastic scattering over a wide range of target nuclei and over a wide range of energies relative to the Fermi energy. In applying nuclear matter theory to scattering problems there are many difficulties to overcome by using suitable approximations. The most ambiguous process among them is the transformation procedure from infinite nuclear matter to finite nuclei such as the process using the local density approximation (LDA). As was already pointed out by Wong¹⁰ and Negele,¹¹ the LDA is not accurate in the nuclear surface region. On the other hand, the nuclear surface is the region most sensitively explored by nuclear scattering, and surface effects will be exemplified by their mass number dependence. In order to clarify the role of the nuclear surface and to check the approximation used in the theory, it is important to determine accurately the mass number dependence of the optical potential. For the LDA, energy dependence of the t-matrix in nuclear matter is reflected directly in the potential depth. But in the folding potential of Brieva and Rook the situation is not so straightforward as in the LDA. For checking the validity of their approximation, the energy dependence of the optical potential will be a useful guide.

On the experimental side, the study of the optical potential has progressed after Becchetti and Greenless's¹²⁾ work. If we plot the data available on elastic scattering in a two dimensional plane of incident proton energy versus target mass number, we notice that data are concentrated at energies below 35 MeV and for targets near magic nuclei. In addition, systematic experimental studies on the optical potential using a polarized proton beam are still scarce. Recently Fabrici et al. reported^{13)~14)} measurements of the elastic scattering at several proton energies between 20 MeV and 45 MeV. Although their sytematic analysis utilized polarization data only partially, it has clarified the energy dependence in that region. In the intermediate energy region a group at Indiana Univ. is investigating^{15)~17)} the systematics of the optical potential in a relativistic framework. In this paper we report systematic measurements on elastic scattering of polarized protons and an analysis of data over a wide range of target mass numbers, from ¹⁶O to ²⁰⁹Bi, at an incident proton energy of 65 MeV. Partial results have been published.18)~20) The use of high-purity germanium (HP-Ge) detectors has made possible rapid data aquisition at this energy. The 65 MeV data are thought to be valuable not only because they fill a gap in experimental data but also because of the simplicity of the reaction mechanism; they are relatively free from the giant resonance effects and the multi-step processes observed in the lower energy region.

2. Experimental method

The polarized proton beam (of 10 keV energy) from the atomic beam type polarized ion source²¹⁾ (PIS) is injected axially into the Research Center for Nuclear Physics (RCNP) Osaka Univ. AVF cyclotron.²²⁾ A beam buncher in the injection system intensifies the beam current by about a factor of 3. The extracted beam of 65 MeV was energy analyzed and transported to the polarization experiment area.²³⁾ As shown in Fig. 1, the beam was first focused on a target to a beam spot size of about $1 \times 2 \text{ mm}^2$. After passing through the target, the polarized beam was again focused on a polarimeter target foil and then collected by a Faraday cup located downstream of the polarimenter. The beam current was monitored by a current digitizer whose output pulses were routed by a spin controller²⁴⁾, depending on the beam polarization direction.

Fig. 1. A layout of the polarization experiment area.

Scattered protons were detected by 1.5 cm thick HP-Ge detectors, which were located at symmetric scattering angle to the left and right of the beam on the goniometers outside the scattering chamber. In the angle region of rapidly changing angular distributions, the detectors were placed at a distance of more than 30 cm from the scattering chamber (of 26.6 cm diameter) to obtain better angular resolution. A vacuum bag was inserted between the scattering chamber and the HP-Ge cryostat to reduce the energy loss and range straggling of the scattered particles in air. For solid targets, the acceptance solid angles of the detector were 0.1453 msr at forward angles $(\theta < 32.5^{\circ})$ and 0.6902 msr at backward angles $(\theta > 32.5^{\circ})$. For gas targets the vacuum bag was inserted between the front and back slits of a double-slit collimator. The gas target G-factors of the slit system were 1.09×10^{-4} at the forward angles and 2.15×10^{-4} at the backward angles. The beam direction was determined by two methods. One was the conventional kinematical crossover method. The other was to search for the scattering angles on both sides of the beam direction at which the analyzing power of $p + {}^{208}Pb$

elastic scattering changes sign rapidly. The uncertainty of the scattering angles was estimated to be less than 0.05 degrees.

The degree of beam polarization changes depending on the vacuum in the ionizer region of the PIS, the out-gassing history of the ionizer, and on other ionizer conditions. So the beam polarization was monitored continuously by a polarimeter located downstream of the scattering chamber. Scattered protons from the polarimeter target foil (a stacked 3 mg/cm² thick polyethylene foil) were detected by NaI(T1) scintillators placed at the θ_{LAB} = 47.5 degrees. The left-right asymmetry of the elastic scattering from 12 C was used to deduce the beam polarization. The polarimeter target foil was changed after an appropriate beam irradiation in order to reduce the effect of contaminant buildup. The beam polarization error due to the contaminant peak was estimated to be less than 0.2%. As the analyzing power of the $^{\rm 12}{\rm C}$ polarimeter at $\theta_{LAB} = 47.5^{\circ}$, we adopted a value of 0.975 ± 0.011 , which was obtained in the double scattering experiment at $E_p = 65 \text{ MeV}$ by Kato et al.²⁵⁾ The direction of the proton spin was reversed after every 200 pC of integrated beam charge by reversing the solenoid magnetic field direction at the inonizer of the PIS. In the later stage of the experiment the spin direction was reversed every 1 s by alternating the atomic beam rf transition mode between the weak field and strong field transition. Signals from a microprocessor triggered the spin controller which controlled the rf transition mode, the scalers, and the data storage locations in the memory of the pulse height

Nucleus	Form	Thickness (mg/cm²)	Enrichment
16O	gas (O ₂)	1-2 atm	natural (99.8%)
20Ne	gas (Ne)	1-2 atm	natural (90.51%)
²⁴ Mg	metal foil	3.18	99.94%
28Si	metal foil	2.98	natural (92.21%)
40Ar	gas (Ar)	1-2 atm	natural (99.60%)
4ºCa	metal foil	2.19	natural (96.97%)
' *Ca	metal foil	2.78	98.55%
' вСа	CaCO ₂ +mylar	1.34	97.27%
4°Ti	metal foil	0.52	81.20%
⁴⁸ Ti	metal foil	0.99	99.25%
⁵⁰ Ti	metal foil	0.82	83.2%
^{\$4} Fe	metal foil	1.57	96.81%
5°Fe	metal foil	1.02	99.93%
⁵⁹ Co	metal foil	2.09	99.83%
58Ni	metal foil	2.04	99.83%
6ºNi	metal foil	2.04	99.79%
°²Ni	metal foil	1.71	96.48%
⁶⁴ Ni	metal foil	3.55	96.48%
⁸⁹ Y	metal foil	1.376	natural (100%)
°°Zr	metal foil	2.672	97.65%
⁹⁸ Mo	metal foil	0.900	97.01%
100Mo	metal foil	0.372	97.27%
144Sm	metal foil	1.71	96.33%
208Pb	metal foil	15.1	99.14%
209Bi	metal foil	4.23	natural (100%)

Table 1. Targets

analyzer, where energy spectra were stored in different memory locations depending on the polarization direction. The average beam intensity during the measurements was about 30 nA and the beam polarization was about 60-70%. The overall energy resolution detected by the HP-Ge system was 180keV-250 keV FWHM, including the beam energy spread and the range straggling due to window foils of the scattering chamber, the vacuum bag, and the HP-Ge cryostat. Table 1 lists the forms, thicknesses and enrichments of the target foils used. The thicknesses of the solid target folils were measured by dividing the total weight by the area, and for gas targets the gas pressure was monitored using a strain gauge sensor.

3. Data reduction

Analyzing powers were measured by the left and right detectors located at the same scattering angle. We denote by $L\uparrow$ the number of particles detected by the left detector in the spin up mode. $L\downarrow$, $R\uparrow$, and $R\downarrow$ are defined in an analogous way. The analyzing power $A_y(\theta)$ and its statistical error $\delta A_y(\theta)$ are calculated as follows

$$\begin{split} A_{y}(\theta) &= \frac{1}{P_{\text{Beam}}} \binom{r-1}{r+1}, \quad r \equiv \left(\frac{L \uparrow \cdot R \downarrow}{L \downarrow \cdot R \uparrow}\right)^{1/2} \\ P_{\text{Beam}} &= \frac{1}{A_{y}(^{12}C)} \binom{r'-1}{r'+1}, \quad r' \equiv \left(\frac{L \uparrow_{\text{pol}} \cdot R \downarrow_{\text{pol}}}{L \downarrow_{\text{pol}} \cdot R \uparrow_{\text{pol}}}\right)^{1/2} \\ \delta A_{y}(\theta) &= A_{y}(\theta) \left[\left(\frac{\delta P_{\text{Beam}}}{P_{\text{Beam}}}\right)^{2} + \left(\frac{\delta A}{A}\right)^{2} \right]^{1/2} \\ &= A_{y}(\theta) \left[\left(\frac{\delta P_{\text{Beam}}}{P_{\text{Beam}}}\right)^{2} + \left(\frac{r}{r^{2}-1}\right)^{2} \left(\frac{1}{R \uparrow} + \frac{1}{R \downarrow} + \frac{1}{L \uparrow} + \frac{1}{L \downarrow}\right) \right]^{1/2} \\ \delta P_{\text{Beam}} &= P_{\text{Beam}}(\theta) \left[\left(\frac{\delta A_{y}(^{12}C)}{A_{y}(^{12}C)}\right)^{2} \\ &+ \left(\frac{r'}{r'^{2}-1}\right)^{2} \left(\frac{1}{R \uparrow_{\text{pol}}} + \frac{1}{R \downarrow_{\text{pol}}} + \frac{1}{L \uparrow_{\text{pol}}} + \frac{1}{L \downarrow_{\text{pol}}}\right) \right]^{1/2} \end{split}$$

where $L_{\uparrow pol}$ denotes carbon elastic peak sum for the left polarimeter detector in the spin up mode, and $L_{\downarrow pol}$, $R_{\uparrow pol}$, and $R_{\downarrow pol}$ are similarly defined. $A_y(^{12}C)$ and $\delta A_y(^{12}C)$ are the carbon analyzing power and its uncertainty at the scattering angle $\theta_{\text{LAB}} = 47.5^{\circ}$ and $E_p = 65 \text{ MeV}$. Differential cross section data were corrected by the detector efficiency due to the nuclear reaction in the HP-Ge itself. Energy dependent detector efficiency $\varepsilon(E_p)$ in the energy region of 45 MeV to 65 MeV is obtained from the Makino's data²⁰⁾ according to the relation

$$\varepsilon(E) = 1.0267 - 0.0011333E$$

Using this formula, the difference of the elastic peak detecting efficiency between $\theta_{LAB} = 0^{\circ}$ and $\theta_{LAB} = 80^{\circ}$ was 0.7% for ¹⁶O and 0.3% for ⁴⁰Ca. Thus the correction due to Makino's data affected the relative angular distributions of the differential cross sections negligibly. Measured cross section and analyzing power data are plotted in Fig. 2. Numerical values of the data are listed in the Appendix. Error bars shown in the figure and the Appendix are only the statistical ones. In the analyzing power data, uncertainties of the ¹²C-polarimeter analyzing power are included. We notice a systematic shift of the diffraction pattern as the target mass number increases. In particular, a sharp rise near 30° in the analysing power data shifts forwards as the target mass number increases.

4. Optical potential fitting

The optical potential fitting to the measured data was performed using the automatic search code MAGALI of Raynal.²⁷⁾

The following optical potential was as used;

$$U(r) = V_{\text{Coul}}(r) - V_r f(r; r_R, a_R) - iW_v f(r; r_{wv}, a_{wv})$$
$$+ 4a_{ws} W_s i \frac{d}{dr} f(r; r_{ws}, a_{ws})$$
$$+ V_{ls} \left(\frac{\hbar}{m_{\pi}c}\right)^2 \left(\frac{1}{r} \frac{d}{dr} f(r; r_{ls}, a_{ls})\right) (\boldsymbol{\sigma} \cdot \boldsymbol{L})$$

where

$$f(r; r_0, a_0) = (1 + \exp((r - r_0 A^{1/3}) / a_0))^{-1}$$
$$V_{\text{Coul}}(r) = \begin{cases} \frac{Ze^2}{2r_c A^{1/3}} \left(3 - \frac{r^2}{r_c^2 A^{2/3}}\right) & r \leq r_c A^{1/3} \\ \frac{Ze^2}{r} & r \geq r_c A^{1/3} \end{cases}$$

A search for best-fit values of the optical potential parameters was started using the gas-target data. The probability of becoming trapped in a false local minimum during the search for a χ^2 -minimum was thought to be small, since uncertainties in the cross section due to uncertainties in the target thickness measurement are small for the gas targets. For ⁴⁰Ar, we started with the Becchetti and Greelees parameter values. The initial parameter values for ¹⁶O, ²⁰Ne were obtained from the best-fit ⁴⁰Ar parameter set. For other targets, potential parameters of the neighbouring target which had already been fitted were adopted as a starting set. Also, a renormalization of the calculation was introduced because of the target thickness uncertainty. In Fig. 2 measured differential cross sections and analyzing powers are shown together with the best-fit optical potential calculations. The optical potential parameters and the associated χ^2 -values obtained are listed in Table 2.

(¹⁵/_{qu})⁸⁹/_p

Renorm. Factor	1.04	1.05	1.23	1.05	1.07	0.807	0.956	1.03	1.03	0.955	0.982	1.11	1.01	0.966	1.08	1.11	1.04	1.02	1.06	0.936	0.951	1.08	1.10	1.13	1.09
χ^{a}/F	1.50	1.25	2.29	1.68	1.64	0.806	1.16	0.792	0.772	0.608	0.550	0.550	0.678	0.610	0.511	0.439	0.638	0.696	0.918	0.498	0.729	0.283	0.584	0.652	0.696
ars	0.5807	0.6860	0.6364	0.6181	0.6722	0.6317	0.6554	0.6475	0.6554	0.6554	0.6276	0.6155	0.6285	0.6554	0.6554	0.6554	0.6554	0.6554	0.6300	0.6527	0.6603	0.6339	0.6224	0.6103	0.6330
r_LS	1.057	1.015	1.022	1.007	1.061	1.088	1.094	1.091	1.094	1.094	1.083	1.071	1.051	1.071	1.027	1.049	1.074	1.063	1.147	1.138	1.147	1.156	1.151	1.175	1.155
V_{LS}	5.793	5.402	5.269	5.970	5.606	5.796	5.449	5.680	5.285	5.209	5.248	5.608	5.581	5.559	5.907	5.781	5.757	5.822	5.506	5.395	5.035	5.267	5.397	5.838	5.447
a_{ws}	0.375	0.5367	0.3850	0.5656	0.4928	0.4413	0.4476	0.3975	0.4949	0.4199	0.3941	0.4803	0.5307	0.4654	0.5639	0.5345	0.4562	0.5422	0.3847	0.4180	0.6046	0.6005	0.6005	0.5872	0.5998
r wa	1.350	1.320	1.395	1.241	1.357	1.344	1.329	1.344	1.347	1.349	1.346	1.330	1.316	1.346	1.319	1.317	1.320	1.310	1.301	1.352	1.261	1.248	1.248	1.253	1.252
W,	3.290	2.658	1.809	5.348	2.897	2.737	2.553	2.515	2.376	2.189	2.506	2.922	3.333	2.231	3.618	3.282	3.195	3.864	2.806	2.621	5.163	5.901	5.676	5.758	6.236
a_{uv}	1.198	0.9484	1.041	0.3660	0.7498	0.7993	0.9099	0.7824	0.8090	0.8346	0.8216	0.7670	0.8162	0.8240	0.6262	0.8083	0.8815	0.7744	0.7226	0.7070	0.8210	0.7878	0.8210	0.7775	0.8210
Two	0.2762	0.9552	0.8908	0.8388	1.137	1.164	1.120	1.187	1.182	1.191	1.162	1.047	1.004	1.133	0.9729	1.001	1.052	1.019	1.274	1.223	1.016	1.072	1.016	1.142	1.016
W,	12.847	7.709	10.525	9.917	9.063	8. 131	9.703	10.228	8.034	8.244	9.521	10.410	11.354	9.606	12.499	11.662	11.356	11.518	8.545	9.230	8.585	7.058	10.439	9.816	12.160
a_R	0.6556	0.7439	0.6864	0.7248	0.7266	0.7080	0.7007	0.6808	0.7082	0.7041	0.6898	0.6907	0.7138	0.7177	0.7248	0.7171	0.7175	0.7234	0.7084	0.7129	0.7407	0.7311	0.7288	0.7461	0.7347
r_{B}	1.297	1.212	1.251	1.176	1.208	1.232	1.246	1.230	1.241	1.242	1.226	1.212	1.197	1.212	1.173	1.195	1.218	1.209	1.232	1.233	1.240	1.244	1.230	1.223	1.229
V_{R}	27.172	31.162	27.242	33.912	34.249	33. 285	31.474	32.907	31.691	31.425	32.610	33. 195	34.870	33.634	35.466	34.812	33.831	33.858	35.463	34.861	34.460	34.933	36.162	39.105	37.399
Nucleus	Ogr	^{20}Ne	^{24}Mg	28Si	'Ar	4°Ca	"Ca	⁴°Ca	۰Ti	⁺*Ti	۶°Ti	⁵⁴ Fe	^{se} Fe	°Co	58Ni	iNº	°2Ni	iNi	Χ.,	1Z**	°M°°	$^{100}\mathrm{M}_{\mathrm{O}}$	¹⁴⁴ Sm	209 Pb	209Bi

Table 2. Best fit optical potential parameters Coulomb radius is fixed to $r_e=1.25$ fm.

ELASTIC SCATTERING OF 65 MEV POLALIZED PROTONS

Uncertainties in the experimental data are mainly due to inhomogenities of the target foil thickness and to the scattering angle errors (less than 0.1°) rather than to counting statistics. Therefore the uncertainties used during the parameter search were

$$\delta\left(\frac{d\sigma}{d\Omega}\right) = \operatorname{Max}\left(0.03 \times \left(\frac{d\sigma}{d\Omega}\right), \left(\frac{d\sigma}{d\Omega}\right)_{\text{statistical}}\right)$$

and

$$\delta A(\theta) = Max(0.03, \delta A(\theta)_{\text{statistical}})$$

in order to avoid trapping in an unphysical local χ^2 -minimum. As for the data points in Fig. 2, the error bars for the cross sections include only the statistical errors, while the error bars for analyzing powers include the uncertainty of the ¹²C-polarimeter analyzing power in addition.

5. Systematics of the mean square radius of the real central part of the optical potential and the effective interaction range

From the real central part of the optical potential obtained in this analysis, the mean square radius of the potential $\langle r^2 \rangle_{pot}$, was calculated and is plotted as a function of $A^{2/3}$ (A denotes the target mass number) in Fig. 3. The $\langle r^2 \rangle_{pot}$ data are remarkably linear in $A^{2/3}$. A linear least-squares fit to the $\langle r^2 \rangle_{pot}$ data gives

$$\langle r^2 \rangle_{\text{pot}} = (0.937 \pm 0.012) A^{2/3} + 6.42 \pm 0.21 \text{ fm}^2$$
. (1)

The error bars in Fig. 3 indicate the uncertainties in the optical potential fitting and were calculated using the following procedure. First, all the

Fig. 3. Mean square radii of the real central part of the optical potentials are shown as a function of the target mass number A. The definition of the error bars in the figure is explained in the text. The numerical data with error bars are listed in Table 3. The solid line is obtained by leastquare linear fitting to the data.

parameters except V_r and r_c were searched for to obtain the $\chi^2_{\min}(V_r)$ as a function of V_r . A $\chi^2_{\min}(V_r)$ curve for ⁴⁶Ti case is shown in Fig. 4. The curve resembles a parabola. Then the error of $\langle r^2 \rangle_{\text{pot}}$ was calculated from the $\langle r^2 \rangle_{\text{pot},1}$ and $\langle r^2 \rangle_{\text{pot},2}$ values, which were obtained with the parameter sets at $\chi^2_{\min}(V_r) = 2\chi^2_0$ (best fit). Thus, the uncertainty due to the well known VR^n = constant parameter correlation is included in the error bars.

The linear relation between $\langle r^2 \rangle_{pot}$ and $A^{2/3}$ is understood by using a simple folding model. As was shown already by Greenlees, Pyle and Tang,²⁸⁾ the real central part of the optical potential can be written as

$$U(\mathbf{r}_0) = \int \rho(\mathbf{r}) V_{\text{int}}(|\mathbf{r} - \mathbf{r}_0|) d\mathbf{r}^3, \qquad (2)$$

where $\rho(\mathbf{r})$ is the density distribution of point nucleons and $V_{int}(\mathbf{r})$ is an effective two body interaction. For a nucleus with a rotationally symmetric density distribution, the mean square radius of the potential deduced from Eq. (2) is

$$\langle r^2 \rangle_{\text{pot}} = \langle r^2 \rangle_{\text{matt}} + \langle r^2 \rangle_{\text{int}},$$
 (3)

where $\langle r^2 \rangle_{\text{pot}} = \int r^2 U(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3 / \int U(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3$, $\langle r^2 \rangle_{\text{matt}} = \int r^2 \rho(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3 / \int \rho(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3$ and $\langle r^2 \rangle_{\text{int}} = \int r^2 V_{\text{int}}(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3 / \int V_{\text{int}}(\mathbf{r}) \, \mathrm{d}\mathbf{r}^3$. If we assume that $U(\mathbf{r})$ and $\rho(\mathbf{r})$ are sphrically symmetric Fermi functions, $\langle r^2 \rangle_{\text{matt}}$ can be calculated in a good approximation^{29),30)} as

$$\langle r^2 \rangle_{\text{matt}} = \frac{3}{5} R_m^2 + \frac{7}{5} \pi^2 a_m^2,$$
 (4)

where R_m and a_m are the half density radius and diffuseness of the point nucleon density distribution, respectively. Therefore $\langle r^2 \rangle_{pot}$ is expressed as

$$\langle r^2 \rangle_{\text{pot}} = \frac{3}{5} R_m^2 + \frac{7}{5} \pi^2 a_m^2 + \langle r^2 \rangle_{\text{int}} .$$
 (5)

In order to obtain a relation between the half density radius and the mass number, we use the volume integral of the Fermi-type density distribution:

$$\int \rho(r) dr^{3} = \frac{4\pi}{3} R_{m}^{3} \left(1 + \frac{\pi^{2} a_{m}^{2}}{R_{m}^{2}} \right) \rho_{0} = A$$
(6)

where

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r - R_m}{a_m}\right)}$$

Since a_m and ρ_0 are reasonably constant with A, the half density radius R_m is calculated as a function of A, as

$$R_{m} = r_{m} A^{1/3} \left\{ 1 - \frac{1}{3} \left(\frac{\pi^{2} a_{m}^{2}}{r_{m}^{2} A^{2/3}} \right) + \frac{1}{81} \left(\frac{\pi^{2} a_{m}^{2}}{r_{m}^{2} A^{2/3}} \right)^{3} + \cdots \right\}$$
(7)

where

$$r_m = \left(\frac{3}{4\pi\rho_0}\right)^{1/3}$$

Inserting (7) into (5), we obtain for $\langle r^2 \rangle_{pot}$,

$$\langle r^2 \rangle_{\text{pot}} = \langle r^2 \rangle_{\text{int}} + \frac{3}{5} r_m^2 A^{2/3} + \pi^2 a_m^2 + \frac{1}{15} \pi^2 a_m^2 \left(\frac{\pi^2 a_m^2}{r_m^2 A^{2/3}} \right) + \cdots$$
 (8)

The 4th term can be neglected, since the ratio of the 4th term to the 3rd term is less than 0.02 for nuclei considered ($A \ge 16$). We finally obtain an approximate relation

$$\langle r^2 \rangle_{\text{pot}} = \frac{3}{5} r_m^2 A^{2/3} + \pi^2 a_m^2 + \langle r^2 \rangle_{\text{int}} .$$
 (9)

If we treat $\langle r^2 \rangle_{int}$ as a constant value as usual, $\langle r^2 \rangle_{pot}$ is linear in $A^{2/3}$ with the coefficient $\frac{3}{5}r_m^2$. In order to obtain the $\langle r^2 \rangle_{int}$ -value, we need to know the a_m -value, which is inferred from the charge distribution data. By comparing the two linear relations (1) and (9), we obtain the value of $r_m = (1.25 \pm 0.01)$ fm.

316

If we assume that the point proton density distribution is also of the Fermi-type (as we did for nuclear matter distribution), then $\langle r^2 \rangle_{\text{charge}}$ can be written in terms of the half-density radius R_p , the diffuseness a_p of the point proton distribution, and the mean square radius of the charge distribution of the proton itself, $\langle r^2 \rangle_{\text{proton}}$, as

$$\langle r^2 \rangle_{\text{charge}} = \frac{3}{5} R_p^2 + \frac{7}{5} \pi^2 a_p^2 + \langle r_z^2 \rangle_{\text{proton}} .$$
 (10)

For a relation between R_p and the mass number A, we use the same relation as (7)

$$R_{p} = r_{p} A^{1/3} \left\{ 1 - \frac{1}{3} \left(\frac{\pi^{2} a_{p}^{2}}{r_{p}^{2} A^{2/3}} \right) + \frac{1}{81} \left(\frac{\pi^{2} a_{p}^{2}}{r_{p}^{2} A^{2/3}} \right)^{3} + \cdots \right\}$$
(11)

We finally obtain a linear relation for $\langle r^2 \rangle_{\text{charge}}$ with $A^{2/3}$.

$$\langle r^2 \rangle_{\text{charge}} = \frac{3}{5} r_p^2 A^{2/3} + \pi^2 a_p^2 + \langle r^2 \rangle_{\text{proton}}$$
(12)

The mean square radius of the charge distribution, $\langle r^2 \rangle_{\text{charge}}$, from electron scattering³¹⁾ is plotted in Fig. 5 as a function of $A^{2/3}$. By least-squares linear fitting, we obtained $\langle r^2 \rangle_{\text{charge}} = (0.799 \pm 0.006) A^{2/3} + (2.50 \pm 0.12)$ fm². By introducing the $\langle r^2 \rangle_{\text{proton}} = 0.64$ fm² and comparing values from electron scattering with equation (12), we obtain $r_p = (1.154 \pm 0.004)$ fm and $a_p = (0.434 \pm 0.014)$ fm. These values are slightly modified by taking into account the

Fig. 5. Mean square radii of the charge distribution obtained from the electron scattering are plotted as a function of the mass number A.

Fig. 6. Mean square radii of the real central part of the optical potentials at $E_p=27-32$ MeV are plotted as a function of $A^{z/3}$.

neutron charge distribution.³¹⁾ Thus $r_p = (1.158 \pm 0.004)$ fm and $a_p = (0.470 \pm 0.012)$ fm are obtained. If the diffuseness of the point nucleon distribution is assumed to be equal to the diffuseness of the point proton distribution, we get the value of $\langle r^2 \rangle_{int} = (4.24 \pm 0.24)$ fm².

We notice that the value of r_m extracted from the present experiment is larger than that of r_p obtained from the electron scattering data. In order to show that such a difference is common to proton scattering, linear fits were made to the mean square potential radii from Perey's collection³²) of optical potential results at 27-32 MeV and 47-52 MeV incident proton energies. These are shown in Fig. 6 and Fig. 7, respectively. The values obtained are $r_m = (1.21 \pm 0.03)$ fm and $\langle r^2 \rangle_{int} = (4.06 \pm 0.84)$ fm² at 30 MeV, and r_m $= (1.19 \pm 0.02)$ fm and $\langle r^2 \rangle_{int} = (4.98 \pm 0.74)$ fm² at 50 MeV. Although the 30 MeV data and the 50 MeV data consist of optical potential parameters by many authors and hence could contain many inconsistencies among the parameters obtained due to different fitting principles, the r_m and $\langle r^2 \rangle_{int}$ values from the 30 MeV and 50 MeV data are consistent with our values, and r_m is larger than the r_p value of 1.158 fm. From the analysis of the 800 MeV-1 GeV data, it is concluded that r_m is approximately equal to r_p .

One answer to this contradiction is to introduce a target mass number dependence into the effective interaction range $\langle r^2 \rangle_{int}$. As demonstrated in Fig. 3, the linear relation between $\langle r^2 \rangle_{pot}$ and $A^{2/3}$ is confirmed and acceptable. Therefore the mass number dependence to be introduced into $\langle r^2 \rangle_{int}$ must also be linear in $A^{2/3}$. A recent argument³⁴ based on experimental data and the experimental results from the Los Alamos Meson Physics Facility (LAMPF),^{38)~43} show that with a small correction from the charge distribution in the neutron itself, the difference between the root mean square

Fig. 7. Mean square radii of the real central part of the optical potentials at $E_p=47-52$ MeV are plotted as a function of $A^{2/3}$.

radius of the point nucleon distribution and that of the point proton distribution is less than 0.1 fm, which is smaller than the error in our $\langle r^2 \rangle_{int}$ -value. Thus the average density distribution of point nucleons may be thought to be equal to that of point protons. Then the effective two-body interaction range obtained is

$$\langle r^2
angle_{
m int} = (0.132 \pm 0.013) \, A^{2/3} + (4.24 \pm 0.24) \, {
m fm}^2$$
 .

According to the recent theoretical work of Brieva9) on the nucleon-nucleus optical potential using a realistic nucleon-nucleon interaction, the exchange term is repulsive in the nuclear center, whereas at the surface it is attractive. An exchange term of this type introduces a mass number dependence of the effective interaction range, if $\langle r^2 \rangle_{int}$ is defined as $\langle r^2 \rangle_{int} = \langle r^2 \rangle_{pot} - \langle r^2 \rangle_{charge}$ $+\langle r^2
angle_{
m proton}$. Another source of the mass number dependence may come from a small difference between the point proton and the point neutron distributions, because the proton-neutron interaction is stronger than the proton-proton interaction, and this fact may enhance the effect from the density distribution difference. Thus the mass number dependence of $\langle r^2 \rangle_{int}$ is an empirical relation and reflects various many body effects. The true origin of this mass number dependence may be explained by an elaborate microscopic calculation. The possibility of a target dependence of the effective interaction range has been suggested already by B. Sinha.³⁰⁾ Our $\langle r^2 \rangle_{int}$ -value is larger than the GPT's value²⁸⁾ of (2.25 ± 0.6) fm². GPT's $\langle r^2 \rangle_{int}$ -value was obtained in the search for the χ^2 -minimum mainly of the cross section data because of the partial lack of polarization data at that time. By equally weighting the polarization and cross section data we were able to reduce the VR^n type ambiguity and have found a larger value for the mass number dependent $\langle r^2 \rangle_{\text{int}}$ -value. Bertsch et al. also obtained a large $\langle r^2
angle$ -value ($\sim 6~{
m fm^2}$) for inelastic scattering by fitting the interaction to the matrix element of the scattering operator, t-matrix or G-matrix. Since their interaction is effective at the nuclear surface and is not density dependent, their $\langle r^2
angle_{\rm int}$ does not have any mass number dependence. Our $\langle r^2 \rangle_{int}$ -values for medium weight nuclei are as large as the one obtained in the Bertsch's calculation.440

6. The mass number dependence of the effective two-body interaction range deduced from the optical potential for deuteron, helium-3 and alpha particles

The $\langle r^2 \rangle_{pot}$ -values for other light ion projectiles were calculated and plotted as a function of $A^{3/2}$ in Fig. 8 for 56 MeV deuteron optical potential data,⁴⁵⁾ in Fig. 9 for 109 MeV and 119 MeV ³He⁴⁶⁾ optical potentials and in Fig. 10 for 166 MeV alpha particles.³²⁾ In each case the solid lines are linear fits by the least square method and are expressed

$$\langle r^2 \rangle_{\rm pot} = 0.859 A^{2/3} + 8.62 \, {\rm fm}^2 \qquad \text{for} \quad E_d = 56 \, {\rm MeV},$$

Fig. 8. Mean square radii of the real central part of the deuteron optical potential at E_{a} =56 MeV are plotted as a function of $A^{2/4}$. The solid line is a least linear fit to the data.

Fig. 10. Mean square radii of the real central part of the optical potential at E·He=166 MeV are plotted as a function of $A^{2/3}$. The solid line is a linear fit to the data.

Fig. 9. Mean square radii of the real central part of the helium-3 optical potential at $E_{^{3}\text{He}}=109$, 119 MeV are plotted as a function of $A^{2/3}$. The solid line is a least linear fit to the data.

Fig. 11. Mass number dependences of the mean square radii of the real central part of the optical potential are compared with each other for *p*, *d*, ³He and 'He projectiles.

$$\langle r^2
angle_{
m pot} = 0.843 A^{2/3} + 8.78 \, {
m fm}^2$$
 for $E_{
m ^3He} = 109 \, {
m MeV}$, 119 MeV

and

$$\langle r^2 \rangle_{\rm pot} = 0.908 A^{2/3} + 8.982 \, {\rm fm}^2 \qquad {\rm for} \quad E_{\alpha} = 166 \, {\rm MeV} \, ,$$

respectively. If we combine all of these data, we notice in Fig. 11 that the slopes of the proton and the alpha lines are similar. The mean square radius of the real central part of the composite particle is described by the double folding model as;

$$\langle r^2 \rangle_{\text{pot}} = \frac{3}{5} r_m^2 A^{2/3} + \pi^2 a_m^2 + \langle r^2 \rangle_{\text{int}} + \langle r^2 \rangle_m^{\text{projectile}}$$

where

$$\langle r^2 \rangle_m^{\text{projectile}} = \langle r^2 \rangle_{\text{charge}}^{\text{projectile}} - \langle r^2 \rangle_{\text{charge}}^{\text{proton}}$$
 and

 $\langle r^2 \rangle_m^{\rm projectile}$ means the mean square radius of the point nucleon distribution in the projectile. Thus the intersection in Fig. 11 is the sum of $\pi^2 a_m^2 + \langle r^2 \rangle_m^{\rm projectile}$ and the mass number independent part of the $\langle r^2 \rangle_{\rm int}$. The slope is the sum of $\frac{3}{5}r_m^2$ and the mass number dependent part of the $\langle r^2 \rangle_{\rm int}$. Using the formula above and the electron scattering data for the $\langle r^2 \rangle_{\rm charge}^{\rm projectile}$ -values. The mean square radius of the effective two-body interaction $\langle r^2 \rangle_{\rm int}$ is calculated as follows;

$$\begin{split} \langle r^2 \rangle_{\rm int} &= (0.132 A^{2/3} + 4.24) \ {\rm fm}^2 & \text{for proton} \\ \langle r^2 \rangle_{\rm int} &= (0.087 A^{2/3} + 2.45) \ {\rm fm}^2 & \text{for deuteron} \\ \langle r^2 \rangle_{\rm int} &= (0.075 A^{2/3} + 3.84) \ {\rm fm}^2 & \text{for helium-3} \\ \langle r^2 \rangle_{\rm int} &= (0.140 A^{2/3} + 4.89) \ {\rm fm}^2 & \text{for alpha} \end{split}$$

These values show that for the hard projectiles such as protons and alpha particles, mass number dependence of $\langle r^2 \rangle_{int}$ is large and that for the soft projectiles like deuterons and helium-3, the mass number dependences of the $\langle r^2 \rangle_{int}$ and $\langle r^2 \rangle_{int}$ -values themselves are small.

The origin of such target mass number dependence and the projectile dependence may be in the Pauli-principle. The a $A^{2/3} + b$ type mass number dependence is divergent on A and is not preferable. But it has by far the better χ^2 -value than the a $A^{-1/3} + b$ type or the $a \ A^{-2/3} + b$ type dependence. From the best of our knowledge we conclude that the mean square radius of the effective two-body interaction is $a \ A^{2/3} + b$ type. In that sense the formula of $\langle r^2 \rangle_{int}$ is an experimental one.

7. Comparison between experimentally obtained $\langle r^2 \rangle_{pot}$ -value and microscopic calculations

In the preceding section it was pointed out that there is a difference

Fig. 12. Mean square radii deduced from the best fit optical potential are compared with the recent microscopic optical potential calcutations. The o sympols denote Brieva-Rook values interpolated to $E_p=65$ MeV. The solid line marked JLM is obtained from the optical potential with the microscopically derived parameters of Jeukenne, Lejeune and Mahaux.

between $\langle r^2 \rangle_{\text{matt}}$ and $\langle r^2 \rangle_{\text{pot}}$ in the target mass number dependence. This difference was reduced to the mass number dependence of the effective two-body interaction. In Fig. 12 the calculated values based on the recent microscopic theories are shown with the experimental $\langle r^2 \rangle_{\text{pot}}$ -values. The line labeled JLM is the calculation using the JLM model. A detailed explanation of the JLM calculation will be given in Sec. 9. Brieva and Rook calculated the $\langle r^2 \rangle_{pot}$ values of ¹⁶O, ⁴⁰Ca and ²⁰⁸Pb for several incident energies and their $\langle r^2 \rangle_{pot}$ values varied smoothly with energy. The points labeled BR show the interpolation to 65 MeV proton energy of the BR calculations. The BR calculation reproduces remarkably our experimental values shown as the line labeled Kyoto data, although the BR value for 208Pb is a little smaller than the observed value. Calculations in the JLM model differ greatly from the experimental values (by $2\sim5\,\mathrm{fm^2}$) and cannot reproduce the slope of the mass number dependence. Lejeune and Hodgson⁴⁷ pointed out that JLM calculation does not explain the $\langle r^2
angle_{pot}$ -values and angular distributions, and must be modified by introducing a phenomenological range parameter. Such a phenomenological parameter, however, will mask the validity of the theory to study the dynamics of the reaction. The main origin of the discrepancy may be in the LDA approximation used to transform the optical potential in nuclear matter to the optical potential in a finite nucleus. These two types of microscopic calculations suggest that the density dependence of the effective two-body interaction at the nuclear surface plays an essential role in explaining the A-dependence of the $\langle r^2 \rangle_{int}$ -value. It was already pointed out in nuclear matter theory that there is a density dependence⁴⁷) in the nuclear matter effective interaction. As the density decreases, the effective two-body interaction increases due to the Pauli principle, and the depth of the optical potential well increases. But the A-dependence of $\langle r^2 \rangle_{int}$ is not explained by the density dependent JLM interaction using the

LDA alone, because the slope of the JLM calculation on the target mass number A is different from the experimentally observed one. (see Fig. 12) On the other hand, when obtaining the t-matrix of the r-representation by BR's calculation, the momentum sum up to the Fermi momentum gives another contribution to the density dependence⁴⁸⁾ of the interaction, in addition to the depndence coming explicitly from the Pauli principle. From our present knowledge of the BR calculation, we cannot discern the primary origin of the A-dependence of $\langle r^2 \rangle_{int}$.

8. Root mean square radius of the point nucleon distribution of the target nucleus

Applying the results obtained in the preceding section, we can extract the root mean square radius of the point nucleon distribution of the target nucleus, as follows

$$\langle r^2
angle_{
m matt}^{1/2} = (\langle r^2
angle_{
m pot} - \langle r^2
angle_{
m int})^{1/2}$$
.

where

$$\langle r^2 \rangle_{\rm int} = 4.24 \pm 0.24 + (0.132 \pm 0.013) A^{2/3} \, {\rm fm}^2$$

The calculated $\langle r^2 \rangle_{\text{matt}}^{1/2}$ -values from our elastic scattering data are listed in Table 3, together with the 800 MeV polarized proton elastic scattering results from LAMPF. The LAMPF $\langle r^2 \rangle_{\text{matt}}^{1/2}$ -values were calculated from the proton MSR values $\langle r^2 \rangle_p$ and the neutron MSR values $\langle r^2 \rangle_n$ of their data,^{31),33)} using the relation

$$\langle r^2 \rangle_{\rm matt}^{1/2} = \left(\frac{N}{A} \langle r^2 \rangle_n + \frac{Z}{A} \langle r^2 \rangle_p \right)^{1/2}$$

Although the LAMPF $\langle r^2 \rangle_n$ and $\langle r^2 \rangle_p$ values are model dependent, they are thought to be relatively free from the dynamical effects on the nucleonnucleon interaction in the nucleus. We notice in Table 3 that our values agree remarkably well with the LAMPF results. This indicates the validity of our procedure for extracting the $\langle r^2 \rangle_{int}$ -value and the mass number dependence of the effective interaction range. We have thus obtained a new method to extract $\langle r^2 \rangle_{matt}^{1/2}$ value from polarized proton elastic scattering.

9. Volume Integral of the real central part of the optical potential

In the folding model the volume integral J_R of the real central part of the optical potential is calculated as

$$J_{\mathcal{B}} = \int V(\mathbf{r}_0) d\mathbf{r}_0^3$$
$$= \int d\mathbf{r}_0^3 \int d\mathbf{r}^3 \rho(\mathbf{r}) V_{\text{int}}(|\mathbf{r} - \mathbf{r}_0|)$$

Table 3. Volume integral per nucleon and mean square radius of the real central part of the optical potential are listed together with error bars. The effective interaction range and the nuclear matter radius are listed and compared with LAMPF-values. LAMPF-values are calculated by $\langle r^2 \rangle_{matter}^{1/2} = \left(\frac{N}{A} \langle r^2 \rangle_n + \frac{Z}{A} \langle r^2 \rangle_p\right)^{1/2}$.

	¥ 4	(2)	()	/ 2>1/1	(()
Nuclei	$J_R A$	$\langle r^{2} \rangle_{\text{pot.}}$	$\langle r^{*} \rangle$ int.	$\langle r^{*} \rangle_{\rm mat}$	ter (fm)
	(MeV tm [*])	(tm²)	(fm²)	Kyoto	LASL
0 ⁹¹	346.8 + 14.2 - 9.4	12.35 $^{+0.06}_{-0.26}$	5.08	2.70	and and a second se
2ºNe	$349.5 \begin{array}{c} + & 9.64 \\ -11.3 \end{array}$	$\begin{array}{r} 14.14 & +0.02 \\ -0.06 \end{array}$	5.21	2.99	
²⁴ Mg	$303.0 \ +15.3 \ -14.5$	$14.32 \begin{array}{c} +0.07 \\ -0.23 \end{array}$	5.34	3.00	Nonlinea.
28Si	$325.3 + 7.8 \\ -14.0$	$14.92 \begin{array}{c} +0.06 \\ -0.07 \end{array}$	5.46	3.08	and an
40Ar	330.4 + 7.4 - 11.5	$17.54 \begin{array}{c} +0.05 \\ -0.28 \end{array}$	5.78	3.43	a debutines
4ºCa	333.6 + 5.2 - 8.6	17.58 $^{+0.01}_{-0.18}$	5.78	3.43	3.39
** Ca	318.8 + 5.7 - 8.5	$18.39 \begin{array}{c} +0.03 \\ -0.18 \end{array}$	5.89	3.54	3.48
⁴⁸ Ca	315.0 + 6.9 - 7.5	18.39 $^{+0.07}_{-0.09}$	5.98	3.52	3.47
* ⁶ Ti	$317.24 \stackrel{+}{-} \stackrel{4.6}{5.9}$	18.79 $^{+0.16}_{-0.10}$	5.93	3.59	Machines.
48Ti	313.1 + 4.9 - 4.0	$19.08 \begin{array}{c} +0.06 \\ -0.10 \end{array}$	5.98	3.62	
50Ti	$309.7 \begin{array}{r} + 5.3 \\ - 3.5 \end{array}$	$18.82 \begin{array}{c} +0.08 \\ -0.03 \end{array}$	6.03	3.58	watersoor
54Fe	303.1 + 5.9 - 5.1	19.18 $^{+0.14}_{-0.24}$	6.13	3.61	3.57
56Fe	307.1 + 2.8 - 3.2	$19.69 \begin{array}{c} +0.07 \\ -0.16 \end{array}$	6.17	3.68	
⁵⁹ Co	307.8 + 4.6 - 4.0	$20.47 \begin{array}{c} +0.09 \\ -0.09 \end{array}$	6.24	3.77	
⁵⁸ Ni	300.2 + 2.6 - 2.0	$19.63 \begin{array}{c} +0.06 \\ -0.20 \\ +0.07 \end{array}$	6.22	3.66	3.67 or 3.70
⁶⁰ Ni	306.8 + 2.1 - 3.4	$20.25 \begin{array}{c} +0.07 \\ -0.12 \end{array}$	6.26	3.74	
⁶² Ni	309.4 + 5.1 - 5.0	$21.07 \begin{array}{c} +0.21 \\ -0.19 \\ 0.07 \end{array}$	6.31	3.84	
⁶⁴ Ni	315.1 + 3.3 - 3.2	$21.27 \begin{array}{c} +0.05 \\ -0.12 \end{array}$	6.35	3.86	3.86
⁸⁹ Y	323.4 + 2.7 - 2.4	25.09 + 0.1 - 0.35 + 0.10	6.87	4.27	
°°Zr	318.9 + 1.3 + 4.4	25.35 + 0.19 - 0.41 + 0.00	6.89	4.30	4.25
۶°Мо	321.0 + 2.7 = 5.8	$27.20 \begin{array}{c} +0.30 \\ -0.13 \\ 0.13 \end{array}$	7.05	4.49	
¹⁰⁰ Mo	326.0 + 3.4 - 1.0	27.38 $+0.16$ -0.31	7.08	4.51	
144Sm	317.4 + 3.4 - 2.2	$32.18 \begin{array}{c} +0.23 \\ -0.39 \\ \end{array}$	7.87	4.93	
²⁰⁸ Pb	330.7 + 2.3 - 7.0	$39.18 \begin{array}{c} +0.64 \\ -0.64 \end{array}$	8.87	5.51	5.55
209Bi	319.7 + 3.3 - 3.6	$39.36 \begin{array}{c} +0.46 \\ -0.71 \end{array}$	8.89	5.52	

$$= A \int V_{\rm int}(a) \,\mathrm{d}a^3$$

Fig. 13. Volume integral values per nucleon of the optical potentials are plotted as a function of incident proton energy. Open circles are Milan data for ⁴⁰Ca and double circle is a mean value over 25 targets at $E_p=65$ MeV. The solid dots the and crosses are calculated microscopically by Brieva and Rook, connected by curves meant to guide the eyes. The solid line and the broken line labeled JLM are calculated values using procedure of Jeukenne, Lejeune and Mahaux.

The volume integral value J_R is proportional to the target mass number if the effective two-body interaction potential between the projectile and the target nucleon is independent of density and energy. A linear fit to J_R values confirms the approximate validity of the above assumption at 65 MeV, and the volume integral is expressed as

$$J_{R} = (318 \pm 3) A \text{ MeV fm}^{3}$$

In order to show how the recent microscopic calculation explain the empirical volume integral values, J_R/A -values are plotted as a function of incident proton energy in Fig. 13. The double circle point at 65 MeV is the average value of the Kyoto data. The open circles show the recent measurement for ⁴⁰Ca by the Milan group.^{13), 14)} We notice that the Kyoto data lie on a smooth extrapolation of lower energy Milan data. The solid and dashed curves labeled JIM indicate the volume integral of the microscopic optical potential calculated in the JLM model. According to the parameter table of the JLM calculation⁴⁾ the optical potential in infinite nuclear matter is obtained as a function of the matter density and the incident projectile energy. As for the point nucleon density distribution for the JLM calculation, we used Negele's density distribution obtained from the fitting to the electron scattering data as in JLM's work. The solid curve shows the calculation for ²⁰⁸Pb and the dashed curve shows the ⁴⁰Ca case. The results of Brieva-Rook calculation are indicated by the points marked with a cross in the figure for ⁴⁰Ca and ²⁰⁸Pb nuclei; the curves connecting these points are only meant to guide the eye. As is evident from the figure, the J_R/A value and its bombarding energy dependence are reproduced remarkably well by the JLM calculation. The local density approximation used in the JLM model seems to be effective for the J_R calculation. The energy dependence and the density dependence of the nuclear matter t-matrix are directly reflected in the JLM nuclear optical potential. On the other hand Brieva and Rook trans-

formed the nuclear matter *t*-matrix in momentum-representation to the *t*-matrix in the *r*-representation using a suitable approximation. They then calculated the optical potentials for finite nuclei by applying the folding approximation. The calculation of BR explains the empirical results at 30 MeV, but deviates from the observed values at higher energies. The origin of the descrepancy between the BR's calculation and the experimental data seems to be due to the approximation in their transformation to the *r*-representation.

In Fig. 14 our J_R/A values listed in Table 3 are plotted as a function of the target mass number. Error bars in the figure were defined similar as the error bars of $\langle r^2 \rangle_{\text{pot}}$ -values in Sec. 5 but in this case were deduced from the potential parameters at $\chi^2_{\min}(V_r) = 1.25 \chi^2_0$ (best fit), so the error bars have no statistical meaning. Although observed J_R/A values scatter considerably, we notice the following global behavior around the average value of $J_R/A = 318$ MeV. As the mass number A increases, the J_R/A value decreases

Fig. 14. Volume integral values per nucleon of the real central part of the optical potentials are plotted as a function of the target mass number A. The difinition of the error bars is given in the text. The dashed curve is the JLM model calculation for E_r =65 MeV.

Fig. 15. Volume integral values per nucleon of the real central part of the optical potentials are plotted for each isotope, using Juekenne, Lejeune and Mahaux's model.

rapidly to the minimum in the Fe-Ni region and then increases gradually toward the Pb-Bi region. This global trend is remarkably reproduced by the JLM model calculation shown by the dashed curve in Fig. 14. According to the JLM model, the effective interaction is density dependent. In the lower density region, the effective interaction is stronger^{3),4)} due to the smaller Pauli blocking effect. The surface-to-volume ratio is large in light nuclei. As the target mass number increases, the surface-to-volume ratio decreases as $A^{-1/3}$ and the J_R/A -value decreases rapidly. The second gradual increase is explained in the JLM model by the isospin dependent interaction and by the velocity dependence of the effective interaction. (As the mass number increasses, the velocity of the projectile inside the nucleus decreases due to the repulsive Coulomb potential.) This global trend in Fig. 14 is similar to the binding energy per nucleon curve, if we remind that the Coulomb potential is included in the binding energy calculation and the velocity dependent effect is included in the J_R/A calculation. The rapid change in J_R/A -values for lighter nuclei evident in Fig. 14 is possibly evidence of the density dependence of the effective interaction.

10. Anomalous isotope dependence of the real central part of the optical potential in the f-p shell region nuclei

C. M. Perey and F. C. Perey analyzed the elastic scattering of 11 MeV polarized protons on 20 target isotopes from ⁴⁸Ti to ⁷⁸Ge. For the depth of the real central part of the optical potential they obtained an anomalous linear relation of $V_R = V_0 + \alpha A$ without the isospin dependence. At 65 MeV incident proton energy a similar anomaly was reported in our previous work.²⁰⁾ Our previous conclusion was that there must be a linear mass number dependence of $V_{rT} = -1.8 + 0.72 (A - 40)$ in the real isospin dependent part of the optical potential. In Fig. 16 the volume integral values per nucleon are plotted versus (N-Z)/A. The slope of the line connecting the same isotopes changes from negative to positive as the mass number of the isotope increases from ⁴⁰Ca to ⁶⁴Ni. In the case of the ordinary isospin dependence

Fig. 16. Observed J_A/A -values are plotted versus (N-Z)/A for f-p shell nuclei. The definition of the uncertainties is the same as in Fig. 14.

the slope must be constant. The observed behavior in Fig. 16 is anomalous in this respect. As shown in Fig. 15, the global JLM microscopic model predicts always the positive slope in this mass number region. So it cannot explain the anomalous isotope dependence.

Using our mean square matter radius data in Sec. 5 and the diffuseness value obtained by fitting to the electron scattering data we now have a new density distributions for each target nuclei. The density distribution is assumed to be the Fermi type.

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\left(r - R_m\right)/a_m\right)}$$

where the R_m value is calculated from the formula;

$$\langle r^2 \rangle_{\text{nucleon}} + \langle r^2 \rangle_{\text{matt}} = \frac{3}{5} R_m^2 + \frac{7}{5} \pi^2 a_m^2$$

and $a_m = 0.470$ is obtained in Sec. 5 by fitting to the electron scattering data. $\langle r^2 \rangle_{\text{nucleon}}$ is the mean square radius of a nucleon and is estimated to be as same as $\langle r^2 \rangle_{\text{proton}}$ (0.64 fm²).

Using this density distribution and the JLM model, the volume integrals of the real central part of the optical potential are calculated for each target nuclei. The calculated J_R/A -values are shown in Fig. 17. The main part of the anomalous isotope effect is reproduced by the JLM model calculations using our new matter distribution data. The origin of the anomalous isotope effect consist of two parts, the density dependence of the effective interaction and the shell closure effect. For nuclei with N=28 the size of the nucleus is contracted comparative to their neighbouring nuclei. Since the matter density for the N=28 nuclei increases, the strength of the effective interaction is reduced according to its density dependence. Thus for nuclei $A \leq 53$ the J_A/A value takes the negative slope versus the mass number. But in the figure we notice differences between calculation and experimental data, which will be explained only by the nuclear structure dependent effective interaction.

11. Conclusions

We have systematically measured polarized proton elastic scattering from 25 targets at 65 MeV. An optical potential analysis gave good fits to both cross section data and analyzing power data. By plotting the mean square radius of the real central part of the optical potential versus $A^{2/3}$, we have obtained the global systematics of the MSR of the potential as $\langle r^2 \rangle_{pot} = (6.42 \pm 0.21) + (0.937 \pm 0.012) A^{2/3}$ fm². Using the simple folding model and by comparing with the charge distribution obtained by electron scattering, we found that the effective interaction range has a mass number dependence of the form

 $\langle r^2 \rangle_{\text{int}} = (4.24 \pm 0.24) + (0.132 \pm 0.013) A^{2/3} \text{ fm}^2.$

Assuming this mass number dependence of the effective interaction range, we have obtained root mean square radii of the point nucleon distribution, which are in accord with the high energy LAMPF data and reflect the shell effect and the individual characteristics of the target nuclei. This mass number dependence of $\langle r^2 \rangle_{int}$ was shown to be different for different projectiles such as d, ³He or α .

For nuclei of A < 58, the J_R/A value decreases as the mass number of the target increases. This rapid decrease was interpreted as evidence of the density dependence of the effective interaction. The JLM model explains both energy and A dependence of the J_R/A but cannot explain the value of $\langle r^2 \rangle_{\text{pot}}$, and its A-dependence.

On the other hand the BR calculation reproduces our $\langle r^2 \rangle_{\text{pot}}$ -values but could not predict the J_R/A -values, especially the energy dependence of J_R/A . At present, each of the two global theories could explain the experimental results only partially, but is found to be an effective guide in clarifying nuclear many body dynamics. The anomalous isotope dependence of J_R/A is explained qualitatively by the JLM density dependent interaction and the matter radius obtained from our experiment.

ACKNOWLEDGEMENTS

The experimental group consisted of Prof. S. Kobayashi, Mr. M. Nakamura, Dr. K. Hatanaka, Dr. Goto, Mr. T. Noro, Mr. F. Ohtani, Mr. H. Sakamoto and Mr. H. Ogawa, all of whom devoted a large amount of time and effort throughout the experiment. Their execellent collaborations at the every stage of the experiment from target preparation to data analysis are greatly appreciated. The author is particularly indebted to Prof. S. Kobayashi for his efficient guidances and suggestions not only during the experiment but also in the stage of the analysis and the appreciation of the deduced quantities. The success of this long run experiment is also attributed to the cyclotron crew under Prof. M. Kondo of Research Center for Nuclear Physics, Osaka

University and the polarized ion source team under Prof. K. Nishimura of Kyoto University. Their wonderful operation of the cyclotron and the polarized ion source are greatly appreciated. Sincere thanks are also expressed to Prof. H. Ogata, Prof. K. Hosono and Dr. N. Matsuoka of RCNP, Osaka University for their hospitalities during the experiment. The author owes thanks to Prof. S. Nagata of Miyazaki University for fruitful discussions on the microscopic optical potential. He is also grateful to Mrs. E. Takahashi and other secretaries for their patience in typing the manuscript.

				-			_							-	-	_	~			-						5		9	
		Analysing power	0.0745 ± 0.0021	0.0605 ± 0.0027	0.0126 ± 0.0038	0.0012 ± 0.0025	-0.0022 ± 0.0053	0.0789 ± 0.0059	0.370 ± 0.010	0.814 ± 0.015	0.924 ± 0.017	0.808 ± 0.015	0.711 ± 0.014	0.727 ± 0.012	0.617 ± 0.014	0.577 ± 0.014	0.528 ± 0.013	0.509 ± 0.014	0.671 ± 0.019	0.759 ± 0.021	0.904 ± 0.021	0.978 ± 0.026	0.979 ± 0.023	0.945 ± 0.023	0.676 ± 0.037	0.360 ± 0.032	0.209 ± 0.045	0.47 ± 0.12	0.58 ± 0.23
		Cross Section (mb/sr)	1.6 ± 1.2	3.7 ± 1.4	1.17 ±0.96	5.63 ± 0.36	3.19 ± 0.35	5.79 ± 0.16	5.19 ± 0.11	5.40 ± 0.089	5.883 ± 0.087	7.015 ± 0.090	5.516 ± 0.089	5.630 ± 0.063	4.489 ± 0.084	1.542 ± 0.075	3.877 ± 0.054	5.530 ± 0.037	1.815 ± 0.017	1.432 ± 0.015	1.033 ± 0.011	0.6922 ± 0.0088	0.3840 ± 0.0047	0.1787 ± 0.0023	0.0872 ± 0.0018	0.0639 ± 0.0011	0.0513 ± 0.0012	0.00912 ± 0.00060	0.00247 ± 0.00032
	²⁴ Mg	Angle (14.10 142	15.66 118	20.88 48	23.48 26	26.09 12	28.68 51	31.28 2	33.88 It	36.47 19	39.06 I	41.65 10	41.65 10	44.23 1/	46.81 1	48.88	51.96	59.66	62.22	67.32	72.41 (77.48 (82.52	87.55 (92.56 (100.04	117.32	124.66
ental data.		Analysing power	0.0410 ± 0.0023	0.0096 ± 0.0029	0.0066 ± 0.0043	0.0501 ± 0.0063	0.220 ± 0.010	0.550 ± 0.015	0.850 ± 0.017	0.918 ± 0.018	0.844 ± 0.020	0.781 ± 0.018	0.698 ± 0.015	0.667 ± 0.017	0.618 ± 0.022	0.579 ± 0.022	0.608 ± 0.023	0.584 ± 0.027	0.691 ± 0.030	0.716 ± 0.036	0.789 ± 0.040	0.819 ± 0.044	0.889 ± 0.045	0.861 ± 0.052	0.909 ± 0.046	0.984 ± 0.063	0.956 ± 0.108	0.93 ± 0.12	
Table 4. Experim		Cross Section (mb/sr)	663.56 ± 0.82	244.26 ± 0.40	126.96 ± 0.30	60.81 ± 0.22	27.64 ± 0.16	15.37 ± 0.12	11.75 ± 0.11	11.54 ± 0.11	10.97 ± 0.11	10.139 ± 0.097	8.537 ± 0.071	6.374 ± 0.058	4.314 ± 0.051	2.309 ± 0.029	1.825 ± 0.025	1.203 ± 0.023	0.855 ± 0.014	0.678 ± 0.015	0.509 ± 0.013	0.474 ± 0.012	0.388 ± 0.011	0.341 ± 0.011	0.2671 ± 0.0078	0.1408 ± 0.0056	0.0559 ± 0.0037	0.0304 ± 0.0019	
	^{20}Ne	Angle	18.37	23.61	26.22	28.84	31.45	34.05	36.66	39.26	41.86	44.45	47.04	49.63	52.21	54.79	57.37	59.94	62.50	65.06	67.62	70.17	72.72	75.26	77.79	82.85	87.88	92.89	
		Analyzing power	0.0563 ± 0.0030	0.0459 ± 0.0036	0.0407 ± 0.0049	0.0361 ± 0.0035	0.0433 ± 0.0066	0.0950 ± 0.0070	0.266 ± 0.0106	0.560 ± 0.015	0.864 ± 0.018	0.972 ± 0.016	0.948 ± 0.020	0.875 ± 0.016	0.801 ± 0.017	0.780 ± 0.014	0.704 ± 0.019	0.654 ± 0.024	0.618 ± 0.021	0.565 ± 0.020	0.478 ± 0.020	0.513 ± 0.035	0.479 ± 0.034	0.483 ± 0.037	0.436 ± 0.036	0.494 ± 0.039	0.549 ± 0.057	0.659 ± 0.059	0.37 ± 0.16
		ss Section mb/sr)	土1.0	± 0.89	7 ±0.75	5 ± 0.33	0 ± 0.35	7 ± 0.19	3 土0.14	5 ± 0.11	l8 ±0.099	76 ± 0.066	33 ± 0.068	32 ± 0.065	59 ± 0.070	92 ±0.040	37 ±0.048	16 土0.044	55 ± 0.027	32 ± 0.017	79 ± 0.011	99 ± 0.017	11 ± 0.015	28 ± 0.014	10 ± 0.012	90 ± 0.012	14 土0.011	382 ±0.0033	3886±0.00079
	16O	Angle Cro	18.59 589.4	21.23 405.6	23.88 261.4	26.53 156.6	29.17 86.0	31.81 45.0	34.44 22.8	37.07 13.4	39.70 9.8	42.32 8.8	44.94 8.4	47.55 7.8.	50.16 7.3	52.77 5.4	55.37 4.2	57.96 2.9	60.55 2.1;	63.13 1.4	65.70 1.0	68.27 0.8	70.84 0.6	73.39 0.6	75.95 0.5	78.49 0.4	83.56 0.3	93.61 0.0	108.49 0.0
			1																										

ELASTIC SCATTERING OF 65 MEV POLALIZED PROTONS

Appeneix: Table of Differential Cross Section and Analyzing Power Values

	Analyzing Power	0.0280 ± 0.0025	-0.0061 ± 0.0027	-0.0168 ± 0.0031	-0.0670 ± 0.0036	-0.0777 ± 0.0042	-0.1178 ± 0.0049	-0.1350 ± 0.0061	-0.1653 ± 0.0054	-0.1450 ± 0.0068	0.0050 ± 0.0082	0.338 ± 0.016	0.573 ± 0.012	0.821 ± 0.019	0.876 ± 0.021	0.835 ± 0.019	0.6807 ± 0.0006	0.5285 ± 0.0063	0.4529 ± 0.0083	0.3808 ± 0.0047	0.359 ± 0.011	0.3738 ± 0.0058	0.820 ± 0.010	0.959 ± 0.018	0.993 ± 0.012	0.963 ± 0.016	0.903 ± 0.012	0.778 ± 0.011	0.723 ± 0.016	0.750 ± 0.038	0.895 ± 0.044	
	Cross Section (mb/sr)	1403.7 ± 2.4	1146.7 ± 2.2	885.9 ± 1.9	682.3 ± 1.7	511.3 ± 1.5	358.6 ± 1.2	261.5 ± 1.1	175.91 ± 0.70	115.59 ± 0.61	48.18 ± 0.45	33.74 ± 0.38	30.66 ± 0.25	28.14 ± 0.34	31.56 ± 0.37	36.37 ± 0.39	43.76 ± 0.20	44.03 ± 2.20	37.32 ± 0.18	25.81 ± 1.29	16.15 ± 0.12	9.133 ± 0.457	3.956 ± 0.198	3.392 ± 0.045	3.402 ± 0.170	2.832 ± 0.032	2.470 ± 0.124	1.226 ± 0.061	0.508 ± 0.025	0.448 ± 0.022	0.293 ± 0.015	
"Ca	Angle	15.17	16.20	17.22	18.24	19.27	20.29	21.31	22.34	23.36	25.41	26.43	27.45	28.47	29.50	30.52	33.07	35.88	38.17	40.99	43.27	46.09	51.18	53.44	56.26	58.51	61.33	66.40	76.49	81.52	86.53	
	Analyzing Power	-0.0508 ± 0.0037	-0.0916 ± 0.0060	-0.131 ± 0.010	0.114 ± 0.019	0.729 ± 0.019	0.772 ± 0.015	0.627 ± 0.017	0.522 ± 0.014	0.437 ± 0.013	0.376 ± 0.019	0.320 ± 0.013	0.402 ± 0.027	0.568 ± 0.024	0.873 ± 0.022	0.989 ± 0.027	0.989 ± 0.021	0.906 ± 0.029	0.860 ± 0.024	0.766 ± 0.039	0.774 ± 0.039	0.679 ± 0.060	0.667 ± 0.062	0.561 ± 0.087	0.675 ± 0.068							
	Cross Section (mb/sr)	906.0 ± 3.7	411.6 ± 1.3	154.41 ± 0.86	52.23 ± 0.52	37.64 ± 0.34	46.90 ± 0.59	59.52 ± 0.47	56.16 ± 0.39	46.17 ± 0.31	30.04 ± 0.30	18.56 ± 0.13	9.365 ± 0.143	5.692 ± 0.076	4.342 ± 0.055	4.022 ± 0.066	3.887 ± 0.047	3.693 ± 0.066	2.972 ± 0.042	2.084 ± 0.051	1.275 ± 0.035	0.935 ± 0.035	0.631 ± 0.020	0.488 ± 0.026	0.446 ± 0.017							
''Ar	Angle	17.93	20.49	23.05	25.61	28.18	30.72	33.28	35.83	38.38	40.93	43.48	46.02	48.56	51.11	53.65	56.18	58.72	61.25	63.78	66.31	68.83	71.36	73.88	76.40							
	Analyzing Power	0.0598 ± 0.0030	0.0367 ± 0.0030	0.0171 ± 0.0040	0.0028 ± 0.0050	0.0133 ± 0.0060	0.0193 ± 0.0060	0.0314 ± 0.0080	0.254 ± 0.012	0.648 ± 0.012	0.918 ± 0.014	0.853 ± 0.013	0.735 ± 0.012	0.631 ± 0.012	0.557 ± 0.013	0.520 ± 0.014	0.482 ± 0.013	0.455 ± 0.019	0.569 ± 0.014	0.668 ± 0.014	0.808 ± 0.014	0.900 ± 0.014	0.947 ± 0.014	0.983 ± 0.014	0.997 ± 0.013	0.992 ± 0.013	0.861 ± 0.013	0.674 ± 0.013	0.492 ± 0.014	0.287 ± 0.013	0.199 ± 0.013	0.181 ± 0.011
	ross Section (mb/sr)	±30	土22	土15	.4 ± 9.7	$.5 \pm 5.8$	$.3 \pm 3.1$	$.3 \pm 1.6$	$.31 \pm 0.86$	$.33 \pm 0.52$	$.14 \pm 0.46$	$.98 \pm 0.52$	$.91 \pm 0.54$.78 ± 0.49	$.58 \pm 0.41$	$.62 \pm 0.30$	$.08 \pm 0.20$	$.00 \pm 0.15$	$.889 \pm 0.087$	$.766 \pm 0.062$	$.188 \pm 0.049$	$.920 \pm 0.042$	$.689 \pm 0.038$	$.386 \pm 0.030$	$.1422 \pm 0.0075$	$.6346 \pm 0.0043$	$.2872 \pm 0.0026$	$.2019\pm 0.0019$	$.1623 \pm 0.0018$	$.1389 \pm 0.0016$	$.1312 \pm 0.0016$	$.1147 \pm 0.0015$
²⁸ Si	Angle Ci	14.53 1493	16.61 1089	18.68 750	20.75 479.	22.82 284.	24.90 153.	26.96 76.	29.03 39.	31.10 24.	33.68 21.	36.26 23.	38.84 24	41.41 22.	43.99 18.	46.56 13.	49.12 9.	51.68 6.	54.24 3.	56.80 2.	59.35 2.	61.90 1.	64.45 1.	66.99 1.	69.41 1.	74.47 0.	79.52 0.	82.03 0.	84.55 0	87.06 0	89.56 0	94.56 0.

332

H. SAKAGUCHI

	zing Power	095 ± 0.0063	338±0.0050	426 ± 0.0080	771 ± 0.0066	125 ± 0.0084	440 ± 0.0080	65 ± 0.012	76 ± 0.010	16 ± 0.013	025 ± 0.0127	81 ± 0.015	04 ± 0.018	25 ± 0.016	26 ± 0.014	62 ± 0.015	64 ± 0.012	15 ± 0.011	19 ± 0.012	42 ± 0.013	73 ± 0.012	70 ± 0.016	22 ± 0.016	68 ± 0.020	01 ± 0.017	94 ± 0.018	79 ± 0.018	83 ± 0.029	75 ± 0.026	48 ± 0.030
	Analy	-0.0	-0.0	0.0	-0.0	-0.1	-0.1	-0.1	-0.1	-0.1	0.0	0.3	0.7	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.2	0.4	0.7	1.0	0.9	0.7	0.6	0.6	0.6
	Cross Section (mb/sr)	1793.1 ± 8.3	1396.4 ± 5.2	1067.7 ± 6.4	771.4 ± 3.9	535.1 ± 3.2	373.6 ± 2.2	242.1 ± 2.2	147.0 ± 1.1	88.98 ± 0.83	54.59 ± 0.51	38.30 ±0.43	35.41 ± 0.52	37.93 ± 0.43	45.51 ± 0.42	52.74 ± 0.50	60.89 ± 0.49	67.64 ± 0.52	59.33 ± 0.49	43.11 ± 0.42	26.63 ± 0.23	14.05 ± 0.17	8.050 ± 0.104	5.195 ± 0.084	4.827 ± 0.070	4.450 ± 0.060	2.674 ± 0.038	1.777 ± 0.043	1.147 ± 0.024	0.860 ± 0.021
۴°Ti	Angle	15.35	16.37	17.39	18.42	19.44	20.46	21.48	22.50	23.52	24.55	25.57	26.59	27.61	28.63	29.65	30.67	33. 22	35.77	38.32	40.86	43.41	45.95	48.49	51.03	56.10	61.16	63.69	66.22	68.74
	Analyzing Power	0.160 ± 0.020	0.544 ± 0.019	0.775 ± 0.020	0.831 ± 0.016	0.760 ± 0.018	0.678 ± 0.014	0.6026 ± 0.0096	0.473 ± 0.011	0.3875 ± 0.0080	0.2990 ± 0.0092	0.247 ± 0.012	0.300 ± 0.012	0.499 ± 0.018	0.885 ± 0.016	0.988 ± 0.013	0.948 ± 0.014	0.871 ± 0.012	0.801 ± 0.015	0.711 ± 0.015	0.689 ± 0.022	0.575 ± 0.020	0.635 ± 0.026	0.761 ± 0.023						
	Cross Section (mb/sr)	42.30 ± 0.84	36.12 ± 0.78	37.97 ± 0.80	44.19 ± 0.86	54.69 ± 0.96	64.62 ± 1.04	71.68 ± 1.10	77.90 ± 0.74	66.63 ± 0.49	46.13 ± 0.40	27.46 ± 0.31	13.81 ± 0.16	7.650 ± 0.134	5.952 ± 0.103	6.230 ± 0.086	6.361 ± 0.095	5.915 ± 0.073	4.696 ± 0.075	3.220 ± 0.054	2.190 ± 0.051	1.299 ± 0.028	0.958 ± 0.026	0.826 ± 0.022						
4°Ca	Angle	24.49	25.51	26.53	27.55	28.57	29.58	30.60	33.14	35.69	38.24	40.77	43.31	45.85	48.39	50.92	53.46	55.99	58.52	61.04	63.57	66.09	68.61	71.13						
	Analyzing Power	0.0002 ± 0.0020	-0.0234 ± 0.0050	-0.0575 ± 0.0030	-0.0937 ± 0.0070	-0.1262 ± 0.0041	-0.1487 ± 0.0060	-0.1593 ± 0.0051	-0.1398 ± 0.0090	0.0076 ± 0.0079	0.334 ± 0.013	0.670 ± 0.013	0.828 ± 0.014	0.843 ± 0.012	0.771 ± 0.014	0.743 ± 0.011	0.5586 ± 0.0080	0.4594 ± 0.0095	0.3760 ± 0.0065	0.318 ± 0.011	0.3098 ± 0.0082	0.405 ± 0.014	0.689 ± 0.013	0.946 ± 0.015	0.996 ± 0.015	0.944 ± 0.015	0.860 ± 0.015	0.822 ± 0.014	0.697 ± 0.017	0.688 ± 0.021
	Cross Section (mb/sr)	1581.3 ± 2.0	1227.8 ± 3.9	827.7 ± 1.4	505.5 ± 2.5	355.45 ± 0.93	227.13 ± 1.02	149.49 ± 0.47	88.16 ± 0.57	56.63 ± 0.29	35.75 ± 0.36	29.51 ± 0.27	33.60 ± 0.25	38.26 ± 0.24	44.95 ± 0.33	50.95 ± 0.27	59.90 ± 0.22	54.67 ± 0.29	41.60 ± 0.13	26.81 ± 0.20	14.783 ± 0.076	7.757 ± 0.078	4.874 ± 0.039	4.295 ± 0.041	4.211 ± 0.036	4.063 ± 0.036	3.378 ± 0.033	2.649 ± 0.023	1.154 ± 0.014	0.604 ± 0.010
"Ca	Angle	15.16	16.18	17.72	19.25	20.28	21.30	22.32	23.34	24.37	25.39	26.41	27.43	28.45	29.48	30.50	33.05	35.60	38.15	40.70	43.24	45.79	48.33	50.87	53.41	55.94	58.48	61.01	66.07	71.11

ELASTIC SCATTERING OF 65 MEV POLALIZED PROTONS

	Analyzing Power	-0.0162 ± 0.0037	-0.0394 ± 0.0044	-0.0717 ± 0.0050	-0.0966 ± 0.0061	-0.1528 ± 0.0073	-0.1770 ± 0.0067	-0.2295 ± 0.0085	-0.2206 ± 0.0089	-0.184 ± 0.010	-0.115 ± 0.012	0.185 ± 0.014	0.662 ± 0.016	0.780 ± 0.016	0.872 ± 0.015	0.840 ± 0.014	0.741 ± 0.012	0.644 ± 0.011	0.567 ± 0.010	0.4180 ± 0.0085	0.3228 ± 0.0082	0.2411 ± 0.0094	0.179 ± 0.011	0.269 ± 0.016	0.600 ± 0.015	0.892 ± 0.017	0.999 ± 0.015	0.941 ± 0.015	0.835 ± 0.015	0.755 ± 0.017	0.659 ± 0.018	0.587 ± 0.022	0.592 ± 0.021	0.626 ± 0.023	0.734 ± 0.021
	Cross Section (mb/sr)	2050.3 ± 5.7	1522.2 ± 4.9	1171.1 土4.3	809.2 ± 3.6	567.0 ± 3.0	357.4 ± 1.7	223.3 ± 1.3	130.10 ± 0.83	96.94 ± 0.72	73.90 ± 0.63	47.17 ± 0.50	38.70 ± 0.45	40.85 ± 0.47	44.04 ± 0.48	55.26 ± 0.47	68.96 ± 0.47	82.19 ± 0.51	89.93 ± 0.54	95.52 ± 0.40	77.07 ± 0.36	53.84 ± 0.30	30.58 ± 0.23	16.09 ± 0.17	9.759 ± 0.091	8.460 ± 0.085	8.283 ± 0.068	8.097 ± 0.068	7.017 ± 0.063	5.358 ± 0.055	3.674 ± 0.042	2.421 ± 0.344	1.738 ± 0.024	1.431 ± 0.022	1.264 ± 0.019
^{s4} Fe	Angle	15.30	16.32	17.33	18.35	19.37	20.39	21.41	22.43	22.94	23.45	24.47	25.48	25.99	26.50	27.52	28.54	29.55	30.57	33.11	35.66	38.20	40.74	43.27	45.81	48.34	50.88	53.41	55.94	58.46	60.99	63.51	66.04	68.56	71.07
	Analyzing Power	-0.025 ± 0.0052	-0.0429 ± 0.0059	-0.0700 ± 0.0050	-0.1019 ± 0.0059	-0.1279 ± 0.0071	-0.1430 ± 0.0087	-0.195 ± 0.011	-0.172 ± 0.014	-0.081 ± 0.015	0.185 ± 0.019	0.575 ± 0.016	0.803 ± 0.016	0.808 ± 0.015	0.753 ± 0.014	0.674 ± 0.013	0.603 ± 0.012	0.451 ± 0.012	0.3548 ± 0.0067	0.297 ± 0.012	0.2293 ± 0.0089	0.262 ± 0.015	0.516 ± 0.015	0.899 ± 0.015	0.988 ±0.014	0.955 ± 0.015	0.861 ± 0.014	0.785 ± 0.015	0.684 ± 0.017	0.660 ± 0.021	0.593 ± 0.026	0.636 ± 0.028	0.753 ± 0.024		
	Cross Section (mb/sr)	1670.8 ± 6.6	1286.4 ± 5.8	956.7 ± 3.6	688.4 ± 3.0	475.8 ± 2.5	312.9 ± 2.0	193.6 ± 1.6	115.6 ± 1.2	69.31 ± 0.78	43.96 ± 0.62	34.68 ± 0.43	36.43 ±0.44	45.52 ±0.49	54.92 ± 0.54	64.23 ± 0.58	70.84 ± 0.61	75.68 ± 0.65	63.72 ± 0.27	45.46 ±0.41	26.00 ± 0.17	13.59 ± 0.16	7.610 ± 0.084	5.820 ± 0.068	6.012 ± 0.058	6.077 ± 0.070	5.522 ± 0.056	4.302 ± 0.049	3.020 ± 0.041	1.908 ± 0.033	1.240 ± 0.027	0.990 ± 0.024	0.873 ± 0.018		
IL.s	Angle	15.32	16.34	17.36	18.38	19.40	20.42	21.44	22.46	23.48	24.50	25.52	26.54	27.56	28.58	29.60	30.62	33.16	35.71	38.25	40.79	43.33	45.87	48.41	50.95	53.48	56.01	58.54	61.07	63.59	66.12	68.64	71.16		
	Analyzing Power	-0.0155 ± 0.0028	-0.0360 ± 0.0032	-0.0614 ± 0.0037	-0.0864 ± 0.0044	-0.1012 ± 0.0063	-0.1462 ± 0.0051	-0.1648 ± 0.0097	-0.1693 ± 0.0078	-0.087 ± 0.016	0.096 ± 0.012	0.448 ± 0.016	0.753 ± 0.015	0.822 ± 0.015	0.781 ± 0.012	0.707 ± 0.013	0.631 ± 0.010	0.494 ± 0.012	0.391 ± 0.012	0.301 ± 0.010	0.242 ± 0.011	0.279 ± 0.015	0.474 ± 0.013	0.822 ± 0.015	1.006 ± 0.015	0.970 ± 0.015	0.879 ± 0.016	0.810 ± 0.015	0.751 ± 0.017	0.661 ± 0.020	0.618 ± 0.025	0.674 ± 0.029	0.746 ± 0.025		
	Cross Section (mb/sr)	1644.1 ± 3.5	1281.1 ± 3.1	964.4 ± 2.7	694.5 ± 2.3	495.7 ±2.4	327.9 ± 1.2	212.1 ± 1.5	131.35 ± 0.77	76.69 ± 0.93	49.80 ±0.47	36.88 ± 0.45	35.68 ± 0.40	40.15 ±0.42	48.77 ± 0.33	57.18 ± 0.51	63.36 ± 0.38	68.28 ± 0.57	60.47 ± 0.53	42.26 ± 0.32	24.96 ± 0.20	13.24 ± 0.15	7.265 ± 0.070	5.361 ± 0.060	5.139 ± 0.059	5.236 ± 0.060	4.724 ± 0.057	3.731 ± 0.042	2.634 ± 0.035	1.764 ± 0.029	1.133 ± 0.023	0.827 ± 0.020	0.696 ± 0.015		
۴°T;	Angle	15.33	16.35	17.38	18.40	19.42	20.44	21.46	22.48	23.50	24.52	25.54	26.56	27.58	28.60	29.62	30.64	33.19	35.74	38.28	40.83	43.37	45.91	48.45	50.99	53.52	56.05	58.58	61.11	63.64	66.16	68.69	71.21		

334

stFe			°C0			iN ⁵⁸		
Angle	Cross Section (mb/sr)	Analyzing Power	Angle	Cross Section (mb/sr)	Analyzing Power	Angle	Cross Section (mb/sr)	Analyzing Power
14.27	2444.8 ±8.0	-0.0161 ± 0.0051	15.37	1794.9 土4.9	-0.0523 ± 0.0039	14.26	2578.8 ± 11.1	-0.0199 ± 0.0063
16.30	1417.3 ± 8.6	-0.0550 ± 0.0093	16.39	1311.4 ± 4.2	-0.0759 ± 0.0045	16.29	1503.1 ± 6.1	-0.0705 ± 0.0059
18.34	700.1 ± 3.0	-0.1253 ± 0.0068	17.41	946.6 ± 3.5	-0.1165 ± 0.0055	18.33	746.1 ± 3.0	-0.1439 ± 0.0062
20.38	286.0 ± 1.9	-0.243 ± 0.011	18.43	627.4 ± 1.2	-0.1511 ± 0.0031	20.36	303.7 ± 1.9	-0.2368 ± 0.0095
21.40	165.9 ± 1.5	-0.280 ± 0.014	19.44	407.4 土1.6	-0.1982 ± 0.0061	21.38	174.1 ± 1.2	-0.282 ± 0.010
22.41	90.24 ± 0.88	-0.188 ± 0.015	20.46	250.60 ± 0.74	-0.2451 ± 0.0050	22.40	96.55 ± 0.89	-0.243 ± 0.013
23.43	53.21 ± 0.63	0.0028 ± 0.0176	21.48	141.55 ± 0.97	-0.266 ± 0.010	23.42	53.62 ± 0.66	-0.0074 ± 0.0175
24.45	39.04 ± 0.54	0.502 ± 0.021	22.49	80.62 ± 0.42	-0.1603 ± 0.0075	24.43	38.86 ± 0.49	0.465 ± 0.018
25.47	39.65 ± 0.51	0.797 ± 0.019	23.51	48.59 ± 0.57	0.138 ± 0.016	24.94	38.71 ± 0.19	0.692 ± 0.010
26.48	51.49 ± 0.58	0.861 ± 0.018	24.53	40.75 ± 0.52	0.647 ± 0.017	25.45	41.34 ± 0.58	0.842 ± 0.020
28.52	77.82 ± 0.64	0.662 ± 0.014	25.54	48.32 ±0.40	0.815 ± 0.013	25.96	46.05 ± 0.61	0.873 ± 0.019
30.55	95.90 ± 0.64	0.522 ± 0.012	26.56	61.72 ± 0.64	0.775 ± 0.015	26.47	51.12 ± 0.65	0.865 ± 0.018
33.09	94.30 ± 0.51	0.3896 ± 0.001	27.58	76.99 ± 0.51	0.705 ± 0.011	27.48	65.95 ± 0.73	0.768 ± 0.017
35.63	72.10 ± 0.36	0.2965 ± 0.0084	28.59	90.88 ± 0.77	0.605 ± 0.013	28.50	82.23 ± 0.82	0.684 ± 0.015
38.17	45.42 ± 0.35	0.193 ± 0.012	29.61	98.70 ± 0.57	0.5401 ± 0.0007	30.53	102.34 ± 0.79	0.511 ± 0.012
40.71	24.36 ± 0.21	0.196 ± 0.014	30.63	103.07 ± 0.83	0.484 ± 0.012	33.07	97.67 ± 0.50	0.3741 ± 0.0089
43.24	12.47 ± 0.15	0.345 ± 0.018	31.64	102.44 ± 0.58	0.4258 ± 0.0091	35.61	75.59 ± 0.44	0.2698 ± 0.0000
45.78	8.271 ± 0.087	0.738 ± 0.017	33.67	89.67 土0.54	0.3346 ± 0.002	38. 15	47.63 ± 0.29	0.1999 ± 0.001
48.31	7.911 ± 0.093	0.960 ± 0.018	35.70	67.30 ± 0.39	0.2544 ± 0.0085	40.68	26.35 ± 0.19	0.176 ± 0.010
50.84	8.217 ± 0.071	0.947 ± 0.015	38.24	40.18 ± 0.30	0.194 ± 0.011	43.22	13.66 ± 0.12	0.325 ± 0.013
53.37	7.643 ± 0.075	0.886 ± 0.017	40.77	20.76 ± 0.21	0.207 ± 0.014	45.75	9.169 ± 0.077	0.735 ± 0.014
55.90	6.198 ± 0.062	0.788 ± 0.016	43.31	11.26 ± 0.13	0.457 ± 0.016	48.28	8.896 ± 0.088	0.978 ± 0.016
58.43	4.376 ± 0.057	0.690 ± 0.022	45.84	8.736 ± 0.089	0.829 ± 0.015	50.82	8.982 ± 0.076	0.951 ± 0.015
60.95	2.879 ± 0.042	0.601 ± 0.022	48.37	8.949 ± 0.050	0.956 ± 0.012	53.34	8.513 ± 0.067	0.869 ± 0.014
63.48	1.885 ± 0.029	0.561 ± 0.024	50.90	8.949 ± 0.079	0.917 ± 0.014	55.87	6.796 ± 0.060	0.768 ± 0.014
66.00	1.333 ± 0.024	0.594 ± 0.026	53.43	7.961 ± 0.074	0.816 ± 0.014	58.40	4.852 ± 0.041	0.670 ± 0.013
68.52	1.185 ± 0.019	0.716 ± 0.023	55.96	6.135 ± 0.058	0.752 ± 0.014	60.92	3.188 ± 0.041	0.562 ± 0.018
71.04	1.104 ± 0.018	0.843 ± 0.023	58.48	4.199±0.048	0.666 ± 0.016	63.44	2.148 ± 0.024	0.564 ± 0.016
			61.01	2.659 ± 0.031	0.586 ± 0.016	65.96	1.587 ± 0.020	0.623 ± 0.018
			63.53	1.778 ± 0.026	0.607 ± 0.019	68.48	1.404 ± 0.016	0.734 ± 0.016
			66.05	1.448 ± 0.020	0.708 ± 0.018	71.00	1.318 ± 0.015	0.827 ± 0.016
			71.08	1.240 ± 0.017	0.897 ± 0.017			
			76.11	0.896 ± 0.013	0.968 ± 0.018			

ELASTIC SCATTERING OF 65 MEV POLALIZED PROTONS

335

	lyzing Power	0189 ± 0.0034	0406 ± 0.0038	1048 ± 0.0056	2227 ± 0.0080	279 ± 0.012	353 ± 0.015	295 ± 0.015	090 ± 0.018	627 ± 0.021	832 ± 0.024	792 ± 0.016	722 ± 0.017	514 ± 0.016	.3836±0.0087	3866 ± 0.0099	$.2887 \pm 0.0085$	$.1971 \pm 0.0099$	$.1277 \pm 0.011$	$.140 \pm 0.013$	$.247 \pm 0.014$	$.704 \pm 0.018$	$.909 \pm 0.018$	$.985 \pm 0.017$	$.007 \pm 0.017$	$.953 \pm 0.017$	$.829 \pm 0.017$	$.754 \pm 0.016$	$.612 \pm 0.017$	$.567 \pm 0.017$	$.549 \pm 0.017$	$.674 \pm 0.019$	$.859 \pm 0.017$	$.913 \pm 0.019$	035 +0 020
	Section Ana ₅ /sr) Ana	±11.9 –0.	± 9.5 −0.	± 5.9 −0.	± 3.0 −0.	± 2.5 −0.	± 1.6 −0.	$4 \pm 0.89 - 0.$	2 ± 0.58 0.	3 ± 0.60 0.	5±0.84 0.	0 ± 0.72 0.	5 ± 0.94 0.	4 ± 1.33 0.	2 ± 0.70 0.	7 ± 0.91 0.	7 ± 0.62 0.	4 ± 0.47 0.	9 ± 0.27 0.	3 ± 0.23 0	4 ± 0.16 0	9 ± 0.12 0.	$1 \pm 0.12 = 0$	$0 \pm 0.11 = 0$	9 ± 0.11 1	$4 \pm 0.12 = 0$	$6 \pm 0.11 0$	$43 \pm 0.094 = 0$	73± 0.066 0	$74\pm 0.042 = 0$	$38 \pm 0.025 = 0$	$67 \pm 0.022 = 0$	$73 \pm 0.018 = 0$	$36 \pm 0.022 = 0$	$26\pm 0.021 0$
.1	gle Cross (ml	32 3256.0	34 2472.6	37 1284.2	40 537.6	42 312.6	43 170.7	45 85.5	46 49.8	48 41.2	49 53.2	51 74.7	52 95.0	55 127.6	48 132.9	58 134.3	02 107.2	55 68.5	09 35.8	10 26.6	62 16.6	15 10.2	67 10.1	68 10.4	69 10.9	21 11.7	74 11.1	26 9.0	79 5.9	31 3.6	84 2.2	35 1.7	87 1.6	39 1.6	91 1.5
N 29	Ang	13.	14.	16.	18.	19.	20.	21.	22.	23.	24.	25.	26.	28.	30.	30.	33.	35.	38.	39.	40.	43.	44.	45.	46.	48.	50.	53.	55.	58.	60.	63.	65.	<u>8</u> 8	70.
	Analyzing Power	-0.0094 ± 0.0039	-0.0334 ± 0.0043	-0.1028 ± 0.0061	-0.2082 ± 0.0082	-0.2624 ± 0.0087	-0.305 ± 0.011	-0.303 ± 0.015	-0.074 ± 0.016	0.510 ± 0.019	0.848 ± 0.018	0.861 ± 0.016	0.736 ± 0.018	0.564 ± 0.015	0.421 ± 0.010	0.424 ± 0.013	0.3108 ± 0.095	0.208 ± 0.011	0.144 ± 0.014	0.145 ± 0.017	0.202 ± 0.020	0.574 ± 0.022	0.939 ± 0.020	0.994 ± 0.018	0.952 ± 0.018	0.889 ± 0.018	0.793 ± 0.018	0.679 ± 0.021	0.591 ± 0.020	0.580 ± 0.021	0.617 ± 0.024	0.729 ± 0.022	0.863 ± 0.022		
	Cross Section (mb/sr)	3351.6 ±17.8	2585.3 ± 14.3	1369.8 ± 8.45	594.7 ± 4.2	365.0 ± 2.6	202.5 ± 1.8	107.7 ± 1.2	57.74 ± 0.68	40.78 ± 0.56	45.88 ± 0.60	62.84 ± 0.71	83.41 ± 1.04	116.29 ± 1.27	127.56 ± 0.90	125.39 ± 1.19	108.92 ± 0.80	73.27 ± 0.61	40.07 ± 0.42	29.73 ± 0.35	19.45 ± 0.28	10.85 ± 0.17	10.07 ± 0.14	10.40 ± 0.13	10.89 ± 0.14	10.76 ± 0.13	8.875 ± 0.11	6.488 ± 0.093	4.055 ± 0.057	2.470 ± 0.036	1.777 ± 0.030	1.515 ± 0.024	1.500 ± 0.024		
1N ²⁹	Angle	13.33	14.34	16.38	18.41	19.43	20.44	21.46	22.48	23.49	24.51	25.52	26.54	28.57	30.50	30.60	33.04	35.57	38.11	39.12	40.64	43.17	45.70	47.22	48.23	50.76	53.29	55.82	58.34	60.86	63.38	65.90	68.42		
	Analyzing Power	-0.0153 ± 0.0048	-0.0809 ± 0.0068	-0.1531 ± 0.0069	-0.2213 ± 0.0087	-0.285 ± 0.016	-0.295 ± 0.012	-0.235 ± 0.021	0.1447 ± 0.021	0.686 ± 0.026	0.819 ± 0.012	0.880 ± 0.017	0.819 ± 0.021	0.602 ± 0.018	0.4656 ± 0.0097	0.334 ± 0.012	0.2577 ± 0.0098	0.169 ± 0.012	0.165 ± 0.012	0.409 ± 0.015	0.854 ± 0.015	0.982 ± 0.017	0.936 ± 0.015	0.824 ± 0.015	0.728 ± 0.016	0.615 ± 0.017	0.579 ± 0.021	0.547 ± 0.019	0.672 ± 0.020	0.799 ± 0.019	0.877 ± 0.018				
	Cross Section (mb/sr)	2776.7 ±28.7	1553.8 ± 16.7	725.7 ± 7.8	459.8 ± 5.2	273.7 ± 3.9	152.5 ± 1.9	80.28 ± 1.35	49.38 ± 0.85	41.59 ± 0.89	46.31 ± 0.52	51.93 ± 0.76	69.70 ± 0.12	103.53 ± 1.60	120.11 ± 1.32	110.36 ± 1.37	79.19 ± 0.92	46.80 ± 0.60	23.70 ± 0.30	12.33 ± 0.17	9.678 ± 0.13	10.05 ± 0.15	10.19 ± 0.14	9.07 ± 0.12	7.005 ± 0.102	4.845 ± 0.073	2.985 ± 0.053	1.936 ± 0.031	1.604 ± 0.028	1.495 ± 0.025	1.425 ± 0.022				
iNºª	Angle	14.25	16.28	18.32	19.34	20.35	21.37	22.38	23.40	24.42	24.93	25.43	26.45	28.48	30.51	33.05	35.59	38.13	40.66	43.20	45.73	48.26	50.79	53.32	55.84	58.37	60.89	63.41	65.93	68.45	70.97				

336

H. SAKAGUCHI

Λ_{68}			٥°Zr			οM ⁸⁶		
Angle	Cross Section (mb/sr)	Analyzing Power	Angle	Cross Section (mb/sr)	Analyzing Power	Angle	Cross Section (mb/sr)	Analyzing Power
13.26	4122.7 ± 15.6	-0.0613 ± 0.0055	13.26	3635.4 ± 0.98	-0.0578 ± 0.0040	14.15	2511.0 ±16.1	-0.1106 ± 0.0095
14.27	2807.8 ± 9.1	-0.1003 ± 0.0049	14.27	2515.2 ± 8.19	-0.1079 ± 0.0050	16.17	906.8 ± 6.8	-0.274 ± 0.011
16.29	1110.4 ± 4.7	-0.2280 ± 0.0066	16.29	995.3 ± 5.2	-0.2324 ± 0.0084	18.20	188.1 ± 1.5	-0.616 ± 0.013
18.32	286.2 ± 1.5	-0.5168 ± 0.0092	18.31	260.2 ± 1.3	-0.4985 ± 0.0093	19.21	59.19 ± 0.78	-0.816 ± 0.019
18.82	183.4 ± 1.2	-0.617 ± 0.011	19.32	101.12 ± 0.82	-0.719 ± 0.014	20.22	32.70 ± 0.75	0.316 ± 0.026
19.33	113.6 ± 0.91	-0.685 ± 0.013	20.34	37.54 ± 0.45	-0.435 ± 0.017	22.24	118.48 ± 1.16	0.753 ± 0.015
19.83	67.61 ± 0.71	-0.699 ± 0.018	21.35	35.44 ± 0.69	0.752 ± 0.026	24.26	228.59 ± 1.98	0.491 ± 0.013
20.34	45.18 ± 0.67	-0.410 ± 0.021	22.36	69.61 ±0.96	0.883 ± 0.021	26.28	264.20 ± 2.60	0.301 ± 0.015
21.35	42.17 ± 0.56	0.729 ± 0.019	23.37	117.37 ± 1.03	0.723 ± 0.015	26.78	266.60 ± 2.34	0.266 ± 0.013
21.85	57.55 ± 0.75	0.892 ± 0.019	24.38	163.27 ± 1.48	0.562 ± 0.015	28.80	220.98 ± 2.13	0.181 ± 0.014
22.36	79.28 ± 1.08	0.881 ± 0.019	26.40	223.64 ± 1.73	0.396 ± 0.012	30.32	164.74 ± 1.09	0.0958 ± 0.0098
22.87	103.49 ± 1.01	0.796 ± 0.015	28.42	216.17 ± 1.38	0.2610 ± 0.008	32.84	76.25 ± 0.45	-0.0619 ± 0.0087
23.37	129.67 ± 1.12	0.736 ± 0.014	30.34	176.68 ± 0.25	0.1577 ± 0.0023	33.85	50.49 ± 0.37	-0.095 ± 0.011
24.38	184.10 ± 1.64	0.554 ± 0.014	32.36	112.62 ± 0.21	0.0516 ± 0.0030	35.36	25.46 ± 0.33	-0.035 ± 0.019
26.40	247.47 ± 2.70	0.360 ± 0.016	34.38	58.22 ± 0.15	0.05060.0040	36.37	16.80 ± 0.21	0.137 ± 0.019
28.43	244.15 ± 2.19	0.256 ± 0.013	36.40	25.72 ± 0.11	0.0132 ± 0.0050	37.88	13.00 ± 0.19	0.730 ± 0.020
30.35	197.56 ± 0.45	0.1805 ± 0.0037	38.42	13.877 ± 0.084	0.5017 ± 0.0087	39.40	16.21 ± 0.21	0.939 ± 0.018
32.37	133.61 ± 1.17	0.061 ± 0.012	40.44	15.040 ± 0.084	0.955 ± 0.012	40.40	18.97 ± 0.20	0.941 ± 0.016
34.39	69.24 ± 0.54	-0.0196 ± 0.0098	42.46	20.08 ± 0.19	0.891 ± 0.014	42.93	25.01 ± 0.23	0.720 ± 0.014
36.41	32.32 ± 0.58	-0.085 ± 0.025	44.48	23.20 ± 0.21	0.759 ± 0.013	45.45	23.56 ± 0.23	0.55 ± 0.015
36.51	28.40 ± 0.32	-0.045 ± 0.016	46.49	23.26 ± 0.44	0.576 ± 0.012	47.96	16.02 ± 0.19	0.429 ± 0.017
38.43	15.34 ± 0.25	0.430 ± 0.021	46.49	21.68 ± 0.29	0.617 ± 0.012	50.48	8.921 ± 0.099	0.271 ± 0.016
38.53	15.03 ± 0.23	0.470 ± 0.022	50.53	12.40 ± 0.37	0.376 ± 0.016	53.00	4.397 ± 0.069	0.324 ± 0.023
40.45	15.91 ± 0.18	0.927 ± 0.019	54.56	4.572 ± 0.105	0.310 ± 0.027	55.52	2.982 ± 0.051	0.665 ± 0.023
40.55	16.03 ± 0.22	0.965 ± 0.019	58.58	3.219 ± 0.084	0.880 ± 0.026	58.03	3.140 ± 0.052	0.976 ± 0.021
42.46	21.20 ± 0.32	0.905 ± 0.020	62.61	3.564 ± 0.084	0.956 ± 0.026	60.54	3.348 ± 0.049	0.959 ± 0.019
44.48	25.37 ± 0.33	0.770 ± 0.018				63.06	3.082 ± 0.047	0.901 ± 0.020
45.49	25.81 ± 0.11	0.7165 ± 0.0095				65.57	2.242 ± 0.040	0.793 ± 0.024
46.50	24.96 ± 0.33	0.639 ± 0.017				68.08	1.364 ± 0.031	0.717 ± 0.030
48.52	20.94 ± 0.29	0.517 ± 0.018				70.59	0.834 ± 0.025	0.497 ± 0.041
50.53	14.51 ± 0.11	0.4237 ± 0.0096						
54.56	5.60 ± 0.11	0.309 ± 0.023						
58.59	3.523 ± 0.084	0.852 ± 0.031						
62.61	3.826± 0.063	0.971 ± 0.023						

ELASTIC SCATTERING OF 65 MEV POLALIZED PROTONS

337

	Analyzing Power	0.385 ± 0.020	0.945 ± 0.017	0.981 ± 0.016	0.909 ± 0.015	0.767 ± 0.014	0.640 ± 0.014	0.433 ± 0.017	0.294 ± 0.020	0.270 ± 0.027	0.556 ± 0.022	0.899 ± 0.017	0.971 ± 0.017	0.978 ± 0.017	0.965 ± 0.018																			
ontinued)	Cross Section (mb/sr)	5.866 ± 0.081 5.008 ± 0.071	6.789 ± 0.075	7.992 ± 0.082	9.695 ± 0.090	9.564 ± 0.080	7.601 ± 0.071	5.111 ± 0.059	3.043 ± 0.036	1.931 ± 0.033	1.699 ± 0.027	1.904 ± 0.023	2.086 ± 0.024	1.972 ± 0.024	1.701 ± 0.022																			
¹⁴⁵ Sm (c	Angle	49.32 50 22	51.33	52.34	54.35	56.35	58.36	60.37	62.38	64.38	66.39	68.40	70.40	72.41	74.41																			
	Analyzing Power	-0.1488 ± 0.0069	-0.270 + 0.011	-0.416 ± 0.012	-0.541 ± 0.013	-0.100 ± 0.013	0.530 ± 0.014	0.588 ± 0.016	0.580 ± 0.014	0.454 ± 0.013	0.367 ± 0.010	0.278 ± 0.013	0.192 ± 0.013	0.127 ± 0.013	0.064 ± 0.012	-0.024 ± 0.016	-0.110 ± 0.010	-0.213 ± 0.013	-0.340 ± 0.012	-0.508 ± 0.013	-0.566 ± 0.014	-0.546 ± 0.018	-0.061 ± 0.016	0.779 ± 0.020	0.990 ± 0.015	0.889 ± 0.017	0.645 ± 0.015	0.4482 ± 0.0089	0.2746 ± 0.0093	0.137 ± 0.010	0.0826 ± 0.0091	-0.110 ± 0.013	-0.151 ± 0.014	0.015 ± 0.019
	Cross Section (mb/sr)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1728.1 + 11.8	800.9 ± 5.7	315.8 ± 2.5	146.0 ± 1.3	172.3 ± 1.5	214.1 ± 2.4	282.0 ± 2.4	406.4 ± 3.3	502.3 ± 3.2	562.4 ± 4.8	549.7 ± 4.7	524.4 ± 4.6	444.3 ± 3.5	351.3 ± 3.8	263.2 ± 1.9	177.3 ± 1.5	107.86 ± 0.82	58.02 ± 0.50	41.69 ± 0.38	29.55 ± 0.36	17.08 ± 0.19	17.60 ± 0.25	25.74 ± 0.23	37.06 ± 0.45	56.53 ± 0.55	59.73 ± 0.31	46.77 ± 0.28	34.05 ± 0.24	29.10 ± 0.18	14.57 ± 0.13	9.816 ± 0.091	6.837 ± 0.087
¹⁴⁴ Sm	Angle	13.60	11.11	16.12	17.13	18.13	19.14	19.64	20.15	21.15	22.16	23.17	24.17	25.18	26.19	27.20	28.20	29.21	30.21	31.22	31.72	32.23	33. 23	34.24	35.25	36.25	38.26	40.28	42.29	43.79	44.30	46.31	47.31	48.32
	Analyzing Power	-0.110 ± 0.015	-0.695 ± 0.018	-0.778 ± 0.022	0.603 ± 0.016	0.886 ± 0.018	0.697 ± 0.016	0.444 ± 0.014	0.311 ± 0.012	0.294 ± 0.014	0.232 ± 0.015	0.201 ± 0.014	0.076 ± 0.016	-0.079 ± 0.017	-0.170 ± 0.017	-0.058 ± 0.016	0.237 ± 0.020	0.814 ± 0.019	0.947 ± 0.018	0.921 ± 0.017	0.708 ± 0.018	0.535 ± 0.016	0.256 ± 0.019	0.776 ± 0.026										
	Cross Section (mb/sr)	2863.1 ± 26.9	183.7 ± 2.2	57.55 ± 0.86	40.82 ± 0.41	86.52 ± 1.05	153.96 ± 1.56	278.85 ± 2.43	315.50 ± 2.37	315.14 ± 2.82	284.24 ± 2.74	270.79 ± 2.39	179.64 ± 1.78	78.22 ± 0.84	40.63 ± 0.43	25.16 ± 0.26	17.49 ± 0.22	15.32 ± 0.19	19.43 ± 0.22	23.18 ± 0.25	29.53 ± 0.34	25.96 ± 0.26	8.918 ± 0.109	3.459 ± 0.068										
0M001	Angle	14. 15 16-17	18.19	19.20	20.21	21.22	22.23	24.25	26.27	26.27	27.79	28.29	30.31	32.83	34.35	35.35	36.36	37.88	39.39	40.40	42.92	45.44	50.47	55.51										

338

H. SAKAGUCHI

208Pb

²⁰⁹Bi

10					
Angle	Cross Section (mb/sr)	Analyzing Power	Angle	Cross Section (mb/sr)	Analyzing Power
13.17	6644.7 ± 9.3	-0.1224 ± 0.0027	13.33	6329.9 ± 12.3	-0.1249 ± 0.0033
14.17	3484.6 ± 6.8	-0.1648 ± 0.0037	14.34	3364.9 ± 8.9	-0.1646 ± 0.0045
15.18	1795.0 ± 4.9	-0.1426 ± 0.0044	14.84	2462.5 ± 7.6	-0.1613 ± 0.0051
16.18	1034.3 ± 3.7	0.0025 ± 0.0052	15.18	1950.7 ± 6.8	-0.1591 ± 0.0052
17.19	884.0 ± 3.4	0.2444 ± 0.0066	15.34	1776.9 ± 6.5	-0.1482 ± 0.0057
18.19	966.9 ± 3.6	0.3079 ± 0.0068	15.85	1272.9 ± 5.5	-0.0955 ± 0.0064
19.20	1116.9 ± 3.8	0.2867 ± 0.0064	16.18	1088.5 ± 3.6	-0.0302 ± 0.0045
20.20	1222.1 ± 4.0	0.2325 ± 0.0057	16.35	1034.6 ± 4.9	0.0084 ± 0.0070
21.21	1207.0 ± 4.0	0.1639 ± 0.0053	16.68	913.0 ± 3.3	0.0779 ± 0.0050
22.21	1106.3 ± 3.8	0.0910 ± 0.0051	17.19	845.0 ± 3.2	0.1971 ± 0.0057
23,22	929.8 ± 3.5	0.0166 ± 0.0054	17.35	851.8 ± 4.5	0.2250 ± 0.0083
24.22	709.2 ± 3.0	-0.0590 ± 0.0062	17.69	853.8 ± 3.2	0.2905 ± 0.0063
25.23	492.3 ± 1.8	-0.1751 ± 0.0057	18.19	896.9 ± 3.3	0.3066 ± 0.0061
26.23	301.2 ± 1.4	-0.3384 ± 0.0081	18.69	969.6 ± 3.4	0.3071 ± 0.0061
27.24	156.8 ± 1.0	-0.531 ± 0.011	19.20	1036.1 ± 3.5	0.2950 ± 0.0058
28.24	66.59 ± 0.47	-0.850 ± 0.013	20.20	1138.3 ± 3.7	0.2468 ± 0.0054
28.74	43.14 ± 0.38	-0.925 ± 0.015	20.37	1170.5 ± 5.3	0.2320 ± 0.0073
29.24	30.01 ± 0.31	-0.727 ± 0.016	22.21	1068.2 ± 3.6	0.1070 ± 0.0049
30.25	28.36 ± 0.31	0.502 ± 0.016	24.22	701.1 ± 1.4	-0.0552 ± 0.0030
30.75	37.42 ± 0.31	0.762 ± 0.014	26.23	309.08 ± 0.96	-0.3173 ± 0.0056
31.25	51.92 ± 0.37	0.831 ± 0.013	27.40	148.84 ± 1.19	-0.560 ± 0.013
31.76	66.78 ± 0.66	0.811 ± 0.016	28.24	75.20 ± 0.39	-0.811 ± 0.011
32.26	80.25 ± 0.46	0.741 ± 0.013	28.91	41.52 ± 0.57	-0.908 ± 0.019
32.76	99.68 ± 0.93	0.693 ± 0.015	29.24	31.28 ± 0.25	-0.832 ± 0.013
34.27	128.36 ± 0.71	0.484 ± 0.010	30.25	25.17 ± 0.22	0.271 ± 0.013
36.27	127.52 ± 0.71	0.2794 ± 0.0088	30.41	27.32 ± 0.51	0.433 ± 0.027
38,28	87.84 ± 0.59	0.051 ± 0.010	30.92	35.72 ± 0.46	0.806 ± 0.019
39.29	63.59 ± 0.50	-0.083 ± 0.011	31.42	48.72 ± 0.48	0.819 ± 0.015
40.29	43.00 ± 0.41	-0.264 ± 0.015	31.92	64.34 ± 0.62	0.797 ± 0.015
41.29	24.33 ± 0.22	-0.462 ± 0.013	32.76	88.27 ± 0.21	0.6865 ± 0.0084
42,30	13.55 ± 0.15	-0.577 ± 0.017	35.27	128.16 ± 0.36	0.3931 ± 0.0059
43.30	8.479 ± 0.130	-0.313 ± 0.022	35.43	131.64 ± 1.11	0.379 ± 0.013
44.31	8.113 ± 0.090	0.488 ± 0.016	37.78	98.34 ± 0.70	0.1175 ± 0.0098
45.31	11.192 ± 0.122	0.912 ± 0.016	41.96	17.60 ± 0.22	-0.593 ± 0.018
46.31	15.921 ± 0.159	0.958 ± 0.017	42.46	13.32 ± 0.20	-0.659 ± 0.021
47.32	19.987 ± 0.199	0.872 ± 0.016	42.80	11.09 ± 0.13	-0.546 ± 0.017
48.32	22.723 ± 0.212	0.750 ± 0.016	43.47	8.146 ± 0.152	-0.295 ± 0.027
50.33	23.864 ± 0.218	0.569 ± 0.015	44.30	7.855 ± 0.138	0.386 ± 0.024
52.33	17.468 ± 0.167	0.333 ± 0.014	45.31	10.471 ± 0.101	0.857 ± 0.014
54.34	10.042 ± 0.142	0.0082 ± 0.205	46.48	15.32 ± 0.21	0.931 ± 0.019
55.34	6.627 ± 0.081	-0.145 ± 0.018	47.82	20.39 ± 0.22	0.833 ± 0.016
56.35	4.505 ± 0.060	-0.265 ± 0.019	50.33	23.19 ± 0.17	0.557 ± 0.011
57.35	3.202 ± 0.056	-0.134 ± 0.026	52.83	15.54 ± 0.16	0.276 ± 0.014
58.35	2.992 ± 0.055	0.178 ± 0.026	55.34	6.922 ± 0.083	-0.145 ± 0.017
60.36	3.705 ± 0.061	0.856 ± 0.021	56.51	4.374 ± 0.091	-0.288 ± 0.030
61.36	4.463 ± 0.067	0.960 ± 0.020	57.85	2.965 ± 0.032	-0.043 ± 0.015
62.36	4.926 ± 0.070	0.974 ± 0.019	60.36	2.628 ± 0.060	0.849 ± 0.021
64.37	5.272 ± 0.092	0.875 ± 0.022	61.52	4.388 ± 0.083	0.952 ± 0.023
66.37	4.325 ± 0.066	0.660 ± 0.022	62.86	4.943 ± 0.078	0.935 ± 0.020
68.38	2.814 ± 0.047	0.468 ± 0.024	65.37	4.773 ± 0.058	0.813 ± 0.016
70.38	1.516 ± 0.035	0.212 ± 0.033	67.87	3.065 ± 0.050	0.506 ± 0.022
			70.38	1.531 ± 0.031	0.104 ± 0.028
			72.88	0.935 ± 0.018	0.136 ± 0.027
			75.38	1.082 ± 0.016	0.667 ± 0.020

REFERENCES

- 1) J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C10 (1974), 1391.
- 2) J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rep. 25C (1976), 83.
- 3) J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C15 (1977), 10.
- 4) J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C16 (1977), 80.
- 5) F. A. Brieva and J. R. Rook, Nucl. Phys. A291 (1977), 299.
- 6) F. A. Brieva and J. R. Rook, Nucl. Phys. A291 (1977), 377.
- 7) F. A. Brieva and J. R. Rook, Nucl. Phys. A297 (1978), 206.
- 8) F. A. Brieva and J. R. Rook, Nucl. Phys. A307 (1978), 493.
- 9) F. A. Brieva, Phys. Lett. 76B (1978), 533.
- 10) C. W. Wong, Nucl. Phys. A91 (1967), 399.
- 11) J. W. Negele, Phys. Rev. C1 (1970), 1260.
- 12) F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182 (1969), 1190.
- 13) E. Fabrici, S. Micheletti, M. Pignanelli, F. G. Resmini, R. DeLeo, G. D'Erasmo, A. Pantaleo, J. L. Escudie and A. Tarrats, Phys. Rev. C21 (1980), 830.
- 14) E. Fabrici, S. Micheletti, M. Pignanelli, F. G. Resmini, R. DeLeo, G. D'Erasmo and A. Pantaleo, Phys. Rev. C21 (1980), 844.
- 15) H. O. Meyer, P. Schwandt, G. L. Moake, P. P. Singh, Phys. Rev. C23 (1981), 616.
- 16) A. Nadasen, P. Schwandt, P. P. Singh, W. W. Jacobs, A. D. Bacher, P. T. Debevec, M. D. Kaitchuck and J. T. Meek, Phys. Rev. C23 (1981), 1023.
- 17) L. G. Arnold, B. C. Clark, R. L. Mercer, P. Schwandt, Phys. Rev. C23 (1981), 1949.
- H. Sakaguchi, M. Nakamura, K. Hatanaka, A. Goto, T. Noro, F. Ohtani, H. Sakamoto and S. Kobayashi, Phys. Lett. 89B (1979), 152.
- H. Sakaguchi, M. Nakamura, K. Hatanaka, T. Noro, F. Ohtani, H. Sakamoto, H. Ogawa and S. Kobayashi, Phys. Lett. 99B (1981), 92.
- T. Noro, H. Sakaguchi, M. Nakamura, K. Hatanaka, F. Ohtani, H. Sakamoto and S. Kobayashi, Nucl. Phys. A366 (1981), 189.
- 21) K. Imai, N. Tamura and K. Nisimura, RCNP Annual Report (1976), p. 23.
- M. Kondo et al., Proc. of 7-th Int. Conf. on Cyclotron and their Applications (Birkhauser, Basel, 1975), p. 95.
- N. Matsuoka, K. Hosono, T. Saito, A. Shimizu and M. Kondo, RCNP Annual Report (1976), p. 97.
- 24) K. Imai, K. Hatanaka, H. Shimizu and K. Nisimura, RCNP Annual Report (1978), p. 154.
- 25) S. Kato, K. Okada, M. Kondo, A. Shimizu, K. Hosono, T. Saito, N. Matsuoka, S. Nagamachi, K. Nisimura, N. Tamura, K. Imai, K. Egawa, M. Nakamura, T. Noro, H. Shimizu, K. Ogino, Y. Kadota, Nucl. Instr. & Meth. 169 (1980), 589.
- 26) M. Q. Makino, C. N. Waddell and R. M. Eisberg, Nucl. Instr. & Meth. 60 (1968), 109.
- 27) J. Raynal, Saclay, Code MAGALI.
- 28) G. W. Greenlees, G. J. Pyle and Y. C. Tang, Phys. Rev. C171 (1968), 1115.
- 29) L. R. B. Elton, Nuclear Sizes, (Oxford Univ. Press, Oxford, 1961), p. 107.
- 30) B. Sinha, Phys. Lett. 20C (1975), 1.
- R. C. Barrett and D. F. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977), p. 146.
- 32) C. M. Perey and F. G. Perey, Atomic Data and Nucl. Data Tables 13 (1974), 293.
- 33) J. A. Nolen Jr. and J. P. Schiffer, Phys. Lett. 29B (1969), 396.
- 34) S. Shlomo and E. Friedman, Phys. Rev. Lett. 39 (1977), 1180.
- 35) G. D. Alkhazov, S. L. Belostotsky, O. A. Domchenkov, Yu. V. Dotsenko, N. P. Kuropatkin, M. A. Schuvaev and A. A. Vorobyov, Phys. Lett. 57B (1975), 47.
- 36) G. D. Alkhazov, T. Bauer, R. Bertini, L. Bimbot, O. Bing, A. Boudard, G. Bruge, H. Catz, A. Chaumeaux, P. Couvert, J. M. Fontaine, F. Hibou, G. J. Igo, J. C. Lugol and M. Matoba, Nucl. Phys. A280 (1977), 365.
- 37) G. C. Alkhazov, T. Bauer, R. Beurtey, A. Boudarad, G. Bruge, A. Chaumeaux, P. Couvert, G. Cvijanovich, H. H. Duhm, J. M. Fontaine, J. C. Lugol, J. Saudinos, J. Thirion and

A. A. Vorobyov, Nucl. Phys. A274 (1974), 443.

- 38) G. W. Hoffman, G. S. Blannpied, W. R. Coker, R. P. Liljestrand, N. M. Hintz, M. A. Oothoudt, T. S. Bauer, G. Igo, G. Pauletta, J. Soukup, C. A. Whitten Jr., D. Madland, J. C. Pratt, L. Ray, J. E. Spencer, H. A. Thiessen, H. Nann, K. K. Seth, C. Glashausser, D. K. McDaniels, J. Tinsley and P. Varghesse, Phys. Rev. Lett. 40 (1978), 1256.
- 39) G. W. Hoffman et al., Phys. Lett. 76B (1978), 383.
- 40) G. W. Hoffman et al., Phys. Lett. 79B (1978), 376.
- 41) G. Igo et al., Phys. Lett. 81B (1979), 151.
- 42) L. Ray, G. W. Hoffman, G. S. Blanpied, W. R. Doker and R. P. Liljestrand, Phys. Rev. C18 (1978), 1757.
- 43) L. Ray, W. R. Coker, G. W. Hoffmann, Phys. Rev. C18 (1978), 2641.
- 44) G. Bertsch, J. Borysowicz and H. McManus, Nucl. Phys. A284 (1977), 399.
- K. Hatanaka, K. Imai, S. Kobayashi, T. Matsusue, M. Nakamura, K. Nishimura, T. Noro, H. Sakamoto, H. Shimizu and J. Shirai, Nucl. Phys. A340 (1980), 93.
- 46) M. Hyakutake, M. Matoba, I. Kumabe, M. Fukada, T. Komatsuzaki, T. Yamagata, M. Tanaka, M. Inoue, I. Miura, and H. Ogata, Nucl. Phys. A311 (1978), 161.
- 47) A. Lejeune and P. E. Hodgson, Nucl. Phys. A295 (1978), 301.
- 48) F. A. Brieva, in Microscopic Optical Potential, ed. H. V. v. Geramb, Lecture Notes in Physics 89 (Springer-Verlag, Berlin Heidelberg New New Yourk 1979) p. 84.