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                                        Abstract

        An analytic formulation of the multicluster resonating-group method (RGM) is presented for
    systems composed of any number of (Os)-she}1 c}u$ters. In this formulation, the construction of ex-

    change integral kernels in the cornplex generator-coordinate space and the $ubsequent developement

    to the RGM formalism is canied out in full generality with respect to the central, LS, and tensor

    two-nucleon forces of the Gaussian type and to the Coulomb interaction. Each terin in the interac-

    tion kernel is classified not only by the modes in which nucleons are interchanged among ciu$ters,

    but also by the interactien types which specify particular cermbination$ ef the complex generater-

    coordinate vectors involved in quadratic polynomials for Gaussian interaction factors. The interaction

    kernel involves spin-isospin factors in a concise way, the evaluation ofwhich requires specificaÅíioR of

    spin-isospin coupling schemes for the particular system under consideration. In view ef a practical

    application of the present formalism to the systems composed of one a-cluster and two (Os)-sheil

    clusters, the spin-isospin factors are derived in analytic form for any spin-isospin configurations of

    two s-shell clusters. The result is then extended to the case of the three-cluster kernels by employ-

    ing the valence-orbital method. As an example of utilizing the resultant three-cluster RGM kernels,

    coupled-channel equatien$ with three different types of two-cluster channels are formulated. These

    coupled-channel equations are then solved by a varlational method employing Gaussian-type trial

    functiens. The matrix eiernents oÅí the resonating-group kernels with yespect to angular-mornentum

    coupled Gaussiaxx basis functions are calculated easily with a new technique, which is specifically

    developed for this investigatien by making use of the theory of double Gel'fand polynomials and

    transformation properties of the complex generator-ceordinate kernels '
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S1. gntroductien and Summary

   Tlte resonating-group method (RGM), proposed by Wheeler [ l] a long time ago, is a

full microscopic frameworl< whlck makes much account of cluster correiatioRs in nuclear

many-body pyoblems. It is particularly suited to a unified descriptioR of bouxxd-state,

scattering and reaction prob}ems, ln which nuclear clusters are frequently natural build-

ing blocks of tlte total system axxd their dynamlcal interplay provides an essential role in

many intricate nuclear pkenornena, including structure changes from the shell-model-

like to cluster structures. Once a combination oÅí an appropriately layge raodel space

and an effective two-nucleon interaction is selected in view of physical coRsideratioxxs,

there is no room for any phenomenological parameters in the RGM calculation, and
the antisymmetrization due to the effect of the Pauli principle takes full account of clus-

ter dynamics, yesulting ir} a ufiique solution for the physical observables such as the

bound-staÅíe energies and cross sections. OwiRg to these Rice features, many detailed
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calculations kave beeit performed by using tkis metkod, especiaRy in light nuclear sys-

terr}s. As for these enormous outgrowth withiR the last fifty years or so, a number of

books [2], [3] aRd review articles [4]rv [14] should be referred to.

   In the RGM calculations, it is essential to choose aR appropriately large model

space that is spanned by a set of nonorthogonal basis functions representing various

cluster coxxfigurations. [I'here exist at preseRt a number of many-channel calculations,

as well as quite sophisticated single-channel calculations which take accottRt of detailed

properties of cluster interRal functions. [l5]rtv [76] We cait categerize these into severai

groups. The first one is multiconfiguratioR RGM calculations performed especially by

Hackenbroich and his collaborators, and later by Hofmann and his collaborators (see,

e.g., refs. [l5]rv [33]). In the method of Hackenbroich, ai1 necessary matrix elernents

of many-xxucleon systems are directly calculated by successively app}ying the algebraic

transformation formula of Gaussian integration, and all physical observables in the low-

energy region are reasonably reproduced by adopting a wide model space spanned
by many types of two-cluster cenfiguratioRs. The emphasis of tltese investigators is,

however, on studying the level structures iR the low-excitation region of ligltt p-shell

nuclei and the four-nucleon system. The second category is calculations by the method

of pseudo-inelastic configurations, first perforrned by Thompson and Tang [34], [35]

and subsequeRtly by several authors [37]rtv [42]. The main idea of thls method is as

follows. In the deep inside of the nucleus or in the interaction region in a reaction pro-

cess, ciusters are usually distorted from the original free particles due to the interaction

with the surrounding nucleons. This is called the specific distortion effect in reÅí [3],

and is particularly important iR tlte low energy region, whem clusters with low com-

pressibility like the deuteron are involved. This effect is properly taken into account, if

one introduces additional degree of freedom into the resonating-group trial functions

and tkereby imaproves the bekavior of the compound system iR the strongiy interacting

region. This can be attaiRed either by adding into the formulation physical reaction

channels as is doRe in the multiconfiguration RGM calcuiations or by empioying the

pseudo-state method in which pseudo-inelastic configuratlons are utillzed to eniarge the

model space. The main advantage of this method lies in its simplicity of formulation,

because the kernel functions representing the couplings amoRg various cluster config-

urations can be rather easily derived. Another important effect of tke pseudo-inelastic

coRfigurations ls to describe the direct breakup processes of clussers. 'rlte third one is

the multiconfiguration and multichannel resoRating-group calculations by the present

authors [44] rtv [5e], in which coupled-channel equations are derived by starting from

an analytic formulation of a three-cluster RGM [51]. In this formulation, we caB easity

incorporate the fogowing important effects : l) the clustering effect of subsystems like

d + cu structure of 6Li; 2) inelastic excitations to the simple rotational partiter of the

ground state like f == 2 excited state of6Li; 3) those to the states of intrinsic excita-

tions such as (3N +N)-like or' state; 4) those to the pseudo-inelastic configurations ; 5)

effects of cluster-rearrangement configurations in reaction processes. Tkrough detailed

systematlc investigations of differential and reaction cross sectioRs ln 6-, 7-, 8-, and IO-

nucleon systems, the present authors have examined general characteristics of nuclear

reactions, such as the essent2al features of internuc}ear interactions, important reaction
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mechanisms aRd so on. For the iRteresting findings up to the present, a recent review

article [50] should be referred to. Needless to say, Åíhis formulatioR has some restriction

originating from dividing the total system iRto only three clusters. This is, in fact, a

part of the motivations to extend this formalism to four- and more-c}ttster systems in

the present paper. The fourth category is an attempt to solve 3-cluster systems directly

either in the RGM formalism or in the generator-coordinate method (GCM). We should

mention the very early varlational RGM calculation of the 3 cM system by Fukushirna and

Kamimura [52], [53] and a GCM calculatlon by Uegaki, Okabe, Abe and Tanaka [54],
[55]. Through an extensive study by Baye and his collaborators [56] rv [63], it has been

shown that the GCM is a suitable framework to incorporaÅíe many-c}ttster configurations

iR the microscopic cluster tlteory. By Descouvemont and Baye [64], [65] and also by

Langanke and his collaborators [66]rv [69], it is successfully applied to maRy nttclear

reactions of astrophysical iRterest. For example, in the study of the 8-nttcleon system

in reÅí [64], the fo!diRg procedgre for the 2-ciuster subsystem is employed to formulate

the scattering problems for evaluating the astrophysical S-factors in 7Be(p,or)8B and

7Li(n,ry)8Li reactions. A few ambitious atternpts to take into account the thyee-body

breakup processes and the .effects of cluster excltatioRs in tlte full microscopic 3-cluster

formulations by tke techniques of hyper-spherical harmonics and others are found in

refs. [70]N [76].

   The purpose of this paper is to present a mathematicai formulation of the three-

cluster RGM for systems composed ofone or-cluster and two s-shell clusters, and thereby

provide technical detalls for the multlconfiguratioR aRd multichanBel resonating-group

calculatiens by the present authors. IR view of the receRt rapid improveraent of com-

puter facilities, we will exteltd tlte applicablllty of the present formulations to more

complicated systems such as four- and more-clustey systems. The oRiy restriction is

that the systems are composed of s-shell clusters described by translationa}ly-invariant

shell-model functions of the lowest configurations in haymonic-oscillator potential wells

having a common wldth parameter y. In contrast to the previous write-up [5l], we wM

here discuss xxot only central forces but also LS, tensor and Coulomb interactioxxs. The

incorporation of these forces in the actual numerical calcu!ations is a future project.

If the system is only composed of spin-isospin saturated a-clusters, both of the nor-

malization and interaction kernels are easlly obtained from the standard techniques in

terms of the Bloch-Brink wave functions [77]. Ixx fact, even the system of an infinitely

large number of a-clttsters (cu-matter) is discussed and the GCM kernels are elegantly

expressed by using the Lambert series and the eiliptlc theta functions [78]. However,

once the system has non-zero splR altd isospin values, such a simple separation of the

spatial and spin-isospin degrees of freedom is no longer possible. In such a case, one

needs to handie a large number of analytic matrlx inversions of large dimensionality cor-

respond2ng to the nucleoR number itself, whick is stM not easy even by "siRg modern

computer softwares for algebralc computations. Here we instead use another standard

technique by the dottble-coset generator expansions, which was developed by Kramer
and Seligman [79], [80]. A nice feature of this tecknique is that we only need to deal

with the smagess number of independent terms for the exchange kernels from the very

beginning and that it gives a complete procedure to calculate spin-isospin factors for
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arbitrary systems in terms of shell-model-like cfp expansions. These authors use the

expansions even for the spatial part [82], but we rather use simpler Brink tecltniques

to handle this contiRuous degree of freedom. Each term in the interactioR kernel is

classified not only by the modes in which nucleons are interchanged among clusters,

but also by the interaction types whiclt specify particular combinations of the complex

generator-coordinate vectors involved in quadratic polynomials for Gaussian interaction

factors. These kernels have very simple structure for a clear separation of spin-isospin

factors and factorizatioR of each term into the normalization, the central-Gausslan, and

the noncentral factors. By considering these kernels in the complex generator-coordinate

space, the subsequent transformatioR to the RGM kernels and evaluation of the matrix

elements for Gaussian-type trial functions are carried out in full generality irrespective

of the number of clusters.

   Although the procedure to evaluate the spin-isospin factors is straightforward, we

need to specify spin-isospin coupling schemes for practical calculations of these fac-

tors. Even in 3-cluster systems, this process becomes fairly cumbersome for general

spin-isospin configurations. OR the other hand, the systems we are concerned with
usually contain at least one a-cluster, and hence a full generality of the spin-isospin

configurations for 2-cluster subsystems is practically good enough for the description of

3--cluster systems. In this paper, we will analytically derive the spin-isospin factors in

the interaction kernels for any spin-isospin configurations of two (Os)-shell clusters, and

the result is then generalized to the case of 3-cluster kernels in the generator-coordinate

space, employing the valence-orbital rnethod [83]. A computer-aided algebraic compu-

tation of these spin-isospin facters for arbitrary systems is certainly a promising future

direction to proceed.

   Once the kernel functions are thus derived in the GCM or RGM representation,
the next important problem is how to solve these n-cluster integro-differential equations.

In principle, we should be able to formulate Faddeev-type connected-kernel equations

which take into account correct asymptotic behavior of many-cluster systems. Kow-

ever, a complete treatment of breakup processes is Rot yet accomplished even in the

Faddeev formalism for systems of structureless particles. In this paper, we only give a

possible application of the n-cluster RGM formalisra, which is practicaHy feasible and

still physieally meaningful. Namely, we discuss 3-cluster systems composed of oRe cy-

cluster and two (Os)-shell clusters, and formulate coupled-channel equations with three

different types of two-cluster kernels. We assume appropriate relative-motioR functions

for 2-cluster subsystems composed of any pairs of the three clusters. In practice, these

relative-motion functions are selected according to a variational procedure constrained

by relevant experimental information such as the root-mean-square radius or the charge

form-factor data. These coupled-channel equations are then solved by the variational

method, employing Gaussian-type trial functions [85]. Througk this procedure, we can

investigate the effect of channel coupliRgs due to the cluster rearrangement, as weH

as the effect of clustering in the sophisticated channel wave functions. We can even

iRcorporate the effect of cluster breakup in an approximate way, by introduciRg the

pseudo-state configurations for the subsystems [84].

   The variational method for coupled-channel problems is extensively discussed by



96 Y. FUJIWARA and Y.C. TANG

Kamimura [85], and has been used by many authors. In the applicatioR to mttlticluster

problems, it is crucial to have concise expressions of RGM matrix e}ements for eMcieRtly

calculating the kuge number of them, since the main computation time is spent for this

part. Such expressions are kltown to be obtained by using Gaussian-type basis func-

tioRs, by which another tedious process of angular-momentum projection is also greatly

simplified. We have developed in Appendix B of reÅí [43] a new technique to calculate

Gaussian matrix elements for RGM kernels, directly startiRg from the GCM kernels.

This tecknique requires the transformation formula from GCM to RGM kernels, which

is easlly obtained tkrough the Bargmann integrals in the compiex generator-coordinate

space. We have applied this techniqtte to central matrix elements of 3-clusser systems

in reÅí [51], and have obtained a concise expression which contains only one simple

Clebsch-Gordan (C-G) coeflicieRt for the angular-momentum projection. Here we com-
bine this techRique with tke tkeory of double Gel'fand polynomials [86] developed for

the multiplicity-free problems in the representation theory of unitary groups. Instead

of taking the infinity limit of the RGM argument variables as is done iR refs. [43]

and [51], we employ a simple reduction rule from 3-dimensional complex variables to

2-dimensioltal ones. This rule converts the process of calculating the RGM matrix el-

ements with respect to tke angular-momentum cottpled Gaussian basis functions into

that of expanding the generating functioRs in terms of two-row type SU2 Å~ SUn-i
double GePfand polynomiais. Since the necessayy SU.wwi C-G coeMcieRts are all ex--

pressed by the angular-momentum Wigner coeracients, Åíhis new technique corrresponds
to a transparent bookkeeping of the complicated angttlar-monieRtum projections of tke

many-cluster systems in the quasi-spin or qttasi-SU.wwi space.

   Finally, a brief comment may be useful to clarify she characterisÅíics ofour approach.

The present many-cluster forma}ism is eRtirely analytic. This implies that we treat

expllcitly kernel expressions ln the RGM or GCM formalism for a definite multicluster

model space, and try to connect tke corr}plex many-body nature of nucleon systems

to various propeyties of the kerneis which compietely determine the relatlve motion

between clusters. Therefore, it is possible in our appyoach to examine the properties

of the kernels in terms of nucleon-exchange modes and interaction types, and also to

study the re}ationshlp of tke multicluster kerncls with coupling kernels in the coupled-

ehanne! formalism and with the kernels of subsysteras in cases where subsystems of maRy

clusters are approximately described by harmonic-oscMator shell-model wave funcÅíions.

These studies are importaRt, in order to clarify suck interesting microscopic effects as

nucleon-exchange effects, distortion effects, channel-coupling effects, clusteying effects,

and otker effects in vario"s reaction processes. Tlte completely analytic character of the

formulatioxx raakes it necessary to restrict to some exteRt the raRge aBd the nature of

systems tkat can be readily treated. On the other hand, it also results in the practlcal

advantage tkat the requirement of computationai faciiities is greatly redttced.

   Another important nature of our approach is that our two-cluster coupled-chaltnel

RGM equations are derived as a result of an approximation to the tltree-cluster RGM

equation. Thus, if one wishes to elucidate the foundation of sttch a coupled-channel

approximation, oxxe only needs to investigate the properties of the three-cluster RGM

equation itself in much more detait. Although al} necessary tkree-cluster kerRels is de-
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rived in tkis paper, no investigation has yet beeR made concerning the problem of wkich

kind of three-cluster equations one should solve for the n}icroscopic 3-cluster systems,

in order to insure a coyrect dynamical behavior for the relative motions among three

clttsters iR the sense of a three-body Faddeev-type theory. With a comp}ete formu-

}ation of the three-cluster R.GM, one should be abie to iRcorporate in a natural way

the three-cluster breakup effect, as weH as the channel-coupling effect of two-cluster

channels. IR this coRtext, oRe might need to pay special attention to semi-direct poten-

tials resulting from partia} antisymmetrization of 2-cluster subsystems ln the framework

of a correct three-cluster RGM theory, since such potentials kave Rever been direct}y

treated in any three-body formallsm of structureless particles. Recently, Schmid and

other authors [87]rtv [91] have discussed the relationship between three-cluster forces

and the elementary-particle concept of clusters, by introducing a certain type of off-shell

transformatioR in the three-cluster RGM equation. The approach developed in this

investigation might give some he}pfuI ltinÅís as to how one could proceed with such a

theoretical investigatioR of three-cluster systems.

   Tlte orgaRizat!on of this paper is as follows. In g2, we first outline the coupled-

channel formulation of 3-cluster systems, which employ the n= 3 case of the following

n-cluster RGM forma}ism. Iit g3, tke structure of the n-cluster RGM kerne}s for systems

of (Os)-shell clusters is clarified. After a short comment on general procedure to evaluate

GCM kernels, doubie-coset generator expansion of the aRtlsymmetrization operator is

introduced and emp}oyed to evaluate interaction kernels for central, LS, teRsor inter-

actions, and for the Coulomb interaction as weg. Each term in the interaction kernel

is classified not only by the exchange modes of nucleons, but also by the interaction

types which involve somewhat increasing complexity for larger number of clusters. IR

particular, for 3-cluster systems, it is shown that 3-cluster lnteractloR types are specified

by a slight extension of simple 2-c}uster interactioR types, together with a particular set

of Jacobi coordinates which specifies the positions of clusters directly involved in the

particular two-nucleon matrix element under consideration. This classification scheme

of the 3-cluster interaction types is particularly convenient, when we Cliscuss the traRs-

formation properties of the coefficieRts of the GCM kerRels for rearrangements of the

Jacobi coordinates. In g4, a few explicit examples of spin-isospin factors are giveB for

arbitrary spin-isospin configurations of 2-clusters and for 3-cluster systems which involve

one a-cluster and two (Os)-shell clusters. The 2-cluster case follows the general proce-

dure, which is in priRciple applicable to systems ofany number of (Os)-shell clusters. On

the other hand, a simpler valence-orbital method is employed for the particular 3-cluster

systems considered, in whlch we can take ful1 advantage of the spin-isospin saturated

nature of the cM-c}uster. The last two sections are devoted to a tecknical developement

for practical applicatioRs of n-cluster GCM kernels. In g5, we first discttss a systematic

evaluation of RGM kernels iR the complex GCM. The transformation formula derived
here plays aR essential role in the evaluation of Gaussian matrix e}err}ents of the RGM

kernels iR g6. We can elaborate a new transformation formula for this purpose, by
employing a simple reduction rule of Bargmann variables. Through this procedure, we

caR construct generating functioRs for the Gaussian matrix elements, from which tkose

for angular-momentum coupled n-c}uster states are easily obtained by the expansion
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in terms of SU2 Å~ SUnmi double Gel'fand polynomials. The 2- and 3-cluster formulae

for the Gaussian rnatrix elements of the RGM kernels with respect to the central, LS,
tensor, Coulomb, and the kinetic-energy terms are explicitiy given to be readily used.'

g2. Coupled--Chaxxnel Formulation of S-Cluster Systems

   In the multiconfiguratioR and multicltannel RGM calculations by the present au-
thors [50], the 6-, 7-, 8- and IO-nucleoR systems are considered to be 3-cluster systems

Ci + C2 -F C3, with all thyee clusters described by translationally-invariant shell-model

functions of (Os)-configurations witk a common harmonic-oscillator (h.o.) width param-

eter u. By using the mathematical techniques developed in reÅí [51] or in the following

sections, one caR derive the 3-cluster kernel functions for these systems, To be more

specific, let us express the 3-c}uster basis fuRctions in the RGM formalism as

              {P =A{ip(Ci)di(C2)ip(C3)x(gi,42)Z(XG)} , (2.1)
where ip(C.) (ci == l, 2, 3) denotes the cluster intemal wave function for Ca and Z(XG)

is any normalizable fuRction describing the total center-of-mass (c,m.) maotion. Fer

clarity in presentation, we shall conduct the following discussion by assuming that the

clusters have no spin-isospin quantum nttmbers and by omitting angular-mornentum
couplings ; in actaal calculations these must of course be expiicitiy taken into consider-

ation. Furtkermore, we assume that tlte three c}usters, Ci, C2, and C3, are all different

from each other. In Eq. (2.l), .4 is the antisymrnetrization operator among three clus-

ters and x(gi,g2) represents an intercluster relative-motion function witk G and e2

being an appropriate set of the Jacobi coordinates. (See Eq. (3.8), for example.) The

re!ative-motlon function x(Ci,g2) is dertermined from the variational RGM projection

eqttatlon

                         <6Wlff-E]IW> =O , (2.2)
where H is a Galgean-invariant Hamiltonian composed of the kinetic-energy term and

the two-nucleon interaction ;

                            AA                      N' =Åíts-TG+ÅíVst • (2•3)
                           s=1 s<t '
Kere, A is the total mass nufnber A = Ai +A2 +A3 with A. (cr : 1 rv 3) being that of

tlte cluster C.. Tke integro-differential eqttation for x(Ei,C2) is schematically written

as

                          (7t-EAr)x =O, (2.4)
where 7"t and JV are integral kerRels defined througk

        { 1}-<ip(C,)ip(C,)ip(C,)I{k}AIip(c,)ip(c,)ip(c,)> , (2.s)

and their explicit derivation is the rnain subject of the following sectioRs. Here we

assurae tkat they are already derived and outline how we should proceed further to

derive coupled-channel equations.
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   An advantage of having explicit expressions of 3-cluster GCM kernels is that one

can analyse their structure term by term, aRd hence investigate the roles of exchange

inodes and interaction types in deta2I. In particular, as we know iR 2-cluster systems,

the separation into the direct and exchange terms by the nucleon-exchange number is

very importaRt, since these terms ltave different number of Dirac's 6-functions in the

form of RGM kernels, and a speclal treatmeRt is needed to formulate RGM equations
as integro-differential equations. In 3-cluster systems, we find that another special class

caEed semi-direct terms emerges, which is characterized by nucleoR exchange between

2•-cluster subsystems witlt the third cluster left free. Naturally, almost all of these kernels

are expressed by 2-cluster kernels of the sttbsystems. An exception is the seml-direct
part of the interaction ketnel, whick can not be reduced to any kind of 2-ciuster kernels,

in spite of tke appearaRce of one 6-functioR for the relative coordinate between the

subsystem and the third cluster. This situation is conveniently described by introducing

three different types ofJacobi coordinates depicted in Fig. I. Suppose (cu6"/) is aR even

permutation of (l23). The subsystem C,,ff EiE C. + Crs is specified by the third index 7.

We refer to C.p as a subsystem of or-pair, and use the notation ry and 7 to denote the

relative degrees of freedom between C. and Cfi, and between C.p and Cty, respectiV'ely.

By using these notations, the structure of 3-cluster kernel is schematically expressed as

N == 1+2NE2) + Ar(3) ,

         ty
K =: icD+2rc9D+rc(3) ,

           7
    lcD = 2 EX'"`)(C.) + T. + [I7y ,

           a
    rc.SD .: vVEI 2) (Effnt)(C.) -- Ty) + rcÅí2) ,

z"=:zD+2z/gD-i-z'(3) ,

          7
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                   fD ..2Egi"t)(c.)+2v.D ,

                         cr a                   z.SD ,. Ar52)Eeint)(c.)+fÅí2)+V.SD , (2.6)

where rc and Z are kinetic-energy and interactioxx parts of 7t, respectively ; 7t =: rc +X.

In Eq. (2.6), T7 and T7 are the relative kinetic-energy operators between C. and Cp, and

between Cap and C7, respectively, VorD is the direct potential between C. and Cp, and

l,{,",if.igS.Zr,k,/j,r3Ct.kOSe,X.t',a,i.s."8,rlh,Z'::ik,E6Åé'itL`.Cat-rm',,,E,//k`;,ICs.',".1,9tXkl

exchange kernels for the subsystem C.p. The genuine 3-cluster exckange kernels are
denoted by N(3), rc(3), and Z(3), and they involve no 6-functions.

   Let tts first consider the 2-ciuster RGM equatiok for the subsystem of tke or-pair.

It is given by

                      (rc +X- EÅíint)N') ip. =:O, (2.7)

where Ar, K, and X are now 2-cluster kernels expressed as

               N= 1ÅÄ NE2) ,

               rc = Eft'"t) (c.) + E5ent)(cp) + T. + rcg2) ,

               x.. Egint)(c.)+ESint)(cp)+y.D+zÅí2) . (2.s)

We substitute Eq. (2.8) into Eq. (2.7) and iRtroduce the reiative energy e7 of the 7-pair

through

                 .E]Åíint) = e.+E(int)(C.)+E(int)(Crs) . (2.9)

Then, we obtain

                         (Ti+Vor-e7)Åë7 =O (2.lo)
with

          V.= v.D+G.E , G.E=rcg2)+xÅí2)-EYnt)vv52) , a.11)

where G7E represents the contribution frorn the exchange kernels for the or-pair. The

normalization of di7 is determined from the condition

                      <ip. l(1+NE2) )l ip.> =1 . (2.l2)

   On the other haxxd, 3-cluster RGM equation in Eq. (2.4) is expressed as

                        (rc +X-EVV)x ==O, (2.13)
where A!" , JC, aRd f are 3-cluster kernels given in Eq. (2.6). Let us introduce the relative

eRergy es: for the "y-channel through

                    E== ey+EÅíint)+E(int)(C.) , (2.l4)
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 {rhen, by substituting Eq. (2.6) into Eq. (2.13) and by using gqs. (2.11) and (2.l4), we

obtain

       [ (Tcr + V7 - e7) + (Ty - ey)(1 + YV/E2)) + 2 Y.D + v.SD] x

                                        afty
      ,,. rm [Åí(rcgD +x.SD - EvxrE2)) + (rc(3) +f(3) - EyV(3))] x . (2.l5)

           a#ty

Here we exarnine two types of approximatiolts for the relative wave function x of the

3-cluster system. In the first type, we set in Eq. (2.l5) x =: ipty VTi consisting of a

relative wave function zb;7r between Cap aRd Ccr, and perform the integration for the

inner product with ip7. lrken, by using Eqs. (2.IO) and (2.I2), we obtain

                       (Ty+Yy-ey) thTi =O, (2.16)
where we have defined

   Vy =: VyD+G7E ,

   v,iD, -rm<Åë.,IÅíV219+V.SDIÅë.> ,

            ctvtecr
   G7E -h < ip, l 2 (rcgD +z.SD - E.,VE2)) + (rc(3) +z(3) - EN'(3))l ip.> . (2.17)

            crS7

This approxlrr}atioR corresponds to a single chanRel RGM equation for the relative-
rnotion function 3bT7 of the 7-channel, aRd VyD in Eq. (2.17) is the corresponding direct

poteRtial. The second type of approximation to obtain a cottpled-channel RGM equa-

tion is achieved by assuming

                      )(r =: ipcr zbT7 +Åí q5cr ztrrv • (2.l8)
                                 cr#7

With this assumption, we obtain

            (Ty+Vy-Ey)zb;7T+2(EI7.-ENmp)wt =O , (2.lg)
                             a$ty

where we have defiRed, for cu yE 'y,

    Hcrcr :<Åë7Irc + ZIipa> =<Åë7I7"tlÅëa> , N7a == <ip7IA!'1ipa> • (2•20)

g3. Structure of ib-Cluster GCM Kerneis fer Systems Composed of (Os)-Shell
    Clusters

3.1 Geneval Procedure to Evaluate the GCM Kemels
   Let C be one of the (Os)-sheli cluster systems with mass number A S 4. The
shell-model wave functioR th(C) with a common h.o. coRstant u is composed of a
totally symmetric product of (Os) h.o. wave functions and a spin-isospin wave functioR
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g(1,2,•i•,A) which is antisymmetric with respect to arbitrary interchanges of spin-

isospin variables:

                         A
                  th(C) ==Rdi(o,)(x,;u) e(1,2,•••,A) . (3.1)
                         i==1

Here, we have used a common notation

                                        3                       ip(o,) (x, u) = (lllti)U e-vx2 (3.2)

for the (Os) h.o. wave function ryith u, and the spin-isospin quantum numbers for the

SU4 irreducible representation [f] = [IA] ofe(i,2,•••,A) are suppressed for s2mplicity.

   Owing to the complete quadratic nature of the Gaussian exponential factors, we
can separate tke c.m. motioR described by ip(o,)(X;Av) with X =: X,A•=i xi/A in Eq,

(3.I):

                      th(C) =to(o,)(X;Ay) ip(C) . (3.3)

We call ip(C) iR Eq. (3.3) an internal cluster wave function for the (Os)-shell cluster C.

The separation in Eq. (3.3) of the c.m. motion is of basic importance in the present

treatrnent. For example, the translation of the coordinate system, xi ---> xi - S (i =: l ev

A), produces a slmple relationship

                 A
       th(C;S) EEi I[[I ip?o.)(xi;y) e(i,2,••-,A) == ip?,,)(x;Ay) ip(C) , (3.4)

                ixl
where ip ?o.) (x ; u) em ip (o,) (x - S ; y) .

   Next, we consider an n-body system composed of such (Os)-shell clusters Ci (i ==

1 rv n). For a c.m. coordinate Xi of each cluster, it is sometimes rnore convenient to
                  Ause a normalized one Xi = V ili Xi by the mass number Ai. In this paper, we use she

notation A in order to specify the coordinate vecters normaiized by the corresponding

mass numbers [94]. The c.m. coordinate of a subsystem up to the i-th cluster thus
        AbecomesX == 2S=i vll2[i7 Slj/ VX (i = 1 rv n), wkere iZli ff Ai +A2 -F • ny •+ At is the

                                                                ArnaSs number of the subsystem (Ci + C2 + • • ny + Ci). The Jacobl coordinates C and tke
c.m. coordinate of the total system fic are defined by using these notatlons as follows :

             ei iii nlt, XiÅÄi- {lll.tl mmxAi (i=ir-n"i)

                    n                                    A             SI. iiffi2Vilil Sl,/VI2ii == xi. , (3.s)
                   i"1

where A == Ai + ` • • + A. =: A. and they sat2sfy

                        n-l n                        2g?+fik =Z fi?•.t (3.6)
                        iut1 iml
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The inverse transformation of Eq, (3.5) is found to be

     51, i!! VIilll SIG+ i7iiiti' g,-i-tlll;i -AA,tA-Ao,'.i, 2, (z=ir- n) (3 7)

uRder the conventioR ee =O and XJ"•.-..i•••= O. As an example, the unnorrnalized

Jacobi coordinates in the case n =3 are shown in Fig. I. Furtherrr}ore, we use Si

(i =1 rv n), SG and zi/Vil (i ur 1 AJ n- 1) for the complex geBerator-coordinate
vectors corresponding to Xi (i =1 rv n), XG =: i$IG/VI4 and ei = Vi[il gi with

pai =: Ai Ai+i/ Ai+i, respectiveiy. In Table I, we summarize various coordinate systems

used in this paper.

  TABLE I. Various coordinate systems used in tkis paper. In the second row, CGC denotes
complex generator coordinates. In zi/fi, 7i is given by 7i : vt7fiy with pi == AiAi-}-i/Airf-i+
Besldes these, the notationAis used to specify the coordiRate vectors normalized by the correspond-

ing mass numbers.

' u$ualcoordinates Jacobicoordinates V-typecoordinates

dynamical

coordinates Xi(i=:1tvn)
ei (i=1tvn-l)

Xa

aGc Si(i==lrvn)
zifpt (i=1fvn-1)

SG

Ti (i=:1rvn-1)

SG

   For a fixed set of clusters Ci,C2,•••,C. witk n }lr 3, there are in general several

different sets of Jacobi coordinates. The transformation amoRg them is trivial, but

irnportaRt for practical applications of the present raulticluster RGM forma}ism. We

should be able to write down exchange kernels in any types ofJacobi coordiRates, if we

try to consider rearrangements of cluster groups. Since our main concem is on 3-cluster

systerns due to the present limitatioR of computer facilities, we wM show transformations

ofJacobi coordinates in detail only for 3-cluster systems. Three different sets ofJacobi

coordinates CJ = (gf,E2J) (J == f,U or Jll) are defined as is shown in Fig. I. We

reserve J -ww fff as a standard set of the Jacobi coordiltates aBd usually omit the

superscript IIJ as is already assumed in Eq. (3.5) wiÅíh n=3. This is convenient in

g4.S for the calculation of spin-isospin factors, since we assume C3 as an or-cere in

the course of applying the valeRce orbital method. Now, suppose (at67) is an even

permutation of' (l23). If we introduce an alternative notation (or) to specify the type of
Jacobi coordinates ,J by (1) =f, (2) =: If, (3) :I/l, we can compactly express e[•7)

(i == 1,2 and or = 1, 2, 3) as

            gScr) == xp - x. , gSor) = x, - Acr AX.a f AApP Xff . (3.s)

Let us define the reduced mass numbers paSor) and paS7) by
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               (7)- AexAp (v)-(Aa+Ap)A7              pai -A,.+/Sp' pa2 - A , (3•9)
with Aav -F Ap + Av : Ai -F A2 ÅÄ A3 =: A. Then, the h.o. width payameters assigned

to the two types of relative motion of tlte three clusteys ixx the Jacobi ceor'dinates of
type-(or) are given by 7,(•7) ur pa[•7)v (i =: 1,2). If we define a 3Å~2 matrix eA(ty) rm

(de4S7), VllSIJ6Sv)), the orthogonakransformation of the Jacob-coordinates for an

arbitrary set of cu and P (or,5 =: 1 rv 3) is expressed as

                         grtP)=grta) :-(cr)(fl) , (3.10)

where :'(a)(P) is a 2Å~2 orthogonal matrix given by

       :'(a)(P) = Ai..Ab (6iS".A,.M,.IN51ili I.17AewwctPhapm) (3•m

with Aa == A - A. etc. In Eq. (3.1l), we have introduced 3-dimensional antisymmetric

tensor defiRed through the usual ru}e; e.s7 = 1 lf (cvP7) is an even permutation of

(123), -1 if (a67) ls aR odd perrr}utation, and zero otherwise.

   The essential relationship which eitables us to calcttlate the GCM kernels from the

matrix elements ef tke Brink-type wave functions ls based on Eqs. (3.ag) and (3.6) :

     "ff'iA.,(g,,.,) ip?,a.)(x.,Au) ,., exp {g "2'iz?,} fi Åë?,i,)(xi,Aiu) , (3.i2)

     i==1 Ki=1 lixl
where ryi = paiv and

             A.(g, z) ur= (llit-)g exp (-or (g- t:\)2 -F ilt2) ei3)

is the h.o. coherent state in the BargmanR space [92], [93]. The relationsltip between

zi (i =: 1 rv n- l) and Si (i rm= 1 ev n) are obtained from Eq. (3.5) or (3.7) by a trivial

           A AAreplacement gi ---> zi/x/i] aRd Xi - Si =: VI2IE Si. Here, we set Sa me= O iR Eq. (3.l2)

and multiply it by aR the intemal c!uster functions ipo iwa! ip(Ci) di(C2) • • • ip(Cn)• T5ek,

by usiRg Eq. (3.4), oRe finds

             ipGA(e,x) die =exp{iTr(`zz)} t:,th(Ci;Si) , (3.l4)

where a simp!ifyiRg notatiofi

                                            n-1
            ipc =ip(os)(XG,Au) , A(6;z) =: fi A7, (ei,zi) (3.l5)

      , i==1is used. Furthermaore, we use 3Å~ (n'- i) matrix notatioxx like e = (e7i) =:
(Cl,e2,''',g.-1), z mx (z7i) == (zl,z2,•••,z.-i) and Tr(`zz) ur X).i z3i = ÅíZ•.-.iz?•

with 7 =: x, y, and z. The expHcit expressions for Si in terms of zi are given by i

 iIn Eq. (3.16a), the correct notation is not Pav z but zPa, if we use the matrix Rotation JP =: (Pia)
with Pia =: (Pcr)i. (See Eq. (3.97).) We avoid this clumsy notatien, unless it is inevitab}e.
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 za >i (Pd";t/IL z== k == Sa

va (3.16a)

with

          l(Pa)i "-             (Pa)i
         ut

(3.l6b)

and

         ( O (i=lrv c! -2 (a.=i+2 rvn
  (pcz)i ==S -(Ai/Ai-}-i) for Si==a-i gr Sct :i+1 . (3.16c)
         1 (Ai+i/Ai--i) ti== cu Nn-1 ka =1 rvi

 (We have used a notation a =: 1 rv n, instead of i, Åíor the convenience of later
applications to GCM kernels.) Note that we always have 2".-wwi Aa Sct =: O•

   The relationship (3.I2) is conveniently used for evalttating GCM kerneis, which are

now defined through

                 Jst(z;zt) :<A(CIz)ÅëolOst.4'IA(elz')ipo> (3.l7)

for any A-particle symmetric operator 09. The type of the GCM kerRel is specified

by st, which we assign to st == IV for the normalization kemel, st = K for the kinetic-

eRergy kernel, axxd aity other types ofthe translationally and Galilean invariant two-body
interactions for the others :2

                             AA          oN ==i, o" =2 t,-[z7G , ost :2 vg9) . (3.is)
                            s==l s<t
In OK, t, = (-h2/2M) Vk. and TG =: (-h2/2AM) Vk. with M being the averaged
ltucleon mass M -- (M. + Mp>/2. (We neglect the small mass difference of the proton

and the neutron to utllize the isospin formalism.) The antisymmetrlzation operator A'

in Eq. (3.l7) is only for permutations among different clusters with A!/(Ai! ••• A.!)

terms due to the antisymmetric property of the 2Rternal cluster wave fuxxctions. What
we need to do is to evaluate the matrix elements3

                            nn             Gst (SI St) i-i: <A' "V(CilSi)IOst Ill V(Ci;SC•)> (3.l9)

                            i=l i:1
by using the standard shell-model techniques. Then the necessary GCM kemels (3.I7)

are obtained through

         I9(.,.i) = exp {g(Tr(tz*z*) -l- Tr(tztzt))} Gfst(S, S') (3 20)

 20f course, it is also possible to deal with a one-body operator Oft : Åíerci Ogst)•

 3We move A' to the bra s;de by using the total}y symmetric nature of (P9, which turRs out to be

convenieRt for later discussions.
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   As to the normalization kernels for the systems of (Os)-shell clusters, a quite generai

expression is already derived in refs. [95] and [96] by using the powerfu1 techniques

of double Gel'fand polynomials [86]. (See, for examp}e, Eq.(3.20) of ref. [95].) The

kinetic-energy kernels are simply obtained from the norrr}alization kernel in the present

case, as is shown in tlte next subsection. The main reason for tkis simplicity is because

these operaeors do not involve any spiR-isospin degrees of freedorn. As a result, the
SU4 symmetry [fN] and its interRal quantum numbers, i.e., the total spin aRd isospin
values, are all conserved. On the otlter hand, the two-body iRteractions vg9) usually

involve the spin-isospin dependence and general treatment of their raatrix elements with

respect to intricately coupled many-cluster spixx-isospin wave functions is rather d2racu!t.

Therefore, we wlll develope in the ncxt subsections rather standard techniques [79] to

separately evaluate the spatial and spiR-isospin matrix elements by the use of the double-

coset generator expansion of the antisymmetrization operator v4t and the efp expansion

of the antisymmetric spin-isospin wave functions. A sirnpler treatmeRt of three cluster

systems involving at least one a-cluster is discussed in g4.3.

3.2 DonblaCoset Cenerator Empansion and Particle-Exchange 7rables
   Since a quite extensive description of tlte double-coset geRerator expansion is already

presented in the literature [79]N [82], only the essential result needed in our application

is recapitulated here. Let us consider permutations ofA particles,

                    P=(pl, p2, pAA)ESA, (321)

where SA is the symmetric group ofthe ordered set A iem {1, 2, • • • , A}. Since this systern

is composed ofn c}usters, Ci, C2,•••, C., we caR naturaRy lntroduce a subgroup of SA,

H C SA, tke elements of which transform particles only inside of their own ciusters :

                     ff "= SAi oo SA, X•••XSA. , (3.22)

where SA, is composed of permutations of Ai maEi {Ai-i + l,Aiwwi + 2,•••,Ai} with

Ai == Aiwwi+Ai and Ao : O. In terrris ofthls subgroup H, SA can be decomposed into
a direct sum of the double cosets, SA = Uk HzkH ;4 namely,

                       p== gzlef (g,fe N) (3.23)
with zk being a generator of the double coset characterized by an index k. Tke central

isstte here is to find the index k which uniquely and completely characterizes the double

coset and to fiRd the expicit form of the generator xk. It can be shown that these
are achieved by simply partitioning the A Å~ A matrix represeRtatlon ofp =: (pst) with

pst = 6p.,t (s,t = 1 rv A) into n2 blocks as ls shown below:

 4It is also possible to use two different subgroups H : SAi op SA2 Q ''• op SA. and K =
SAI op SAsX'''QSAk (Ai wutww '''+An " Al +' ' '+AA : A) to achleve a double-coset expansion

SA : Uk HzkK. Through this procedure, we can extend the present formalism to the case when
two different cluster-decompositions are assumed for the bra and the ket states. (See, for exarnple,
Eq.(3.20) of ref. [95].) We will Rot dare to comp}icate equations by this rather trivial generalization.
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                             Dil ''' Dln

                       P: l i • (3.2`lr)
                             Dnl ''' Dnn

The blocks Dio• are Ai Å~ Ap• matrices with elements l or O. The number of one iR

each block, ki3•, depends on tke permutation p, but is apparently the same for any

permutations beloRging to tke same double coset. This is because Dij• for p in Eq.
(3.23) is expressed as Di2•(p) =: giDio•(zk)fj• wi'th gi e SA, and fj• e SA,. If we arrange

the non-negative integers kij• in the n Å~ n matrix form just llke tlte decomposition ofp

in Eq. (3.24), we can use this [k] i!i (kiJ•) as an index to specify the doub}e coset in a

uRlqtte way. In order to enurnerate al} possible types of double cosets for H, we only

need to find solutions for the weight conditions

       nn      Zkio' mm- Aj' , 2kio• -- Ai , kio• -rm non-Regative integers. (3.25)

      i==l j'-ww1
Since we caR show that the number of the e}eraents for the double cosets [k] is given by

(Ai! • • • A.!)2/k! with the convention k! ffve I][I..i I I;=i kio•! , the sum formula5

                        2(Ai!'is'! An!)2 =A! (3.26)
                         lkl

guaralttees that all the permutatlons of SA are reproduced tkrough Eq. (3.23). Tltese
n Å~ n matrices lk] are called double-coset symbols or partition matrices.6 It is also

legitimate to call these symbols particle-exchange tables, since among the Ao• particles

in Ao' -- {A3•-i +1, ALj-i +2, •••,AJ•mi -i- Aj•}, kij• particles are traRsformed to Ci, k2j•

paytlcles to C2, •••, aRd k.j• particles to C.. If we define ordered sets kio•,k2o•,•••,kno•

through the correspondeRce Aj• -- {kij•, k2a•, • • • , k.j•}, the Ai Å~ Aj• submatrix Dij(zh)

for zh can be takelt to be

 5This formula is easily proved by combining several multi-nomial expansions.

 6It is stated at a footnote of reÅí [79] that these symbols have been introduced by H. H.
Hackenbroich.
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iv"klj-''' ptkij- '''-kn"

Dij• (zh) =:

l

'

.

.

l

     .J11

(3.27)

,

Ramely, kio• Å~ kio• subblock is the unit matrix and the others are zero. Then, since we have

X3n•,,.i Dij(zk)Aj' -- {kii,ki2,•••,kin} i!i A:•, we get the correspondence zh Ai = A:• or

                                - Al --> '''''' -An-
Zk ==((zl), (.i), I: (X).) ==(:li kil III :: lili III :: III :##)

                                                                 (3.28)

By using tltese results, we can easily derive that the antisymmetrization operator At in

Eq. (3.l9) is reduced to

     '4" = Aii.1 A.t plPt. 6p p- Pt] Aii Ai Ani6xhzk rmww litii)] Ck zk , (3 2g)

where 6p or 6., is tke signature of the permutation.

   The next step is to separate the spatial and spin-isospin parts in Eq. (3.l9). We
define ilI.,, th(Cil Si) =: ge with

             nn        cp =ll ll q5?,e,)(x,;u) , C :llc( 2ijwwi+i,•i•,I2Ij) (3.3o)

            j'pm-lsGAj j'--1
for the bra state and g' C' for the ket state. Then, the Rorrr}alization kernel CN(S; S')

is obtained from

                      GN(SI S') ==ÅíX'" J,N (3.3I)
                                  [k]
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with

              X,iV -im Ck<zkelet>, J,N rm- <zk cplgo'>. (3.32)

IR order to evaluate the spatial inatrix elements JkN, it is conveRient to express gt as

                        nn                   g' == llH fi ip?tr.)(xs;u) • (3.33)
                       j' -ml i =1 sEkij

Tlten, the effect of 3k q is, frorn zk aj -m AS• = {ko•i, kJ•2,•••, kj•.} in Eq. (3.28),

                   n nn             zkg== il ll ip?o3',)(xs;y) ="" H ip?og',)(xs;u)

                  O'--lsEAS. o'--li=lsEk,•i
                   nn                =" IIH ll ip?ot,)(xs;u) • (3s4)
                  o' =1 i= 1 sGkii'

The spatial overlap integral JfoN is calcttlated to be

       nn J'Si -- [l]I ll ll <gS?oi,)(x,;v)l(l,?/",)(x,;y)>

      j'--li :1 3Gkio•

     : tlC.[, tll.Il, exp {-gkie•(Sz'• - sS•)2} = exp (-g tll.il, l.,,, k,,•(s,*• - ss)2) , (3.3s)

where we have used the single-particle overlap given by

    <q5iio,)(x; u)l(t,f16,)(x; u)> == <(o6)sl(os)st>=: exp {-il(s* - s')2} . (3.36)

From here on, we use a simplifying notation l(Os)s> defined through <xl(Os)s> ==
ipFo,)(x; v) == ip(o,)(x - S; u). Thus we find, for GN(S; S') in Eq. (3.3l),

  GN(s; st) = exp (-gl,., Ai(s;• 2 + s:•2)) ?t] XkN exp (y,IItllllm-, kij(S;' ' SS')l

                                                              (3.37)

The front exponential factor in Eq. (3.37) is cancelled with that in Eq. (3.20) due to Eq.

(3.6) for the generator coordinates. Further use of the coordinate transformation (3.l6)
yields7

              l"(z;z')=ZXkN exp{Tr(z*9[k]`z')} , (3.38)
               • ile]

 7The simple result that fN(z;z') is a fuRctioR of only (zi' • z3•) (i,j" = 1 rv n- 1) is due to the

SC13-scalar property ofthe antisyrnmetrization operator A' with respect to the EIIiott SU3 algebra
of h.o. wave functions [92], [97].
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where (n-1) Å~ (n-1) matrix Q[k] represents the coefficients ofthe particle exchange for

[k] and the matrix elements are explicitly given by ((l}[kl)ij' = ÅíZ,fi..,i kaB(Pcr)i(Pp)j'

(Q[kl)ij' wwww tspj'{l4r,iz,, .]ll.ll, s]EOI)=,ka6 rm z2i],Ai,." t/l.ll, ka,o'ÅÄi

                  j         -AiÅÄ1i?lj sllll.li"i+1'B + AiÅÄ11A,.+l ki+1,j--1} (i'2' = 1 N"- 1) ' (3'39)

                  '
In particular, lkl for 2-cluster kerneis is parametrized as

         [k] == [Ai{JX A,X-.] with x=Orv min{Ai,A2} , (3.40)

and the normalization kernel is given by

           J"(z; z') =Mi"{.]:ilEIiA2}x.N exp{(i - li)(z"•z')} (3•4i)

In 3-cluster systems with n=3, Ikl is parametrized in reÅí [51] as

ik]=
["`.Lii.X 22:m.y .,-.Z-I,"v....] with (.Xu,i'vt9ioAl/kYnwwt"x;Ogir.A2

                                                                 (3.42)

The set of non-negatlve integers {x,y, u,v} are extensively used in reÅí [51] to specify

the exchange types. In terms of these, the 2Å~2 matrix Q.yuv = (qio•) is given by

    qii =i- (fl,i + IiZ,l + X;.ig) psi • Qi2 =: (-X.-,U + Y.-,V) vXlll

    ([?2i :(-XArmIV+YAM2U) Vlll , Q22 =1-X+YpaM2U-V . (3.43)

   Next, let us consider in general a single-particle operator O : X.Aww-i ztsws, where

we keep in mind applications to the kiRetic-energy operator, as well as the two-body
interaction in the next subsection. (The index st in Ost is omitted for simpllcity.) Here,

we kave separated the operator into the spatial part zL. and the sp2n-isospin part w..

The GCM kernel in this particular case ls caiculated from

                           A
           G(S; S') = 2Ck 2< xh pl u. ]p'><zh61 w, 1C'> • (3•44)

                     [h] s=1
The spatial integrals8

 8The assumption u. : u(x.) does not meaR that the translational invariaRce is not kept in
the present formalism. It is already iRcorporated into tke whole GCM kernel at the time of
supplementing an appropriate c.m. integrai. See the next example for the charge form factors.
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                  nn nn  <zhgIusIg'> =" <ll ll III ip?ot.)(xt;u)Iu(xs)I I[IIH I[II ip?/".)(xt;u)> (3•45)

                 j'--l i= ltEkij j' :li=l tEkij

are composed of on}y n2 independent types, dependifig on whlch partitioR kap (or,P ==

1 tv n) of A the particle indexs belongs to. Thus, we can subdivide the surnmation
over s =: 1 N A in Eq. (3.44) into Åí:,6xi X,Ek.B, and use the ordered pair {a, rs} for

the purpose of specifying different "interaction" types. (We use the word "interaction",

since this type classificatien is nothing but tkxe oRe-body operator versioR of that used

for the interaction kernels in the mext subsection,) The basic one-body matrix element

for the type {cy,6} is conveRiently defined through

            7r{ct,i3} =<(Os)s.I(Os)sh >-i<(Os)s.Iul(Os)sfe> . (3.<it6)

Slnce the spatlal integrals are given by JkNT{.,fi}, the GCM kernel in Eq. (3.44) is given

by

                                n               G(S;S') =2Jk". Åí Xk{.,p} T{.p} , (3•47)
                         [ki ev,6==1

where the spin-isospiR factors are clefined by

                  Xk{.,rs} == Ck<zleel 2 w,lg'> . (s.4s)
                                  sGka6

The transformatioit to I(z; z') through Eq (3.20) yields

                                       n         I(z; i') = Åí exp {Tr (z* <? [k] tx')} III[ ) Xk{.p} 7r{.,p} . (3•49)

                  [k] aP=1
   Let us now specia12ze our discussioR to the kinetic-energy kerneis. In this case, we

have !ss == ts, w, -- 1, and the spinrisospin factor Xfo{.,fi} in Eq. (3.48) is simp!y given

by XkK{.,ff} = kcrp XhN. The spatial factor CZr{.p} for t. is obtained from

       <(os)sItl (os)s,>= 32hXliU {i - g(s' - s')2}<(os)sE(os)st> (3.soa)

                      .,, 32hM2V (i+guzlil.T)<(os)sl(os)st> (3.sob)

It is now straightforward to use these results to obtain

           3h2v            2M 2XkN exp {Tr(z" qk] t.,)} JK(z; zt) x

                [h}
           Å~ {A - 1 - g (Tr (`z"x") -l- Tr (` z'x')) + gTr(z" Q[k] tz')} . (3.51)
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For (Os)-shell cluster systems, however, the above procedure is not actually necessayy.

The second equation in Eq. (3.50b) shows that the effect of the si"gle-particle kinetic-

energy operater is simpiy generated through the dfferentiation of the h.o. width pa-
yameter u;i.e.,t --ÅÄ 1 -i- (2/3)y(0/0u) except for a simple factor. By using this simple

relationship, we canimmediately write down

 G" (s, s') = < zk gc 1 (E.ll, t. - Ta) E q' e' > = 32hiV (A - i + gv liil.r) Giv (s, st) ,

                                                                    (3.52)

from which the resuis in Eq. (3.5l) is easily obtained by usiRg the explicit expressioR of
G"(S; S') in Eq. (3.37)•

   As another example of the one-body operator, let us discuss the charge-form-factor

operator

                             A                  ocff(q) ..2eiq(xs"Xc) 1+2TSZ . (3.s3)
                            s =1

For Åíhe spatial integral, we oRiy need to consider zL(x) = eiqX, since the Xa-dependeRce

in Eq. (3.53) can be eliminated, if the c.m. integral

                    exp{sqA2.}<ipGl etqXG lqsG> =:1 (3.s4)

is imposed. Then, Eq. (3.46) becomes

T{c.f ,f
p} =<(es)s.1(os)sh >mi<(os)s.Eeiqx 1(os)sk> = exp {- il?il +ill(sg + sh)•g}

                                                                    (3.55)

If we further define the spin-isospin factors by

                x,Cf{.f,rs} == cic<zhel 2 i+2'SXEc'> , (3.s6)

                                  sGkars

the GCM kernel is given by

    iCff(z,z', g) =: exp {-il?5 (i - ;l)} ]li,li)] exp {Tr(z*e[k] `z')}

                  Å~.IStllw,XkC-faf,p} exp{z2eZi (Por z* A- Pp z') g} , (3 s7)

where Pa z = XZ•..Mi(P.)i n etc. witk (P.)i given in Eq. (3.l6).
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3.3 InteractionKemels
   It is almost straightforward to extend tke d2scussioxx for the one-body operator IR
tke preceding subsection to any kind of two-body lnteractions Ost = Åíe<t vg9) with the

space and spin-isospin decomposltion vg9) == ug9) wg9), and to obtain the general forrn

of the GCM interaction kernels. Namely, we on}y need to conslder the subdivision of
two summations fors andt(=1 AJ A) ln vg9) as

            A nn           Z-Åí2Åí2 with s<t. (3.ss)
           s<t cte,k3==1 'r,6url sEka,p tEkrr,6

We denote this pairwise summation of {or,P} and {ry,6} by Åí{.fi;76}, and introduce

the spatial iRteraction factors and the spin-isospin factors through

CTr{st.p,.,6} x <(Os)s.,l(Os)st, >-i<(Os)s.,l(Os)sg>ru'<(Os)s., (Os)s., [u(S))I(Os)sf, (Os)sz>

                                                                (3.59a)

and

            Xhst{.p;76} = Ch<zk Cl Åí wg9)l6'> , (3.sgb)
                              sEkctp,tGkrrs,s<t

respectively. (See the similar definitions for one-body operators in Eqs. (3.46) and (3.48).)

Then, as a natural extension of Eq. (3.49), we obtain

      Jst(z;z') ==2exp{Tr(z*Q[k]`z')} 2 Xkst{.p.6}7r{st.fi,.6} , (3•60a)

                [le] {evPrv6}
or more simply

           Ist(z;i') :Åíexp{Tr(z'Q[k]tx')}2Xk9TTst , (3.60b)

                     [h] T
if we identfy the combination {or5; 76} with T itself; 7r{.fi.6} =- T. It is a trivial exercise

to extend this discussion to a geReral m-body interactioR. However, this oRly means

that the calculation ofthe GCM interaction kernels is reduced to that ofm-body spatia}
matrix elements Tst like Eq. (3.59a) and to that of more diffictilt spin-isospin factors Xk9T •

ln Åíhis subsectioR, we restrict our discussion to rather standard two-body interactions of

the central, Coulomb, LS and teRsor types, and derive explicit expressions for spatial

interaction factors with respect to n-ciuster systems. It will be fouRd that a more efliLcient

and physical type-classification scheme ls available for 2- and 3-clttster systems.

3.3.1 7'xvo-BodN Jnteractions and SPatial interaction Factors
   For the two-body iRteraction, we assume [98], [99]

           central : v(C) =: ve ewwrcT2 (W+BP. - HPr rm MPffPT)

                             e2 1 -F Ti. 1+ r2z
         Coulomb: v(CL) ,,. rm
                              r2 2
              Ls : v(LS) = ve e-Nr2 (w-HP.) (e• s)

           tensor: v(T) :vo r2 e-rc"2 (W -HPr)Si2 , (3.61)
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where r == xi - x2,r : ir[,e : (-i)rÅ~ (O/Or),s= (cri +a2)/2 aRd

      si2 == 3(cri ' 9Scr2 ' r) - (ffi • cr2) == os[y2 (?) [ai a2i(2)l(O) . (3.62)

We have also used a standard notation Pa = (1 -F cri •a2)/2(PT = (1 +Ti ' 7'2)/2)

for the spin (isospin) exchange operator. The full antisymmetrizatlon in the present

formalism allows tts to use the generaiized Pauli prificiple, P.P.P. =: -1, throttgh

which we can eliminate the isospin dependence in Eq. (3.61) except for the Coulomb
force.9 We will discuss this procedure in S4. Here we simply assume that the spin-
isospin factors for w = (W +BR. - HP. - MP.P.), w(CL) : (1 + Ti.)(1 + T2x)/4,
w(LS) = (W - HP.)(cri + ff2)/2, and w(T) = (W - HP.)lai a2IE2) are obtained as
XkT, XkCTL, XhLTS S, aRd XhT[r SE2), respectively, through the defining relationship in Eq.

(3.59b).iO For LS and tensor factors, it is convenient to introduce a spin vector S and
the second-rank spin-tensor SE2) which are an abstract extension of s = (o'i + cr2)/2

and [ffi cr2]E2) for two-RucleoR systems, respectlvel'y. By using the spherical harmonic

polynomials

                                 4T                                      re Yem G) i                   Yem(r) :
                              (2e + 1)!!

Åíhe tensor factor r2 Si2 iR Eq. (3.62) is expressed as

                  r2 Si2 = 3Vi[6 [ Y2 (r) I ffi cr2 ](2) ] (O) .

For rnore detailed definition of XkLTS and XkTT and thelr

referred to. The explicit expressions of the s

for the basic spatiai functions u = exp{-rcr2}, tL(CL) =: (1/r),

and ?L(T) = exp{-Kr2} V2pa(r) are given by

       T:(.l. g gp2} .,th A.. 2(.K+ .)

       TCL me 21ge1 Vtl with erf(x) ==X

       crLs .. .f. g) i[sa - s;,sk - s3] ,

                  ) exp {-

                   erf( )

              T( )(-

       TT =T (.f.)2 (

wkere the Coulomb factor
formula

(3.63)

                               (3.64)

          evaluatlons, g4 shouid again be
patial interaction factors Tst in Eq. (3.59a)

                 zL(LS) =exp{-itr2}e

  [i.lr) y2pa(p) ,

is obtained from the

'

foX dt e't2 ,

(3.65)

Gaussian factor by using a simpie

 9Note that we caR set ,Pcr =: 1 for S) == LS aRd tensor, since these are non-zero oniy for pairs
with Åíke spin-value S = 1.

 ieWe omit the type index C for the ceRtral GaussiaR potential for sirnplicity, as Iong as no
confusioR takes place.
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                    ;ur %f,OO dxewwx2r2 . (3.66)

In Eq. (3.65), p =: ViJ (S5 - S# + Sk - S3) and the traRsformatiolt from S. to zi etc. is

achieved through Eq. (3.l6). We find that p for the type {(\B; 76} is expressed as

                            n-1       p== P{ay}z' +P{P6}z' ": uu l,llll,.i, k(pi• ay}z,*• +pi•S6}z;•) , (3•67)

where P{a7} ff P. - Pcr or pi•a7} = (p.)i - (p7)i etc. are antisymmetric with respect

to the interchange of a and or, altd are explicitly given by

                  O IE{ a< or E{i
                  1 lSl or f{ i,7==i-i-1
      pi• a7} : Ai+i/ IAi -f-i for 2s ctz Si, i+2 S7Sn (3 .68)
               -Ai/Ai+i cu =: i+l, i+2S or Sn
                  O i+2S or <7Sn,
for a particular order l S a < ty S n. If we use a simplified notation P == P{a7} and

P' == P{66} and express p as p = Pz* + P'z', the fuH GCM kernel is given by

                 3i(z;z') : vo (. ill .)i liiti)] exp{Tr(z* C?[k] tz')} ]III) XhT exp {-S(.F)z* -i- p'z')2] ,

ICL(z; z') = e2 :Rtl exp {Tr(z* (?[k] `z')} lill]) XhC7L- lp..2V.+.'i.l;,,,.,l erf (}a-Pz* -l- P'z'1) ,

                  orILS(z, z') = vo (. Il .) ll P,1 exp {Tr(z* (?[k] `z')} :lll) X,LTS exp {-e(I'z* + P'z')2}

           Å~ (-}) iIPz',,l)'i]•S ,

                  7IT(x; 2') == vo (. Sl .)i :ilti)] exp {[Zir(z* ([?lk] `x')} :il) XhTT exp {-}(pz* + p'z')2}

           Å~(i.) 3Vib[Y2 (Pz" +Ptzt) S(2) ](O) . (3.6g)

   An important property of the spatial interaction factors 7'st derived in Eqs.

(3.65) and (3.67) ls that the type index {orrsrv6} is further simplified by enumer-

ating independent quadratic polyBomials of the Jacobi generator-coordinate vectors
z* = (zr , • • • , z;1 -i) and z' = (z'i , • • • , z,ww i) ;

              f(aty)(B6)(z",z') I!E (P{or7}z* +P{66}z' )2 . (3.70)

First of all we should note that these polynomials satisfy maRy symmetry properties :
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f(or7)(G6)(z',z') =:f(7`X)(6rs)(z",z') , (3.71a)

f(cx7)(P6)(.*,zt) ,.. f(B6)(a7)(z',.') , (3.71b)

                 f(a7)(P6)(z*,i)= f(ev7)(6fi)(z*,-z') . (3.71c)

The first symmetry is a simple resuit of the quadratic natttre of the poiynornials, and
corresponds to the symmetry {orP; or6} = {76; dvrs} for the interaction types.ii Thus we

have all together ( n2 +22 rm 1 ) = n2(n2+1)/2 independent combinations of{dv5;76},

which we divide into several groups with different polynomial forms ofz" and z'. Owing

to this symmetry, we caxx assume a S 7 in the following discussions without loss of

generality. The second symmetry (3.71b) is related to the hermiticity of the two-body

interaction. This means that we can also assume (or7) S (56) with some appropriate
definition of orderiRg. The interaction factor with (or7) > (56) is obtained from tkat

of (or7) < (66) through the hermitian conjugation. If (or7) = (S6), it ls self-conjugate.

The third symmetry (3.7ic) is related to the relative phase of the coeflicients for z' and

af and the case for 6 > 6 is obtained from 0 < 6 by tlte simpie replacemeRt z' - -z'.

After all, we only need to consider the situatioRs with a S 7, 6 S 6, ((tz7) ff{ (rs6) for

the complete type specification.

   We fiyst consider tlte following four cases.

           (1) cv=:ty and rs =6: E-type

           (2) or#7 and 6=6: S-type
           (3) cy='y aBd Sf6: S'-type

           (4) dv pt ty and B#6: D-type or V-type. (3.72).

For examp}e, f(a")(Prs) = O for E-type aRd tltis term of the GCM kernel is simply pro-

portional to that of the normalization kernel. In accoydance with the type identification

T =: T{.p;76}, we set

                     E.rs =: czr{.p,.p} ur (.f.)g (3 73)

for n2 such combinations of a and 6. Thls type contributes to the internal energies of

clusters and LS and teRsor contributions in Eq. (3.69) are zero, since we are dea!ing
with only s-shell clusters. Similarly, we have n2(n - 1)/2 S-type and S'-type factors,

which we denote

            sEcMor) : T{ .p.p} = (. iil .) g exp {-3( .p{ay} z* )2} ,

            s2,(66)=:s&P6) with z*wz'. (B.74)
 iiTlte same is applied to the spin-isospin factors in Eq. (3.59b), which is nethiRg but the exchange

symmetry 2vg9) = wlg).
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The type (3) is related to (2) by the hermiÅíian conjugatioR iR Eq. (3.7lb). In generai, we

ttse the notation T' for the type which is obtained from 7' by the interchange z* e-> z'.

It ls also clear from Eq. (3.69) that these types do not coRtribute to the LS kernels. Note
that the subscripts like P iR SEary) and a, 6 IR E.fi are dummy indices whlch do not

affect the spatial interactlon factors. Namely, we have n(n - 1)/2 independent S-type

spatial factors correspondiRg to the unordered pairs (cr7) aRd their multip12city is n for

each. Finally, let us consider 2( Il )2 = n2(n - i)2/2 {ct3; ry6} factors belonging to the

type (4) in (3.72). These are specified by the combination of two unordered pairs (a7)

and (66) witk the relative exchange ofP and 6. ( Note that we have assumed a < 7. )

If ({ce7) coincides with (56) as a set, we call suck {a5rv6} D-type and, if not, Y-type :

                    (4a) (cr7) =(66): D-type

                    (4b) (a7) < (S6) : V-type

                    (4c) (ay)>(56): Y'-type. (3.75)
These types are further subdivided according to the relative sign of the coeficients for

z* and z'. For example, factors for D-type are composed of

               (4a)+ or ur6 and ry=:6: DÅÄ-type

               (4a)- dv=6 and 7==5: Dew-type. (3.76)
For tltese types, we assign

      DScr7) = 7r{an,ew} = (uirc)gexp{-S(p{a7}(z* +z,))2} ,

      DSa7) =T{..,.} == (.f.)gexp{-3(p{a7}(z* -z'))2} , (3.77)

and they yield n(n - 1)/2 different D,lt-types, respectively. Note tkat these are self-

conjugate aRd related to each oÅíher through the sigR chaBge of of due to tlte symmetries

(3.71a)rv(3.71c). The fact that Y-type and 'V'-type always appear as a pair is also
confirmed by counting she total Bumber of these factors n2(n - 1)2/2 - n(n - 1) =

(n - 2)(n - 1)n(n + 1)/2, which is even. For (4b) the relative sign of z' and t terms is

fixed by setting the ordey of a < 7 and fi < 6. Thus we get

         (4b)ÅÄ (ce7) < (56) and a < ry , fi < 6 : V-F -type

         (4b)" (orty) < (66) and dv < ry , 6>6 : Vww -type

         (4c)" (ce7) > (66) and ci < or, 5 < 6: V4 -type

         (4c)- (cv"y) > (fi6) and ct < '7, fi >6: VL -type , (S.78)

each of which cons2sts of (n - 2)(n - 1)n(n+ l)/8 different types. We spec2fically define

the V+-type interaction factors through

  v5crcr)(fi6) = T{.p,.6} = (.S.)gexp {-S(p{a7}z* -y p{s6}.,)2} , (3 7g)
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for (cyry) < (fi6) and a < ry, 5 < 6. The o:her types U, V4, and V'ww are obtained

through the general rule

                     Tt=T with z"Nzt
                                           '
                     7rww =T+ witk z' ->-z'. (3.80)
   The structttre of the spatial interaction factors discussed above may be more traits-

parently understood by geometrical coRsideratioB of two boxes in the double-coset sym-

bol lk]. We reca}1 that the indices cM and P in {dvP;76} are reiated to tbe assignment

of the particle index s to some particular ordered set k,,B ;s e k.fi. This means that

the present type classlfication ln terms of {aB; 76} is nothing but couxxting two•boxes of

the double-coset symbol connected by the inÅíeractioR. {'hese two boxes are degenerate

for E-type, and located verÅíically or horizontally for S-type or S'-type. IR D+-type,

Åíwo different boxes are selected from the diagonal part, and these are exchanged for

D--type. The others are the irregular off-diagonal selection of two boxes for V-type.

The relatioRship between T and T' corresponds to the transposition ef the double-coset

symbol.

3.3.2 2-Ctt`ster interaction TL>tPes
   The type classification of interactlon factors Tst for 2-cluster systems is very simpie,

since she factor Pii2} == -(1/ViZ) witk pa = AiA2/(Ai +A2) is only needed. Since

the overa!l sign of P is irrelevant, the full 2-clustet GCM kernel is obtained by setting

P rm (l/pt)p and P' == (1/va)g in Eq. (3.69), wherep andq areO or Å}1 given iR
Table II. These values depend on the type lndices E.6, Sa, S6, D-F and Dww, which

has the multiplicity 4, 2, 2, l aRd 1, respectively. The summatioR over the dummy
indices a afid fi may be carried out for spin-isospin factors. Thtts, tkese 10 terms can

be reduced to only 5 interaction types; CZ' = E, S', S, D-F and D-.i2

  TABLE II. Twe-cluster interaction types and theiv factors T{es;76} = (u/(y ÅÄ K))312
Å~exp{-(A/2)f(a")(fi6)(z*,z')} in terms of the coefficients p and g through "F' : p/vX7Z and

jr" = q/V7i with ps -- AiA2/(2`li + A2)•

T {dvP;ty6} multiplicity pq f(cr7)ge6)(z',z')

lfafi {cifrs;orP} 4 oo o

sfi {1ff;26} 2 10 (z*)2/Vi[i

sa {al;dv2} 2 Ol (zt)2/v!)[i'

D+ {11i22} 1 ll (z*+zt)2/vxzz

Dm {12;21} 1 1-1 (z*rmzt)2/A/ZZ

   From Åíhe geometrical interpretation of the interaction types discussed in the preced-

 i2The origin of these names is almost obvious from Table II. These are related to the structure
of the GCM inÅíeraction factors; namely, E for a unit factor, S and S' for a single vector z" or z'
invo}ved in T, and DÅ} for doub}e vectors or fer Åíhe direct term to which PÅÄ type contributes.
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ing section, it is obvious that, for the direct term with no nucleoR exchanged, E.. and

D+ types are only possible. Tke intemal energies for clusters Ci and C2 get contribu-

tions only Åírom E type, and the direct potential between Ci and C2 are described by

she D+-type interaction factor. If the two clusters Ci and C2 are identical, a complete

interchange between Ci and C2 gives the same contribution as that of the direct terrn

except for a possible sign change, but the types called here are E.p (cr pt 6) and Dww.

To LS terms only D+ and Dww types contribute, while to tensor serms all but E con-
tribute. The S aRd S' types are hermitiaR conjugate to each other, while the others are

all self-conjugate in 2-eluster systems.

   These five interaction types are, of course, well known in any formttlations of 2-

cluster RGM. Different authors use different notations. For example, LeMere, Stubeda,

Horiuchi and Tang [100] have introduced the notation a, b, e aRd (d, e) for E, D-y,

Dww and (S, S') types, respectively. This paper was followed by many detailed studies

on the different roles of the interaction types corr}bined with the nucleoB exckange

classMcation. (See, for example, refs. [IOI]rv [I03].) It is well known that the Dww--

type or c-type interaction term with a siRgle nucleon exchange usually gives the most

importaRt contribution among many complicated terrr}s ofexchange kernels. [ 104], [103]

This serm is called a knock-on term in the stttdy of light-ion optical potentials. The

importance of the so-called core-exchange terms for tke systems wlth small mass-Rumber

difference is also found tkrough detalled studies of interaction types in terms of various

localization techniques of the noRlocal exchange kernels. [105], [106], [102] Thus, the

type classification of the interaction types is Rot just a matter of nomenclature, but has

befiefited a great deal tke microscopic understanding of interactions between composite

particles. [l4], [50]

3.3.3 3-Clt`ster Interaction TEPes

   Tlte interaction types for 3-cluster systems are more convenieRtly expressed in terms

of tke cyc}ic definition of tke ttnordered pairs (a5) ig '7, where (orfi"r) is oBe of tl}e

permutations of (123). This is related to the three different sets ofJacobi coordinates
gS•rr) introduced in Eq. (3.8). For the generator-coodinate vectors, the first equation iR

Eq. (3.8) yields

                                           (s)                   V'i](S.-S.)=\e... fa , (3 81)

where e is uniquely specified for a y4 or tkrough e == (a7). We can also prove Eq.

(3.8l) directly from Eq. (3.68) by using the coordinate transformation in Eqs. (3.IO) aRd

(3.I1). Namely, we can easily show

                     :.(e)<3) p{ctrv} .,, (i/v/11ilES> (3•s2)

                                   Xo                                             /

for (crae) : an even perrnutation of (l2S). Tlten, if we note that z == (zi,z2) is the
standard set z(3), the matrix multiplication
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              ViJ(sd - s.) = z(3) p{(ne7} = z(e) :- (e)(3) p{aty} (3.s3)
                             '                                                      '
with Eq. (3.82) yieids Eq. (3,81). Theyefore, the quadratic polynomials in Eq. (3.70) for

3-cluster systems are raost easily expressed as

         f(a'y)(P6)(z*,z') = (]IIII)e7,,.#+\e6BA es)2 , (3 sti)

by using appropriate types of Jacobi coordinates Åíor the interaction type {crfi; or6}. If

either of tke pairs (c\7) or (66) is co!lapsed, one can adopt a natural defiRition

         S(7) =: 7r{or6,B6} == (. fl .)iexp(-i) pasi.) (zSry)')21 , (3 ss)

which corresponds to S(orP) in Eq. (3.74). Also, (c\or) em (fi6) case is given by

     D- (7) == T{ ,,. ,sp} =me (. f .) e exp (-S pa si.) (z Sv) * + zSty))21 , (3 s6.)

x

     Dm(or) =: T{.rs,6.} = (.f.)gexp (-Sptil.) (.i7)*-,S7))2) , (3 s6b)

where (aB7) is again assttmed to be a permutation of (l23). These are just a 3-
dimaensional genera!ization of the 2-cluster interactlon types T == S, S' aRd DÅ} for the

three differeltt 2-cluster subsystems formaed by C. and Cp. Thus we use the notation

CZ' = TJ, where T = S, S', Drk and J specifies one of the three different Jacobi
coordinates J=: I, U or lll ( or J = (7) with 7=1, 2 or 3 ).

   A similar classification scheme is also applied to the V-type interaction types. In

this case, e and A in Eq. (3.84) are uniqttely specified by assuming that (crcife) and (6SA)

are peymutations of (l23). Thus we get •
            f("7)(66)(z*,z') == (Slili +ety,,. e6pA es)2 (3 s7)

SiRce we have cr 7! 7, 5 ik 6 and e gE A, tlte u determined from y = (sA) should agalR

be equa} to or or 7 in (or7), and 6 or 6 in (66); nameiy, we have (orry) == (Ay) and

(56) = (Ey) as identical sets. This lnvolves the following four different cases;

                   i) cu =A, 6 me g, "y == 6 == v

                   ii) cM = A, 6= "r nd v, 6 =e

                  iii) (M =6= y, 'y =: A, fi =:e

                  iv) (N =B=u, or=:A,6:6.. (3.88)
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Due to the symmetry (3.7Ia), we only need to consider the case i) or ii). In order to
fix tke phase e7.. e6fiA in Eq. (3.87), we now assume that (Aey) 2s an eveR permutation

of (l23), TheR it is easy to see that ety.. e66A == -1 for !) and l for ii). Thus we are

naturally led to the definitioni3

vÅÄ(u) =: Tr{A. ,..} == (y 11 K)g exp s  (E) *
Zl

 (A)t
Zl

ff N/te5'

2

)
(3.89a)

v- (u) = czr{A.,..} = (y kl rc)g exp s  (e) *
Zl

+
 (A),
Zl

N/tsi'

2

)
(3.89b)

where (A6y) is aR even permutation of(l23).i4 The explicit expressions for the 3-cluster

interactlon types thus defined are suramarized in Table III.

   From this table, we can see that the symmetries in Eq. (3.80) are satisfied for TJ,

irrespective of J. •In particular, we have

T'J x (TJ)t , (3.90)

where the dagger symbol in the right-hand side means the operation of hermitian con-

jugation. Furtkermore, lt is easy to verify the following symmetries for V--type terms ;

Yde(cr) (cM e6) me Yl(ry) ,

VÅ}(a) (cu e6) == Vl(5) ,

vÅ}(p) (aN5) == V2(dv) , (3.91)

where (curs7) = an even permutatioR of (123), and TJ ( cu e rs ) denotes the expression

obtained by the interchange of the clusters C. and Cp in TJ.

   In summary, we have obtained a simple coRclusioR that 3-clttster interacsion types

T are specified by the cornbination of the 2-cluster interaction types T with a slight

extension to YÅ} and Vts types, together with the type ofJacobi coordinates ,J specifyiRg

the 2-cluster subsystems ; T = TJ. Tkis type-specification scheme is extremely useful

for practical applications ofthe present 3-cluster formalism to coup}ed channe} problems

 i3The origin of the name V for the members of this group is c}ear from V-i-(3) = T{i2;33} in

Eq. (3.89a). Narnely, the quadratic form in Eq. (3.84) is e; pressed as y('I"l ÅÄ T5)2 in terrns of

the V-type coordinates Tcr = Sa - S3 (or=1, 2), which resembles the D+ type in the 2-c}uster
classlfication scheme.

 i4It seems to be natural to introduce the ordering (orry) < (36) in Eq. (S.75) by 6 < A for
e == (or'r) and A =: (P6), and to identify VLfa7)(eE) = Y.ie.A with V+" by u = (e)L). However,

this procedure gives a little different definition of V-l.-type interactioR types from V+(y) due to
the cyclic permutation phase. The corrcct correspondence between V"(u) aRd VfA is given by
V+(v) -- V4Ae for v = 1, 3 aRd VffeA for y rr 2, when ()Ley) is an eveR permutation of(i23).
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with many cluster configurations.

  TABLE III. Three-cluster interaction types, T = [r"J, and their factors in teyms of
f(dvny)(e6) (z*,z') in Eq. (3.87). The type ofJacobi coordinates J is specified by J : (7) etc•,

with (a67) being an even permutation of(123). IR S(or) er S'(7), 6 can be either of l, 2 oy 3. For
E-type, no specification of7 is needed.

cz'=:TJ {ars;76} multiplicity
f(aty)es5)(z*,z')

E {cM6;or6} 9 o

S<7) {cN6s56} 9
2(7)*(7)ZlLLI

s'(ry) {6cifl65} 9

D+(7) {an;ee} 3

D-(7) {dv5;5dv} 3

Y+(7) {dv6;7ty} 3
2

v-(or) {or7;ty5} 3 pa?)+zla),
2

v4(or) {be;w} 3 pala)-z?)' w)pa1

2

VL(ty) {5xordv} 3 paia)+.g)i
2

3.4 Transformation Properties of the Coefiicients 9Ikl and P{a7} for Rearrange-

     ments ofJacobi Coerdinates.
   Olte of the prominent properties of the GCM kerRels derived ifi the preceding
subsections is their invariance with respect to a differexxt choice of the Jacobl coordinates.

lrhis particular property is a direct consequence from that the generating fuRctioRs

A(g; x) iR Eq. (3.15) is invariant with respect to simultanious orthogonal transformatioRs
of the real coordinates CA and the corresponding generator-coordinate vectors z/v'il. To

be more specific, iet us consider the coordinate transforrr}atioR

                            gAwwww grta) :.(a) (392)

with some appropriate indices a for the bra side and b for tke ket side. The invariance

of the GCM kernel defined byi5

       I(a)(b) fl (z(a); z(b) t) ,,. <A(g(a);z(a)) ip, i ost A' I A(e(b); z(b) ') Åëo > (3.93)

is expressed as

 i5For systems of three non-alpha clusters or more, we alse need to make spin-isospin recouplings
to achieve this rearrangement. We assume here that such a procedure is implicitly cayried out in
the spin-isospin factors discussed in g4.
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         f(a)(b) st(z(a);z(b)r) .. lst(z;z') ,,. I9(x(a) :.(a);z(b)':.(b)) , (3.g4)

where A(C("),z(")) =: A(e,z) eÅíc. is used. Thus, in order to derive the GCM kerne}

f(a)(b)9(z;z') in t}ke different sets of the Jacobi coordiRates a and b, we oRly neecl to

apply the orthogonal traRsformatioR :' in the expliclt expressions obtained before. For
example, the normalization kernel f(a)(b)(z;z') are obtained from Eq. (3.38) by the

replaceraent

                  9[k] ---- :-(a)9[k]t:-(b) iiii 9(a)(b)[k] . (3.95)

Simllarly, for the interaction kernels, we modify

                  p{aty} --, :.(a)p{a7} I!i P(a){crty}
                                              '
                  ,p{fi6} --" :-(b)p{P6} iiii i5(b){fi6} .

(3.96a)

(3.96b)

   We can include the origiRal case witlt respect to the standard Jacobi coordinates,
by assuming a : b= e aRd :'(e) rm :'(e)(e) == 1. Therefore, this transformation is simply

considered to be a result of different representations for the coeMcients q[k] and P{op}.

   In order to find the explicit expressions of the transformed coeMcients 9(a)(b)[k]

eÅíc. in Åíqs. (3.95) and (3.96), we return to the coordinate transformation in Eq. (3.16).

We express this in the matrix notation as

ViJs== zp , (3.97)

where P ls the (n-1)Å~n matrix witlt the matrix elements Pin = (P.)i given in Eq. (3.I6).

A simple example of the present transformation is the case in which the represeRtation a
is reproduced byapermutatioR ofn-clusters;ie,a=: ( ali a22 an. ).i6 The matrix

representation ofa is denoted by Ma ln the following ; (Ma)cr6 " 6a.6 = 6a,a-i(s)• We
modify Ai,''',An to Aa,,''',u`la. in Eq. (3.97) aRd define z(") instead ofz. Since we

have (Sa,, ' ' ' , Sa.) = StM. =: SM.-i, this definition of x(a) is expressed as

                       v'JS M.-i= z(") P(a) , (3.98)

where P( a) denotes the matrix P with Ai , • • • , An being replaced with Aa, , ' ' ' , Aa. •

From Eqs. (3.97), (3.98) and z : z(") :'(a), we can easily find

                          :- (a)P =: P(a) M.. (3.99)

This equation relates the orthogonal transforrnation oÅí the Jacobi coordinates with the

permutation matrix of n-cluster c.m. vectors. By using this re}atioRship, (21[k] = Pk tP

in the standard Jacobi coordinate is traRsformed into

 i6In four-cluster systems or more, we also kave such types of relative ceordinate systems as can

not be realized by the permutations of clusters from the standard set of Jacobi coordinates. For
example, we need H-type coordinates to describe a system of two 8Be-clusters for i60. In this case,

we simp}y use Eqs. (3.95) and (3.96) to fiRd the necessary coeMcients for the GCM kernels.
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        Q(a)(b)Ik-] ,,. p(a) k(a)(b)`p(b) witlt k(a)(b) =: M.k`Mb . (3.100)

Similarly, the interaction factors in Eq. (3.96) are giveit by

                 P(a){a7}=p(a){a-i(a) a-i(tr)} etc. (3.IOI)

Besides a trivial renaming of Ai,•••,An to Aa,,•••,Aa., we need a rearrangement
of rows and columns in k(a)(b) and a transformation of the indices or and 7 for the

interaction types {orP; 76}.

   IR 3-cluster systems, it is convenient to use a permutation of (l23) for three indepen-

dent Jacobi eoordinate systems shown in Fig. 1. Namely, we ident2fy (a) Effi (123)a with

a =: 1 rv 3. In particular, (3) =-: (123)3 =e specifies the standard Jacobi coordinate.

Furthermore, we use the (xyuv) parametrization of the 3 Å~ 3 double-coset symbol in Eq.

(3.42), axxd also a notation Q.y..(Ai,A2,A3) for the 2 Å~ 2 matrix giveR in Eq. (3.43).

In the foIlowing, we fiRd compact expresslons for

               QSa,)Eg) rm :-(a)(3) Q...(A,,A,,A3):-(3)(b) , (3.102)

aRd for necessary interaction factors.

   Let us first coRsider tlte diagonal case a = b = c in Eq. (3.I02). We can perforrn
a simultaneous transformation of rows and columns in k(e)(C) =: M.ktM. and choose
a new set of (x(C)y(C)zL(C)v(C)) such that the resultant matrix has the same form as the

orlginal one with respect to the renaxned particle nttmbers (Acr, Afi, A7) for (Ai, A2, A3).

Here we assume tltat (a67) is an even permutation of (123). From this procedure, we

easi!y find

     x(i) y x(2) x+y-u-v
      (1)                                       (2)               xÅÄy-u-v y x     y     u(i) "" yrmv ' u(2) = x-v , (3'103)
     v(i) y-u v(2) x-u
where x(3) =: x, y(3) == y, u(3) = u and v(3) :v. The matrix thus obtained can
be denoted by k(or) in conformity witk the notation rule adopted for P("). Then, the

relationship (3.IOO) is expressed as

                     Q(7)(7) [k] = P(7) k(7) tP(ty) . (3.104)

If we compare this with Q[k] = PktP, we obtain

                (?SXJ)u/v7) =(?x(rr)y(7>u(cr>v(7)(Acte,Afi,A7) , (3.I05)

where (a5or) is an even permtttation of (123).
   In order to obtaiR (?S9,)Eig) for a yA b, we first calculate (2X,)E2.) by using Eq. (3.105)

and

           (?Åíi,)E2.) .,, :-(i)(2)(?S2,).(g) == :- (i)(2)Q.(2),(2).(2).e) (A3,Ai, A2)

                             '                    N                                                    '                 iiii Qxgev(A17 A2} A3)• (3.106)
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The straightforward calculation in terms of Eqs.
{iiixyuv(Ai7A2,A3) : ((iiio') with

           - AIA2 x y 2L               :- - -y                                          -

(3.43) aRd (3.11)

 A3

  l25

yields

           Qii AfiAs (l-pai2) pasi) .4, psSi)psS2)V) 7

           Qi2=m AAci3AA2c (1th rri)+k) '

           Q2i "" tci3AA2c (1mpsf2)+Jiil) '

                    2$i. (i-.,AA,zL) (3.io7)           ij22 = rm

Note tkat this expression gives

                                       '              axyuv(Al,A2,A3) =P(1)(Mlk`M2)`P(2) ,                                                                (3.I08)

a speciai case of Eq. (3.100). The same equation for a --- or and b - 6 gives

            gSa,).(.P) = p(ct)(M.ktMfi)tp(p)

                   =P(a)Mi(M,a-iktM,P-2)tM,tp(6) ,                                                                (3.I09)

where we have used M,, = Micr with Mi being a matrix representation of the per-
mutation (l23). This notation is partlculaly convenient, since we can easily sltow that

cM -l rm 6-2 =: 7 (mode 3) if (cu67) is an even perrnutation of (123), so that
k(7) = M,crktM7 in Eq. (3.104) yieids

                 QSa,).(.fi) :P@(Mik(or)tM2)tP(P) . (3.110)

This is nothing but the renaming ofAi,A2,A3 and (x(3)y(3)u(3)v(3)) = (xyuv) in Eq.

.(3.108) by tke permusation (7) = (123)7. Thus we find

               (?S9J)u(g) = ('?Vx(ty)ylr)u(tr)v(tr)(Acr,AB, A7) , (3•lll)

where (dv57) is an even permutation of (123). If (a67) is an odd permutation of (l23),
we can use `([?Sa,).(.B) = (?se,).(.a) and Eq. (3.l1l) to obtain

                (?Scry)u(vfi) =tQNx(7)y(7)v(ty)u(cr)(Ap,Aa,A7) (3.II2)

with (cu5or) being an odd permutation oÅí (l23). Note that the interchange of tL and v
corresponds to that ofu(i) and v(7) in Eq. (3.103).

   Let us finally proceed to the transformation of the interaction factors P{Ctz7} iR Eq.

(3.lol). In 3-cluster systems, it is simp!er to deal wlth vectors zS7)/V']Iil YY ln Eq. (3.sl)

directly. We express these vectors in zSa) and zSa) :

                       (7)
                     I]Zi l :p7or zSa)+qg z:(2a) , (3.ll3)
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where p7. and gg are functions ofAi, A2 and A3 defined throttgh

                 (z[, ) .. (;i,:i :il;[i]l:Ii;ilil) (3 ii4)

In the rigkt-hand side of Eq. (3.1l4), a and 7 should be understood as permutations ;
a Ewn (123)CX etc. Although these factors are obtained from Pi{ay} = -(i/pt)pia7}

in Eq. (3.68) through appropriate permutations of the mass-number indices, it is muck

easier to use ffq. (3.1l) directly ; nameiy, they are explicitly given by

               pK = fa :'1?)(7) " ts Al.. (6a7A rm A7) ,

               gA = v7ili{7;ii :'S?)(7) : vkiii :l}])eaorfi (3 Hs)

Then tlte quadratic polynomials in Eq. (3.84) represented in the coordinate systems (cy)

and (6) are given by

fftJ)(S)(z"; z') == (pi zior)* + p2 zSa)' + pl .Sfl)'+ .Ii?i zSP)t)2 ,
(3.l16)

where the coeeecients Pi, P2, PI and P6 for each iRteractiolt types 7" = TJ can be

expressed in terms ofp7. and gg as shown in Table IV.

  TABLE IV. The coeMcients Pi, P2, PI, and P6 in Eq. (3.l16) for the 3-clusÅíer interaction
types CZ" = TJ with the sets ofJacobi coordinates J ur (cr) in the bra state aRd J =: (6) in the ket
state. The quantities ptr. and qK aye defined in Eq. (3.115). rl"he superscripts e and A in this table
are determined such that (eA7) becomes an even permutation of (l23).

p6

li,tpiil}

.i]'l2

iii'i"

..s

-E
s/l/}//



MULTICLUSTER RESONATING-GROUP METNOD OF s-SHELL CLUSTER SYSTEMSl27

g4. EvaluatieR of Spin--Isospin Factors

4.1 GeneralProcedure
   In the preceding section, we have showR tkat, as long as the spatia} part of GCM

kernels is concerned, a quite general formulatioR is possibie even in n-cluster syetems if

they are composed ofonly s-shell clusters. Therefore, tke main effort to set up the GCM

kernels is reduced to the evaluatlon of spin-isospin factors. There already exist nttmbers

of sheH mode! calculations in which such spin-isospin factors are evaluated by using

the cfp expansions ofthe aRtisymmetrized wave functions aRd also by using recoupling

techRiques in the angular momentum algebra. We can employ these techniques eveR
iR cluster systems, although the Rature of the procedure is a little different from the

sltell-model one. This is because in cluster systems we need to deal with a number of

non-standayd coupling schemes due to many different types of cluster decompositions

and to their rearrangements. IR this section, we first try to clarify what are really Reeded

to construct whole set of the spin-isospin factors, and outline the general procedure to

obtain them. A geod example of this procedure is given for geReral 2-cluster syste!ns in

the next subsection. The result is then extended to the spin-isospin factors of 3-cluster

systems composed of aR alpha cluster plus two s-shell clusters, ixx which a much simpler

technique called the valence orbital method can be employed.

   The spln-isospin factors defined through Eq. (3.59b) are with respect to the spin-

isospin operators iv involved in the two-body interactions iR Eq. (3.61). These are
given by w =: (W +B"Pa - Ell?r rm MPaPr), w(CL) = (1 + Tlz)(1 + T2i)/4, iV(LS) ==
(W - HP.) (cri + a2)/2, and w(T) = (W - ffP.) [ ffi a2 ]fi2) for the central, Couiomb,

LS and tensor forces, respectively. Let us first consider the central, LS and tensor

operators. As is already discussed in tke g3.3.1, the isospin part of these interactions

can be eliminated by using the generalized Pauli principle (-P.P.) = Jl ?x, where Px is

the exchange operator of two particles in the spatial coordinates. Suppose T{aB;76} is

tlte spatial interaction factor for a two-body interaction u defiRed through Eq. (3.59a).

In a shorthaRd notatioR A.p i!i <(Os)s. 1 (Os)sle >, the interaction factor for zLr iE uP.

is given by

                  T{'.p.6} == A.-Bi A.ww6i ALor6 Aee CZI{1 .6.p} . (6.l)

We should use this in Eq. (3.60b) to obtain the GCM kernel Ir(z;z') for ur. The

readjustmeRt of tke powers of A.fi etc. Ieads to the modification of the double-coset

symbol [k] in Qlkl as follows;

             k-k{aP;cr6} ii!k-e(afi)-e(cr6)+e(a6)+e(7rs) , (4.2)

where e(aff) = (eEcrv6)) denotes an n Å~ n matrlx with the matrix element given by eEauP) =

6ua 6up. We can rearrange the summation over [k] such that the norm exponential factor

Tr(xq[k] `x') is restored to the original form. If we further interchange 5 and 6 in the

summation of the inÅíeraction types {(tzfi;ty6}, we find that Jr(z;z') is given by Eq.

(3.60a) with the following simpie modification ;

                     Xic{ap;ty6} -wu" Xk{ap;cr6}{a6rr6} • (4•3)
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In terms of the type specification T introduced in the g3.3.l, this change can be ex-

pressed as follows. In E, S and S' types which involve no Å} indices, their spin-isospin

factors are invariant, whlle in 7' : D, V and V' types in Eq. (3.72), 7r+ and Tm types

are interchanged with an appropriate modification of the deuble-coset symbols. For

example, in 2-cluster systems, we kave

               XxT ---> XxT for T== Eap, Sa, Sp ,

               XxD+'Xx+IDww , XxD- rm" Xx-ID+ • (4.4)

From this consideration, we esseRtially need to deal with the operators

                w(d) :1, w(e) mm .p.=1{ww f2ii'cr2 , (4.sa)

               w(Ls) .. (7i li Cr2 , w(T) .. [ai a2]ft2) , (4.5b)

and tkeir spin-isospln factors defined through Eq. (3.59b).i7 rkexx the full spiB-isospin

factors for the ceRsral, LS and tensor forces are given by

XkC{.rs;76} =rm Xfod {.6;ty6} W + Xke {.p;76} B + Xke{afi,crs}{.6;tyrs} H + Xicd{ap,76}{.6;7fi} M ,

                                                                       (6.6a)

(Xhst{.B;76})tOtal = Xhst.{.prv6} W + Xksh{ae;76}{.6;w} H
for SZ =: LS and tensor .

                  (4.6b)

The simplest spin-isospin facÅíors Xkd {.prv6} are obtained by counting the

palrs :

numbers of

                 Xkd{op,.B} = (kgP)Xki" for E.p ,

                 Xg{.6,.6}= kap kty6 XhN otherwise , (4.7)

wheye XkN is the spin-isospin factor for tlte Rormaiization kernel defined in Åíq. (3.32).

Similarly, the LS factors are reduced to one-body spin-isospin factors. This is a commoR

feature of the two-body interaction that can be expressed as a simple sum of a ene-body

operator; w.t = w. + wt. In this case, all the two-body spin-isospin factors are redttced

to one-body spin-isospln factors through a similar yelationship to Eq. (4.7) :

 i7As is discussed in the g3.3.I, the ILS and tensor spin-isospin factoys can be conveRiently defined

through the reduced matrlx elements. If we set the LS and tensor rnatrix elements in Eq. (3.59b)
equai to XhLTS $ and XkTT SÅí2) in terms of formal opeyatoys S and SÅí2) for the total system, these

reduced matrix elements shou}d be divided by those of S and S(2), respectively. The choice ef
<S B S # S'> and <S II S(2) II S'> is arbitrayy (as loRg as they are Ron-zero) and they are assumed

to be unity in the fellowing discussions. For the Couiornb factors, this procedure is not taken in
Eq. (3.69), since T: is a conserved quantity related to tke total charge.
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          Xhst{ap;crfi}=(kapml)Xk9{.p} for E.p ,

          Xkst{aprv6} =: k76 Xkst{.fi}+kcrfi Xkst{76} otherwise , (4.8)

where Xkst{.B} is defined in Eq. (3.48). [l]he LS operator iR Eq. (4.5b) and (N - 1)T.

terrn iR the Coulomb operator discussed below are of this type and these factors are

obtained by calculating tlte reduced matrix elements

            xEcrz.) Ei' - ck <zk csT B.,2,., { gg//,2 }g cg• ,,t> , (4-g)

and by using the relationship in Eq. (4.8).
   The standard procedure to calculate the spin-isospin factors XhN for the normaliza-

tion kernel aRd those for the one-body operators Iike Xhst {.B} in Eq. (4.9) is to use the

following decomposition of tke antisymmetric spin-isospin wave functions 6sT(1, • • • , A) ;

        CsT(1,•••,A) : 2 <[IAi]S,T, [IA2]S,T2 ll [IA]ST>

                      S1 Tl S2 T2
                    X Ies,T, (1,•••,AD es,T, (Ai + 1, •••, /1)]sT (4.lo)

with A == Ai + A2 S 4. Here, tlte stretched SU4 ) SU2 Å~ SU2 Clebsch-Gordan (C-G)
coeMcients have simple values l or Å}1/Vi}, depending on the combinations of[IAi]SiT2

and [IA2]S2T2. [96], [I07] For Ai k A2, these are given by

           < [ii] { 69 } p]ii [i [iiiiS> - { li,V,il ,

           <iii]{5?}iii]{69}ii [iiii]oo>-{li,N/,il , (4ii)

besides the trivial values<IllS5[1]iS ll [ll]IO> = <Illl]g511]SS II IIIII]OO> = 1.

For the iRterchange between [IAi] Si Ti and [IA2] S2 T2, tke above values should be

multiplied by an extra phase factor (-1)AiA2 (-l)SiÅÄS2-S(-1)Ti+T2 wwT. By employing

Eq. (6.IO), the spiR-isospin coupled wave functions of n s-shell clusters are further
decomp6sed into those of n2 s-skell c}usters. We write this decomposition symbolically

as

            esT : 2 e{s,,}{[,,}.;sr<{Sij•}{Tij}rl}gsT> (4.l2)
                 { Sij } { Ti ,' }r

where e{s,j}{T,j}.;sT denotes that the kij•-nucleon spin-isospin wave functions with Sij•

aRd Ti3• are coupled into the total S and T with extra spin-isospin quantum numbers r

for intermediate couplings. The coeflicieRt < {Sij•}{Tij•}r l}6sT > is given as a product of

the SU4 C-G coeMcients in Eq. (4.1O). In order to facilitate the operation zh in Eq. (3.28),

we also iRtroduce g{sj,.}{T,.,}KsT iR which the clusters Co• wi'th Ao• rm- {kio•, • • • , k.j•} are

decomposed into Cj•i,•••,Cj•. with the particle numbers ko•i,•••,kj•. and the spin-

isospiR values S)•iTj•i,•••, Sj•.To•., respectively ;
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           CsT = 2 g{s,,}{T,,} ,sT<{S,•i}{To•i}FDCsT> • (4.l3)

                {SJ'i}{T,•i}r

[lrhen the effect of zk on 6sT restores it to the same form as in Eq. (4.l2), but the

ordering of the intermediate couplifigs is entire!y different :

         zkCsT == 2 g{.,,}{.,,}&,.<{s,•i}{T,•i}Fl}gsT>.                                                                    (4.l4)

                  {SJ'i}{Tji}r

Then by applying the decompositlon in Eq. (4.IO) to the ket side also, we obtain

          XkN -- Ch < zk esT 1 6gT >

               : ck Åí <{s,•i}{T,•i}7r l}es [v > <{si,• }{Ti,• }r Deg. >

                  {Sio'}{Tij}r;'

              Å~ <C{ s,•,}{T,•, };1 sT l e{ si ,• }{Ti ,• }r ;sT> • (4. ls)

The last matrix elements in Eq. (4.l5) are obtained by the angular-momentum recou-
plings of n2-c}uster spin-isospin wave functioRs. In order to calculate the one-body

spin-isospin factors Xkff {(g)fi} in Eq. (4.9), for example, we only need to assume S # S'

and augment the last matrix element iR Eq. (4.15) with a multiplication of Åíhe one-
body reduced matrix element <Cs., r.,(kars) ll 2).Gk., (Ts/2 II Cs.pT.p(kaB)>, WhiCh

is equal to Sap<S.p+1).
   Befoye prceediRg to the evaluation ofthe other spin-isospiR factors for the operators
in Eq. (4.5) and also Åíor tlte Coulomb operator w(CL) == (1 + nx)(1 + T2z)/4, let us

consider the tensorial representation of the operators. In the definition of spin-isospin

factors in Eq. (3.59b), we have summed up the two-body operators over the particle
indices (s < t) of wE9) witk respect to all the nucleons wkich yie!d a comraon spatial

integral for some particular exchange and interaction type T =: {aP; 76}. Therefore, it

is useful to find simple expressions for

                                  N
                           wst =:Åíwg9) (4.l6)
                                 s<t

for an N-nitcleon system. For .P. in Eq. (4.5a), it is given by

               we = SII) 1+ff2s'fft =: iN(N-4)+s2 , (4.l7)

                     s<t

where S : Xge..i as/2 is the total spin operator of the N-nucleon system.i8 Similarly,

we find

 i8This notation should not be confused with Åíhe forrnal spin S and the second-raRk spin tensor
SE2) in Eq. (3.69). These are not a sum ofthe total A-nucleoR system and need not be represented as

SS2) = 2[SS]L2) either. In fact, they have in general off-diagonal matrix elements <S " S ll S'> iE e

etc., unlike the single particle operators of the N-nucleon system defined ltere.
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                          N                  w(LS) ..2crS lil fft ,,. (N-1)s , (4.18)

                          s<t

                       N
               W(T)=2[a, at]L2) =2[SSjÅí2) EE SÅí2) . (4.l9)
                      s<t
In the tensor operator, we have used loa]E2) = O for the Pauli matrices a. Furthermore,

the second-rank tensor for the N-nucleon systern is defined by SÅí2) =2[SS]E2). For

tlte two-nucleon system with S = (cri + cr2)/2, this definition yields SE2) = [aia21Åí2) as

expected. The reduced matrix elements of S = S(i) =: S and SÅí2) are obtained from

s82) = V(li (s.2 - s2/3) aRd C-G coeracients

                               Sz            <SS.10 I SS.> = ,
                             S(S + 1)

            <ss.2olss.> ex s(s3+Si)i2Ss(Srm +1)(12)s+3) , (4 2o)

with the results given byi9

            <S ll Sll S> - S(S+1) ,

                            2            <S ll S(2) Il S> =- gS(S+1)(2S-1)(2S+3) . (4.21)

The Couiomb factor W(CL) is also expressed by the tensor operators in the isospin

space :

        w(cL> ., ii.ii, 1 +2Tsz 1 +27tz = \ (iSl - 1) + Arf1T. +gT.2

              :[{\ (l): -i) +gT2]+NiIT. +2l>g T62) (4 22)

Here, T and [Z7E2) = 2 [TT]Åí2) are defined similarly to the spin case and their reduced

matrix elements are given by Eq. (4.21) with all the S being replaced by T. As an
immediate application of Wst derived here, we can calcuiate internal energies of s-shell

clusters. These are explicitly given by

                      3h2u
     E(int)(c) ,,,, (Ar - 1)
                      2M

     +vo (.f .) g { (lj) (W + M) + [iN(N - 4) + S(S + 1) ] (B + ff)}

     +2 e2 vXll [l\ (4\ -i) +NiiT. +g T.2] (4 23)

 i9The reduced matrix elements in this paper are defiRed by : (fuR matrlx elernent) == (reduced

                                                       Amatrix element) Å~ (Wigner coeMcient), without dimensiona} factors such as J-i == Yv'2:7- l -ir.

                                                            AAAAAIso, 9-2" symbols with square brackets are used for deRoting their unitary form with Ji2J34Ji3J24
factors.
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for (Os)N clusters with SS.TT., interacting by the two-nucleon interaction iR Eq. (3.6l).

   One of the merits of )iVst is that they are single particle operators of the N-nucleon

clusters, so that they do not traRsfer the spin and isospln values of clusters. This property

is conveltiently used for evaluating the other spin-isospin factors just in the same way

as we have done for tke single particle operators in the preceding paragraph. Narnely,

for the non-E type interaction type {cy6rv6}, we consider a rnerged system kaB U k-r6

and extend the definltion of the spiR-isospin factors in Eq. (3.59b) to

            Xkst{.p}.{.6} i!!! Ck<zk61 2 wg9)lgt>, (4.24)
                                 s, tek.pUkrv6, s<t

The operator involved in Eq. (4.24) is Wst for the (k.p + k"76)-Rttcleon subsystem. Then

if we further recouple e{s,j}{T,j}.;sT in Eq. (ag.l5) in such a way tkat a coupled com-

bination [Cs.pT.s(kcrp)es.6T.,(kty6)]s.p.,T.p.6 is explicitly involved, we can replace

the operator with a possible c-rmmber term and the reduced matrix elements of sin-
gle particle operators. Once Xhst {.rs}u{76} are obtaiRed, we can easily find Xkst

{.p;76}
through20

           Xicst{afi;76} = Xkst{crp}u{ty6} -Xkst{crfi ;a6} -Xkst{76 rv6} • (4•25)

In the following, we deem Eq. (4.24) an extension of E-type spin-isospin factors XkstT

with 7V =: {evrs; aB} to 7i = {a5} U {75}, and use a shorthand netatioR

                     XkstT= Ch <zkCI )iV91e'>. (4.26)

   From tkese discussions, a general procedure to evaluate the spin-isospin factors by

the use of the cfp expansions and aRgular-momenturn recoupling techniques is formu-

lated as follows. For the extended E-type interactioxx types 7' described above, we first

calculate

               X,N 1
              x,a,(,.") -= ctc<zleegs[r li sEL") IE gg,r,>. (<t.27)

              x,',(,") TSI")
}{{ere, sELA) and T9) are single-partlcle spin and isospin operators of rank A defined for

tke nucleon ensemble specified by T. To be more specific, we assume

             s(O) ,,., s2 , sÅíi) .,, s. , sE2)=2Iss]Åí2) (<ir.28)

for the spin operators and S . T for the isospin operators. The reduced matrix
elements of these operators are given in Eq. (4.21), together with S2 = S(S + 1). After

tkese factors are converted to two-body spin-isospiR factors Xk97- for )iVst, those for

generaHnteraction types 7- are obtained by using Eq. (4.25). The exchaRge central

factors Xhe {.prv6} in Eq. (4.6a) are giveR by

 20The results in Eqs. (4.7) and (4.8) are also obtained from this procedure.
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         Xke{.p,.fi} =ikafi(k.p-4) XkN+X,a{(g)rs,.fi} for E.p ,

         Xfi{aB;ty6} =: llkap kcr6 XkN+Xhcr{(2)s,.6} otherwise , (4.2g)

where Xhcr{(g)fi;cr6} are defined through Eq. (4.25) with st = a(O). For the LS factors (and

also for a part of Coulomb factors), the defiRition of XkaT(i) or XkrT(i) in Eq. (4.27) is

equivalent to that ln Eq. (4.9), if we identify the type classification {curs} of the one-body

operators with Eafi for tke two-body interaction types. Dtte to the additivity of these

first-rank tensors, we oRly need to calculate these E.p-type factors. Irlte others are
obtained througk Eq. (4.8) ; namely,2i

       XkL{S.p,.p} : (kafi ww 1) Xhcr{(g)6;orp}                                            for Eap 7
       XhLi.p,.6} == k76 Xka{(g)fi ,.p} + kafi Xha{(l)6 ,.6} otherwise . (4.3o)

The tensor factors in Eq. (4.6b) are directly giveR bY

                      XkT{orrs,76} == Xkff{(.2p),ty6} '                                                                 (4.31)

(We have assumed unity for the reduced matrix elements of the formal spin and tensor

operators in Eq. (3.69).) FiRally, the Coutlornb factors are given by

  XicC{L.p,.B} = 6T,T, [ kiP (kSfi - i) + gx[{(O.)p,.p}] + <T'T.io E TT.>kaP2uu i

             Å~x,T{(k)p ,di} + <T'T.2o 1 TT.>2 li]gXhr{(Z)p ,.B}
                                                      for Eafl ,

   XhC{L.p,.6} :6T,T' [kkaBk76+gX[{(Oa)fi;76}]

             +< ir'T. io I TT. > g [k.6 X,r{(k)p ,.fi} + kas Xle'{(k)6 ,.6} ]

             +<T'T.20lTT.>2 ll>gXkT{(Z)p,.6} otkerwise .

                                                                 (4.32)

   Before closing this subsection, it is usefu} to show some kind of sum formulae for spin-

isospin factors, which can be easily obtained as a further extension of the relationship in

Åíq. (4.25). These formulae are also useful for a ckeck of spin-isospin factors iR numerical

calculations. These are given by

              2Xh9E.6+ÅíXhstsfi-7) =(Xk")sT Hkst , (4•33a)
               a (a7)

             2XkstE.p+2Xkstsa(B6) ": Hast (Xh")s,T, , (4•33b)
              rs (P6)
 2iNote that the relationship in Eq. (4.25) is not direct}y applicable to XkcrT(i) and XkrT(i) in Eq.

(4.27). For example, we need to use IVVLS : (N - 2) S, instead of S itselÅí
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wltere different spin-lsospin values ST aRd S'T' for the bra and the ket sides, respec-

tively, are possible in geReral. Furthermore, H.9 etc. are factors of subttRit clusters

defined throttgh

                H'h9 == <cg.1 2 ivg9)lcg,.,> , (4.34a)
                           s,tEAp,s<t

                H.st -- <esTl Åí wg9)le,•.,>. (4.34b)
                           s, tGA. , s<t

In particular, tlte central factors are explicitly glven by

    H.C = (A2a)(W -F M) + [kAex(Aa -4) -Y Sor(Sor +1)] (B+H) , (4•35)

where S. is the spin-value of the cluster C.. Another relationship is obtained if we add

up ail the spin-isespin factors :

                 2 Xkst{afi;.6} == 6s,s' 6[r,T' -X'Si Uost , (4.36)

                {aP;cr6}•

where Uost is given by

                      AA          .lillgi -- <C,. [2wg9) 1 esT> - <Cg. 1Zwg9) l gg.> • (4•37)

                     s<t s<t

4.2 2-Clttster Systems
   In order to earry out the procedure discusseci iR the preceding subsection for general

2-c}uster systems composed of A == Ai -F A2 (1 S A2 g Ai S 4) nucleons, we assume a

particular spiB-isospin wave fuBction

      CS, Ti S, T, ;ss. TT. rm [Cs, T, (1, •••, Al) Cs, T, (A.1 -F 1, •••, A) lss. TT. (4.38)

for the bra state and CslTIssTi ;s,sL.cr,T! for the ket state with S2 em S. and TE = CT7..

   First of all, as to the coeMcients with A == 1 in Eq. (4.27), we only need to calculate

them for four T = E.6 types. When A =O and 2, the sum ferraulae in Eqs. (4.33) and

(4.36) reduce the number of independent coeeqcients to a great exteRt. One can easlly

skow that,

                        Sl S2 S'

               H,a(") : A o A <si ll s(") Il si>, (4.3ga)

                        Sl S2 S

                        SI S2 S'

               ff,a(A) xe o A A <S2 ]I S(A) II S2>, (4.39b)

                        Sl S2 S
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H{a(A) ,.,

s{ ss st

)t O A

s{ ss s

<s"1 s(") ll s{> , (4.39c)

                       s{ ss st

              HS Cr(") = o J>, ,)t <si l[ s(") ll s6> , (4.39cl)

                       s{ ss s

for the operators S(A) in Eq. (4.28). Tlte factors for H& (A) and Hkr (A) are obtained by

S -> T. Then, Xgs(e.,) and Xgs(Op) in Eq. (4.29), for exarnple, are obtained from22

                 Xg,(O.,) == ff.ff(O)X.N-ÅíXg.(O.), , (4.40a)
                                  p

                x.cr.(O,) == x.Nfirka(O) -2x.a.(O.), , (4.4ob)

                                   a
witk S = S' and T : T'. We can alse add up these spin-isospin factors with respect to

the dummy indices a and fi for the spatial iRtegrals. Namely, in general st, we define

                      Xx9E ":ÅíXxstE.B 7 (4•41a)
                             aP

X.9st ="2Xxsesa ,

       a

Xmsts ==2Xxstsp }

       p

(4.41b)

Hg ==2ffcrst )

      a
'

hseH\=
tstH (4.41c)

Tken we find
    ,

Xxsts' = HnX." rm XxstE ' (4.42a)

                    X.9s =XxNEI'st rm XxstE• (4•42b)

On the other haRd, X.stDÅÄ and X.stD- are also related to each other through the sttm

formula in Eq. (4.36). Thus we oRly need to introduce just one extra E-type factor
X.st {i2}u{2i} in Eq• (4•24)ny We call T= {i2}U{21} E- type. Then we find

                XxstD- =" XxstE--XxstE,2-Xx9E2, , (4•43a)

 22The interaction-type indices Sa and Sfi should not be Åëonfused with the spin values of clusters.

They always corne up with the nucleon exchange number x.
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   Xx9D. =" 6s,s'6T,T'Xx"Hest + XxstE - X."H'9 rm HstX." nv X.9D- . (G.43b)

After all, we only need to calculate the spin-isospin factors in Eq. (4.27) for T = Ect6

and E., ifA == O or 2.

  After a straightforward calculatlon, we obtaiR

 XxXx.a.t/,,,.ti l == (rm1)M(Axi) ("`.12) {..,2/{..,}< PA'-X]SnTii[IX]Si2Ti2 Il [IAi]SiTi >

  Å~< [IM]S2iT2i[IA2'XIS22T22 l] [IA2]S2T2 > < [IAi"X]Si,T,,[IX]S,iT2i Il [IAilS{ TI >

  Å~<lim]s,2T,2pA2-xls22T22npA21sST6>(iX;f.liE.i)"")xXx/i,,"rv) , (k44)

with

         Sll S12 Sl

X.crN =: 6s,st S21 S22 S2 ,

          s{ ss s

                                 Sll S12 Sl"

                                  .), o ,>, <S,"I S(A) ll S,,>
Xg(E",), S,, S,, Slt S{t S, S' •

                                 Sll S12 Sl
       =2 S21 S22 S2 Ao .>L ,        S{' Sll S12 Sl"
x.a .(A?, S{ S6 St si s2s

                                  o .), A <S,, II S()L) ll Si2>

                                 Sll S12 Sl

                                 S21 S22 S2"

                                  A o A <S,, II S(A) #S2i>
XgE(A,), sn si2 si si ss' st

                                 S21 S22 S2
      ur2 S2, S,, sSt o,>,A ,
                                 S21 S22 S2"        sst
xgE(A,), Si SS si s, s,s

                                  o A A <S,, II S(A) ll S22>

                                 S21 S22 S2
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xg(B-) == Åí
sl' , S6'

(-i) 2S,,-S,-S5ÅÄs6'

Sll S12 Sl

S22 S21 S2

s{' ss' s

Sll S2i S{

S22 Si2 SS

S{' ss' st

S{' ss st

O A A
s{' sst s

        Å~<sS' II s(") ll sS'> (A=o or 2).

                                                                  (4.45)

IR Eq. (4.64), the summation {S.6} meaRs that over Sii,Si2,S2i and S22 etc. The
reduced matrix elements of the spin opeyators are given in Eg. (4.21) and <S ll S(O) ll
S> == S(S+1) for S(O) == S2. For X.TT(A), all the S skould be converted IRto [Ii in Eq.

(4.45).

   Althottgh Eqs. (4.44) aRd (4.45) are not too mttch complicated, we can eMciently

compute them with a computer machine. However, if one of the two s-shell clusters is

an alpha cluster (Ai == 4, for example), we can obtain simple analytic expressions for

the spin-isospin factors, if we use tke valence orbital method [83]. SiRce this tecknique

is discussed iR the next subsection in some detail, we show here only the final result of

tlte calculations for the diagonal (ST : S'T') configurations :

              X." -rm (nv1)X(/.12) , XxT ex X." Ii7xT, (4 46)

with

         I7x En : Xe Eii m IilS (Xo D" + Xi Dm ) -if .4:[XA 2"Mrnv1 )1) Xe E22 ,

         Fx Ei2 == Fx E2i " A:[lll 5-i )i ) Xo E22 ,

         F. E,, = (A2 -AX21A(C2--8 rm 1) xo E,, ,

         F. s, : F. sl =: Elli• (xo D+ -i- xl D- -2AX2 rmww 11 xo E,,) ,

         F. s, =: R. ss =:2AX2(i}liirmXl)) Xo E22 i

         .Pr. D-y = (1 - k) (Xe D+ - 2 A2 X- 1 Xo E22) ,

         E. D- =-k (xl Dww -2AX2-wu11 xo E,,) (4 ay)

The basic spin-isospin factors, XoE.,XoE,,,XeD+ and XiDww are easily derived for
each type of interactions. They are explicitly given by
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[ central ]

    Xo E,,

    Xo E,,

    Xo D+

where Xd =

[LS]

 :Xd + Xe ,

.,
 ffC .. (A22) (w + M) + [tA, (A, - 4) + S(S+ 1) ] (B + H) ,

  A2                    A2
=- li- Xd, Xi D- =: mlli' Xe , (4.48a)
8VV + 4B - 4H - 2M and X. = 8M + 4" - 4B - 2W as usual,

Xo Ell =O ,
C•2,S?+i]- { 12elA } S(S+1) , (4.48b)

[ tensor ]

XeEM :Xo D+ =: Xl D- =O , Xo E22 = :S(S + 1)(2S - 1) (2S + 3)
 '

(4.48c)

[ Coulomb ]

                        1   Xo Eii =1 , Xo E22 : iAp(Ap - 1) , Xo D+ = 2Ap , XI D- =" um Ap ,

                                                                (4.48d)

where Ap == A2/2-F T. is the Rurnber ofthe protons ln C2, and S -- S2 is the spin value

of C2 or the total system. It should be noted that Dde-types aRd S-, S'-, Dth-types only

contribute to LS and tensor kernels, respectively, due to the spatial factors. (See g3.3.2.)

4.3 AIPha Plus lrwo s-Shell-Clt`ster Systems
   If we employ the valence orbital method, we can extend the spin-isospin factors,

obtained in the preceding section for general 2-c}uster systems, to 3-cluster systems wltich

involve an extra a-cluster. Suppose that Ci, C2 and C3 are two s-shell clusters with

mass numbers, Ai, A2 (1 -< A2 pm< Ai -< 4) and an a-cluster with A3= 4, respectively,

and that the spin-isospin wave fuRctions for the total A = Ai + A2 + 4 nucleon system

are described by Cs,T,s,T, ;sT in Eq. (4.38), auginented with the cu-cluster wave function

e(dv). By using the property that g(or) is spin-isospin saturated aRd also the effect of

antisymmetrization, the single particle wave functions ga i!! l (Os)s.> and thB iffi l (Os)sh>

in the GCM kemel in Eq. (3.l9) can be modified into

             Pa wwm" ipa ive qa - I q3> <V3 l ga><th3 I q3> pmi ,

             Vfi ma" VB =- Åë6-lth3><q31thp><ap3IV3>wwi , (4."g)
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for or,6 me 1 or 2. For the normaiization kernel, this replacement simplifies the effece

of antisymmetrization v4' such that the permutation between Ci U C2 aRd cE gives zero

Åëontribtttion due to <pN.IV3> == <g3lthrs> =O for or,P=:l or 2. As the result, we only

need to coRsider a 2-cluster normalization kernel wlth respect to the single particle wave

funcÅíions gA' . and thN p. The overlap between q'V . and thA' p is

                A"V.B i!i <gN.lth""fi>=A,,p-AaA3,,A,3P , (4.sO)

where' u`lc,p =:<(Os)s. I(Os)sh> ((x,rs =: 1,2,3) is used. We assurne that the 2-cluster

doub}e-coset symbol (?lkl is specified by x -ÅÄ a iR Eq. (S.40). Then the full spatial
everlap, which correspoRds to .JSg iR Eq. (3.35), is giveR by

  JNkN = (.rtt.,,A'V.kapP) Ag3

        kll k12 k21 h22     == .li,I.l,o .lli,llxe .lll,ll.l,o .li,ll..lo(-i)X2a'P"=i(icaP-nafi) .#t..i (fior.fip) .fit.,i A:EP

       Å~ fi Aget ft..i(hae7"ap) Iir A3Xrs 2.--i(hapnvnctp)Ag3-22.,fi.,i(kap-nae) , (ksl)

        ame1 rs=l
where the binomial expaRsions of Aa6 in Eq. (4.5e) are err}ployed. For the powers of
A.3 etc., we can use the weight conservation ÅíZ.,i k.fi =: Ap and ÅíB.wh k.p =: A..

Irheit, if we extend n.p to iRclude a, S :3 by defining n.3, n3p and n33 through

                        22             na3 :Aa nvÅínafi , n3ff == Ap-Åínap ,

                       P==1 cr==1
                                2
             n33 ur=4-Ai-A2+ Z) n.s , (4.52)
                              a,P =1

we find

                 33                 2na6 == Acr , 2nap --f': Ap • (4.53)
                B=1 a==1
Namely, the 3Å~3 matrix [ni is nothing but the 3-cluster double-coset symbol given by

Eq. (3.42). In terrr}s of [n], the full over}ap iR Eq. (4.51) is expressed as

         JNhN == .S,ilrc, .:,;..,(-1)"33 .#t=, (#cr,,66) .rtt=,AZE" ' (4 54)

which 2s combined with the 2-cluster spiR-isospin factors XkN. as in Eq. (3.3l) and yields

                                    3
                 GfN(s;s') =2x." fi A.ZfiP , (4.55)
                            [rt) cr,P==1



                cHF(d) = ÅíANkAg3 2 XhdE.elZ]crrs ,

                         [kl a,P=1
where the Hartree-Fock type spin-isospin factors are glven by

     XkdEctp ": XadE." = (-1)a (A.i) (A.2)

         Å~<za esT(Ci U C2)4(a) i Åí Åítvst i CstT,(Ci U C2)e(cu)>

                             sffE.p tGa
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with

                 Xi -- (-l)"33 P,] .#t,.,, (#:Prs)XkN (4 56)

We can write this symbolically

                    X." -- (-i)"33 :Il,i)] (Åí) Xk" (4 57)

If we use the notation X.N and X(N.y..) for the 2-cluster and 3-cluster spin-isospin

factors, respectively, the relationship in Eq. (ag.56) or Eq. (4.57) is explicitly given by

   x(N.,..) == (-i)x+ynvu"v.,.rri.itili{iilM'i,}.} (AAIz.") ([i) (g) (2; III g)x." (4 ss)

Namely, the 3•-cluster spiR-isospin factors are given by a simple sttperposition of the

2-cluster factors.

   We can easily extend the above discussion to the spin-isospiR factors for the inter-
action kernel. In this case, the sum of the two-body interaction Z),<t w.t is divided into

three groups ; namely,

         A
        2vst"= 2 vst+ 2 2vst+ 2 vst, (4r•s9)
        s<t s,tGcr,s<t sECIVC2 tGcr s,tECIUC2 ,s<t
which we call cit-core, Hartree-Fock, and valence contributions, respectlvely. For the

cM-core coRtribution, we can easily sltow

                   Gcore ,..2xÅíoreAnczr{33;33} , (4.60)
                           [n]

where XfiOre is proportional to X.N ;

                                   4
                 xfiO'e :X."<C(cM)l2w,tiC(ce)> . (4•61)
                                  s<t
In Eq. (4.60), a shorthand notation A" : I [g,p,.i A:ZP is err}ployed. The Hartree-Fock

contribution is composed of the direct term GHF(d) and the exchaitge terrn GHF(e).

Tke direct term is giveR by

                                   2
                                            N (4.62)

(4.63)
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and

 Eap =" A.-BiA3-3i<PNcr931UI3bpth3>

     = AN.Mb (AapT{.p ;33} m AorA33At3P [7r{a3 ,33} + T{3p ,33} m 7r{33 ,33}]} (4•64)

We use this E.6 in Eq. (4.62) and expand Ak by using the notation

           kCiP iiii k- e(aB) and na6 iEi n- e("B) (<i .65)

for a, fi= i, 2 and 1, 2, 3, respectively. Then we find

             2GHF(d) =2A" 2 {X."{F.(pi})7T{.p;33}+X."{F.(B2}) [T{a3i33} +T{3p;33}-7r{33;33}]})

       [n] or,P :1

                                                     (4.66)

with

           Ilil.lilla.ili, l= (-i)"33 :II,?, ( ["::1,Zi )xg.., . (4.67)

Similarly, we can obtain GHF(e) by the modification vst ---> -Pst vst ; namely,

                2  GHF(e) ,., m2An 2 x.H{F.(p3}) [7r{.3,3p} - 7r{.3,33}- 7r{3rs;33} +7r{33;33}] ,

           [n] a,P=1
                                                     (4.68)

where

             X."{".(B3})=(-i)n33 P,] (k#fi)Xhe E.fi , (4'69)

with

  Xhe E.e ": Xg E., = (-1)"(A.1) ("`.12)

   Å~ <za CsT(Ci u C2)e(cr) l 2 2(-P,t)w,t l Cs,Tt(Ci u C2)e(cM)> •                                                     (4.70)
                     sGE.B tEcr ,
Finally, the valence contribution is given tkrough

               Gvaience=2A'VfeAg,2xnv{i , (4.7I)
                       [k] T
with
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  Xk T =: Xa {aP;76}

                           T     = (-1)a (A.i) (i`.12)<za g.sT(Ci U C2)Iil.ll, wst]gs'T'(Ci U C2)> (4'72)

and

  T = T{.B;cr6}
  == l2i.-GANcr-g {A.ffAty67'{1 .prv6} - AapA7i3At36 [7r{a6,36} ÅÄ 7r{as ;rr3} rm 7r{a6 ;33}l

  - 2`ll433At3B A76 [7r{36 ;76} + 7r{.3 ;or6} - CZr{33 ;cr6}]

  +Aai3At36 A7A33At36 [(7r{.3;ty3} + 7r{3p ;36} -F CTr{33 ;33})

  +(T{a3 ;36} - T{a3 ;33} - T{3fi ;33}) + (T{3s ;73} - T{33 ;73} m T{33 ;36})] } '

                                           (4.73)
rl'he expansioR of Ah in ffq, (4.71) yields

           2Gvaience..2An 2 {X.V{(k)rs;76}CZr{ap;76}

      in] {crPrv6}
+2X.V{(Z)p,.6} [T{ap rv3} -F T{ap;36} - T{ap;33}l

+X.V{(2)rs,ty6} [(T{or3;73} + T{3fl ;36} + T{33 ;33}) + 2 (T{or3 ;36} rm T{a3 ;33} - T{3p ;33})] },

                                           (4.74)
where the basic factors X.Y {(k)p;76} etc. are defined by

        X.V{(k)p.6} (#a.P,l:,6)

        X.V{(2.)B,.6} "(ww1)"332 (kct.".?5) Xk{a6rv6} (4•75)

                     [kl
        XnV{(3a)B;v6} (lecrfin'crfi)

with

   kars rv6 == k-e(ctP) -e(ty6) axxd nctBiV6 =n-e(crP) -e(76) . (4.76)

The fUII spin-isospin factors X. {.p rv6} for the interaction kernel is obtained through

          G ,., Gfcore + GHF(d) + GHF(e) -l- Gualence

                  3            :ZA" 2 Xn{asrr6} 7r{ars;ty6} , (4•77)
             [n] {aP;ry6}
with the fina} result given by (cM, P, 7, 6 = l or 2)
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   Xn{ap;76} "" XnV{(3)B;cr6} ,

   Xn{orp;73} == 2XnV{(2a)B;76} + 67•orXnV{(Z)fi;aB} ,

           6
   Xn {crfi ;36} == 2 XnY{(Z)p;76} + 66•BXn"{(Z)6 ;ap} 7

           ty
   Xn{crp;33} " X."{".(p'}) -2X.V{(Z)rs,.6} - X.V{(2.)p ,ap} ,

                7,6
   Xn {a3 ;73} =: (1 - i6a,7) 2 X.V{(3.)p,.6} + 6or,7g Åí X.Y{(3.)fi ,.p} ,

                 P,6 P
   Xn {3p ;36} = (1 - g 6p ,6) 2 X.V{( 2)p ,,6} + 6s,6 } 2 X.V{( 3.)p ,.p} ,

                 a,7 a   Xn{a3;36} == rmX."{".(63}) +2 X.V{(Z)p,,6} + X.V{(3.)6 ,.6} ,

                 P,7
   Xn {a3 ;33} =" Åí( X."{".(fi2}) + X."{F.(p3}) ) - 2 X.V{(3.)p,.6} - 2 X.V{(2)fi ,.p} ,

           P P,7,6 ff   Xn{36;33} == 2(X."{".(p2}' + Xn"{Fa`B3}) ) rm 2 X.V{`2'p,.6} rm 2X.V{(2'p,.p} ,

           or a,7,6 cr   Xn{33;33} =XÅíOre in2(X."{i.r(p2})+X.}i{".(fi3}))+ 2 X.V{(Z)p,.6} • (4•78)

               cr,fi {orP;cr6}
Here, the basic factors X." {F.( p' }) , X." {".( p2}) , X." {F.( p3}) , X.Y {(k)p.6}, X.V{(g)p.6} and X.V{(3.)rs,.6}

are obtaiRed through Eqs. (4.67), (4.69) and (4.75), by using

    xfiore .., x.Nl(XdtXe) f., ( cC.e.nS.r."ib , (4.7g.)

            K O KLS and tensor
        Illif.l. ::fi, l :kctzi3 xfoN wwS ( Iillg for centTai , (4.7gb)

 XkdE., == (-2)XkeE., "" kap XkN +2<T'TzlOlTTz>XkTE('.), for Coulomb ,

                                            (4.79c)

        lg.g::l:x,ff.(t),{E,4.W:,2ilili for Ls, (4.7gd)

           XicdE.p == XheE.p=O for tensoT. (4.79e)
Furthermore, XkN aRd Xk{.prv6} are the 2-cluster spin-isospin factors derived in the

preceding subsection, and Xd, X,, XkT S.)p and XgE<i.)p are given by Xd =: 8W + 4B -

4H - 2M, X. == 8M + 4H - 4B - 2W and Eqs. (4.44), (4.45).
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g5. Systematic Evaluatien of RGM Kemels in the Complex Generator-
    Ceordinate Method

   ln g3, we have found that the GCM kernels for n-cluster systems of (Os)-shell
ciusters have rather simple structure with respect to the (n - 1)-dimensional set of

complex geRerator-coordinate vectors, z == (zi,•••,znmD, whatsoever we choose for

relative-coordinate systems betweeR clusters. These kerRels are usually referred to as

complex GCM kernels. It is well known that the coraplex GCM kernels have a nice
property of non-singular transformation between the GCM and RGM kemels. [I08],
[IO] There exist a couple of different versions of complex GCM. [92], [7] However,

these are essentiaily equivalent to each other and they share the property mexxtioned

above; namely, the traRsformation from GCM to RGM kerne}s are easily carried out
by simple Gaussian integration. Here, we use the Bargmann-integral [93] version of

complex GCM, developed by Horiuchi [92] for particular applications to eigenvalue

problems of fiormalization kernels in EIIiott SU3 sckeme [97]. We fiRd in the next

section that this scheme is also convenient for evaluating Gaussian matrix elements of

RGM kernels.
   A basic relationship used for the present kemel transformation is the Bargmann's

integral representation for the Dirac's 6-function, which is satisfied by the generating

function A.(C,z) in Eq. (3.l3) ;

                  fdpa(z)A.(r,z)*A.(C,z)=6(r-e) , (5.I)

where dpa(z) is the 3-dimensional BargmanR measure [93] defined by

                  d pa(z) == Tr3e'(Z"Z) d3(ee z) d3("Cbe z) . (5.2)

By using 3(n - 1)-dimensional versioR of Eq. (5.I), we can find the RGM kernel for
Ist(z ; z') in Eq. (3.17) through

        Mst (R; Ri) =: <6(C - R) ipo l Ost A' 1 6(C - Rt) Åëo >

                   = fdpa(z)dpa(z')A(R;z)A(R';z')*ist(z;z') , (5.3)

where R = (Ri,•••, R.wwD, 6(g - R) == I [Z•..ma; 6(g, - Ri), dpa(z) : IIZ•.-,,i dpa(zi) etc.,

and A(R ; z) is given in Eq. (3.I5). Here again, we can get quite genera} expressioRs for

the explicit result of Bargmann ixxtegrals, due to the Gaussiaxx nature of GCM kernels

for s-shell cluster systems. If we fix a particular type of nucleon-exchange [k] and also

an interaction type T for interaction kernels, each term of the GCM kernels in Eqs,

(3.38), (3.51) and (3.69) is coRveniently .factorized iRto

               JN(x;z') =exp{Tr(z*(2tz')} ,

               fe"P (i; z') =: IN (z; x') exp {-S (pz* + p'z')2} , '

               fst (zi z') == IeXP(zl z') 7)gcM(z; zt) , (5.4a)
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with

                            1 tcentral
1[>gcM (z; 2t) == i[Pz",P't]•S for st == < LS . (5.4b)
                3VI6 [Y2(Pz*+P'of)S(2)](O) < tensor

The traRsformation of the Coulomb and kinetic energy kemels 2s easily obtained frorn
that of leXP(z;x') and JN(z ;zt), but for later convenience we also give explicit forms

of tkese GCM kerRels as

JcL(.,.t) ,,, iN(x,.t) lp..2V+iiJ p,.,1 erf (glpz* -t- ptztl) ,

 IK(z;x') == fN(z;z') {n-1-g (Tr(tz*z')+Tr(`z'x')) -l- gTr(z" (2tz')} . (5.4c)

We call these J9(z;z') witlt parameters Q, P and P' the sÅíandard form of complex

GCM kernels for (Os)-shell cluster systems and all the transformations in this and the

following sections are carried out with respect to these forras.

   The Bargmann integrals in Eq. (5.3) are most efficiently caryied out by using some

formulae which are specifically derived for this purpose invoiving many-dimensional

GaussiaR transformations. Since almost all these formulae can be straightforwardly

obtained, only brief comments are made conceming their derivatioxx. We first derive
these for n-dimensional vectors g ff (zi,z2,-••,x.), iRstead of 3(n - 1) dimensional

ones z = (zi7•••,zn-D, since the reduction to the case of our present interest ls easily

implemented. The starting point is a real Gaussian integral

                 fwwO.O. dxeww "X2 = (Z)$ (a>O), (5.5a)

or lts exteRslon

            f-C.X.' dxewwa(x+u)2 =(Z)g (uGq a>o), (s.sb)

wkere u is an arbitrary complex number u G C. A standard procedure yields the
follow}Rg n-dlrRensional formula for Gaussian integra}s ;

           fffO.O. dxl •••dx. em"XAX+2t"X =7rg(det A)wwgetuA-'u , (s.6)

where u : (zLi,•••,un) E Cn is aR arbitrary compiex vector and A is a real
symmetric matrix (tA = A) satisfying the positive-definlteness condisiolt. Now

we move to Bargmann integrals with one-dimensional Bargmann measure dpa(g) ur=
7rwwie-Z*Xd(eez)d((kYsz) and their n-dimensional extensioR dpa(z) = dpa(zi) ' ' 'dpa(zn)•

By applying the formula Eq. (5.6) to the real and imaginary parts, separately, we can
easily prove23

 23The formula Eq. (5.7) is well known, for example, in the BargmaRn-Fock space approach to
path integrals in the quanturn field theory. See Eq. (9.56) in [le9].
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          fdpa(z) e'`X"(Cww1)X+tU*X+tX'V = (det C) mmletU"C-iV , (5.7)

for arbitrary u, v e C" and a real, symmetric and positive-definite matrlx C eC ur C).

We can extend the formula in Eq. (5.7) to lnclude tx*Az* and txBz type terms also, by

Iinearizing the z* and z terms-with the aid of Eq. (5.6). Namely, we use z* and z for

u iR Eq. (5.6) and use Eq. (5.7) first and then integrate over x etc. by using Eq. (5.6)

agaln. Through this procedure, we can get the foIIowlng formula for n-dimensional

Gaussian Bargmann integrals, which is most convenlent for our purpose ;

  fd pa(z) exp {-itx*Az* - gtzBz - tz*(c - 1)z + tz*u + tvz}

=:
 [det (ACAHiC - AB)]-g exp { - i `u(CB-iC - A)'itL - i `v(CA-iC - B)-iv

  ÅÄ`u(C-BC-iA)-iv}, (5.8a)
wheye u,v E C" and A, B and C are all n Å~ n real and symmetric matrices. In the
process of the proof, we have assumed that the matrix Ami - CwwiBC-i is positive

defixxite, whick guarantees that the determinant in Eq. (5.8a) is non-zero ;

           det(ACA"iC-AB) =det(BCB"iC-BA)#O . (5.8b)

Note that tkis determinant is symmetric with respect to the interchange of A and B.

   Now we can use the formula iR Eq. (5.8) and the property of exp{tz*z'} as a

reproducing kerne!

                     fdpa(z)f(z)etZ""' == f(x'), (5.9)

to derive

     f d pa(z) d pa(z') A(R ; x) A(R' ; z')* exp{`z*qz' + `x*zt + `vz'}

   .. (2F)b D-s ,.p {mgtfii (A rm g) ,i} - it.iii, (Ai - g) .i}t +tAcf2'

     +t.i2(Au - c.) +t(A,. -tc.) fii, - g t.,<tu rm g t.Ai. +t,,c. } ,
                                                                (5.10a)

where ft =: (2V57iRi,••`,2V5VIR.) etc. and

               D == det (1 - `QQ) == det (1 - Q`9)

               A :(1 - qtq)-i , A' == (1 -t9<?)-i ,

               C=: Q(1-t9Q)-i =(1-9tQ)wwiQ . (5.IOb)
In Eq. (5.IOa), we have assumed (7i,••-,7.) for she n-dimensional A(R;z) and
(ry{, • • • , 7A) for A(R' ; z'), aRd used a shortkand Rotation

                  (2#try )g Eii t/C.E, (2 .7z76)S (s io,)
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At this stage, we move to the 3(n-l) dimensional parametrization zj o zai (a : x,y, z
                     Aandi = 1,•••,n-1) and R == (2ptRi,•••,2VMI:T R.rmD etc., and use the property
that (?od,Bo' - 6a,p(?i,,' yields D = det(6.,p6i,,• - (`Ql9)i,,•6.,p) == {det(l -t(?(2)}3.

We also use tlte vector notationz = (zi,•••,zn"i) and u = (uh•••,un-i) etc•, and
their inner product (u • z") ii! ÅíZ•.,-,ii (ui • z,'• ). Then by assuming the coeflicients in Eq.

(5.IOb) for (n - 1) Å~ (n - 1) matrix (?, we find that the Bargmann transformatioR of

the GCM kernel, exp{Tr(z*Qtz') + (u • z') + (v• nf)}, is given by the same exponential

form as iR Eq. (5.IOa) with tL ---" u and v --> v, but a slight modification of the front

factor iRto

      (2#IEI)gDmg .,h (22#iEi)g ., 11ij.,i (2 ,",yi"yE)g (s lod)

In particular, if we set u = v ur O, it gives a transformation of the norraalizatioR kernel :

                         A   MN(R,R') == (2>llllZ)2 rrg

       . ,.p {-gtf} (A - g) A rm gt,f2, (A• - i) kt +tkcf2, } . (s ii)

   In order to derive transformation formulae for the interaction kernels, we first assttme

that the GCM kernel is given by

                  f(3; z') == fN(z;z') fGcM(z;z') , (5.12a)

with

      •ZGcM (z, i) : exp {-S (.F)z" -i- P' z')2 + (u • z') + (v z')} (5.12b)

Here agaiR, we can use the Gaussian-integral representation

  exp {-i)p2] =(7rA)m:fdy exp{-glr y2 +zVii(p y)} (A>o) , (s i3)

to linearize the quadratic term ofz' and z' in Eq. (5.12b). Then we can use the formula

in Eq. (5.10) again and carry out the y-integral after that. From this procedure, we can
show that the RGM kernel for Ist(z ; z') in Eq. (5.12a) is given by

                 M(R;R')= M"(R;R') jE '(R;R') (5.l4a)
                                                  '
witk

    .r(R,Rt) == (1 -IA.)g exp { - g 1 -AA,, v2 +t(ANRA - aft,).

              +t. (A-t, fti -taA) m}t. A'v.- g t. A'vt.+ t. o. } . (s.l4b)

Here, various coeMcients are given by
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f =AP-C.P' , g == A' .l)'-`C.l) ( (n-1) -
(tz = tPf + tP'g =: t.l)A.l ' + tP'A' P' - 2`PCP' ,

      A .--V == tfR+ tg R' ,

dimensional vectors) ,

(5.14c)

and
             i-4' = A+1 rmAA,, f`f , A'S" =: A' +1rmAA,,, g`g ,

             U=" (7 ww 1rmAA,, f'g' (5•14d)
In particular, u rm v = O case in Eqs. (5.i2) rv (5.l4) yields the RGM keynel for
feXP(x ; z') in Eq. (5.4a), whiclt correspoRds to the Gaussian central interaction-

   We can exteRd the reduction of 1GcM(x;z') 2R Eq. (5.12b) a step further, to
separate out tke linear term IPcaM(z;zt) =: exp{(u ny z*) + (v•al)} wkich serves as

a generating functioR of the non-central polynomial terms. The correspoRding RGM

       A?"s -v iv A"factor IP(R ; R') contains the coeMcients A, A' and C as is seen in Eg. (5.I4b). However,

the first-rank and second-rank Åíensorial properties of the LS and tensor factors greatly

simplify the finai expresslon due to the relationship in Eq. (5.I4d). The finai expressiens

of the RGM keynels in Eq. (5.3) are giveR by24

       Mexp (R , Rt) : MN (R , R') (1 ww1 in ) g exp {-g 1 -Ala v2 } ,

       Mst(R;Ri) == MeXP(RIR') Pst(RIR') , (5.15a)
with

Pst (R l Rt) ,,.

                   1
(i-iAa) i [`P(Afil ww C)i2') ,tP'(A'.f2' - `C.i})] • S

       (,-'A.)2 3Viilii [cy,?,(v) s(2) ](O)

                           f central
                   for S')=:S LS .
                           K tensor

(5.15b)

Besides the normalization kernel MN(R ; R') and its coeMcients A, A' and C in Eqs.

(5.ll) and (5.IOb), tke necessary coeeqcients for the interaction kernels are given in Eq.

(5.I4c). The transformation of the Coulomb and the kinetic energy kemels in Eq. (5.4c)

is given by

  McL(R,R')=M"(R,R') l$1 erf( 212Vl .)) ,

   M"(R; R') : MN(R ; R') { - (n - 1) + 2Tr(A + A') - g [`ft (4A2 - 3A) Q

               +tfi, (4At2m3A') ,i}' -tiii (sAQAt - 2Ct) IZ2' ] } . (5.15c)

 24[I]his sirnple result of factorization in Eq. (5.15) was first obtained for 2-cluster systems in she

RGM study of noncentral IVAr potentlals in terms of a quark modeL [lIO], [l1l]
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S6. Gaussian Matrix Elements of RGM Kernels

   For practical applications of the many-cluster RGM kernels derived in tke preceding

section, it is essential that we can easlly carry ouÅí the angular-momentum projection to

cope with many iRvelved aBgular-momentum couplings of the reiative wave functions
dtte Åío ciuster yearrangerneRts. Although this procedure is well defined and contains no

essent!al dieeculties, it becomes quite tedlous for the systems of more than three clusters.

It is therefore very usefu1 if we have some nice method to evaluate the RGM matrix

elements with respect to basis states with some speclfic aRgular-momentum couplings

for the relative motlon. Tkis is achieved by using Gaussian-type basls wave functions

with arbitrary width parameters, in whick tke expressioR of the RGM matrix elements

turBs out to be given by only fiRite number of terms corresponding to the intermediate

angular-momentum cottplings. In fact, almost all the 3-cluster RGM calculations (and

also multicowhguration RGM calculatioRs by Hackenbroich, N[ofmann et al. [16], [20],

[31]) up to the presenÅí kave been performed in th6 variational method for scattering

and bound-state problems witk these Gaussian-type trial wave functions.

   In this section, we combine the Bargmann-iRtegration techniques for the kernel

transformation with the theory of double Gel'fand polymomials developed for the rep-

resentation tkeory of unitary groups [86], and derive a coRvenient formula for the

Gaussian matrlx elements of RGM kernels. The derivation is composed of tltree steps.

First we introduce some kind of reductioR rule from 3--dimensional complex vectors to

2-dimensional ones, whick eliminates the 03-invariant polynomial terms of h.o. wave

fultctions iR the angular-momeRtum representation. This new technique is used to de-

rive a transformation formula for Gaussian matrix elements directly from GCM kernels.

Since the structure of tkis transformatioR is only slightly different froma the one for GCM

to RGM traRsformation, we caR employ the fUg result in the preceding section in order

to derive generating functioRs for Gaussian matrix elements. Finally, we expand these

generating functions in terras of the double Gel'faRd polynomials, and obtain the RGM

matrix elements as the expansion coeMc2ents.

6.1 Transformation FoTmula for CatLssian Matrix Elements

6.1.1 Two-Dimensional Reduction of ]rhree-Dimensional Bargmann Yariables
   Suppose R = (.R.,Ry,R.) aRd g = (&,e2) are 3-dirr}eBsiokal and 2-dlrnensional

complex variables, respectively, connected by a simple relationship

       R. :g(-e?+g,2) , R,, ==ii (C,2+e,2) , R. ==&4, . (6.l)

If we use the standard spherical teRsor notation of real 3-dimensional vectors even for

tke complex vector R, the relationship (6.l) can be expressed as

              Ri :-ijlis (R. +iR,J)=: is e? -- vii(4) ,

              Ro =R. :Ci 62 == vio(C) ,

              Ri-i=X(Rm -zRy) =: I>s 622=vi-i(g) . (6.2)
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Here, we have also used the Schwinger's spinor representation [il2], [93] for angular-

momentum states '               '
                                 (ÅÄm gS-m
                     ve. (g) -wu . (6.3)                                (e + m)! (e - m)!

The essence of the transformation in Eq. (6.l) or (6.2) !ies in tke restriction of the six

independent real variables of the complex R to the four iitdependent oxxes of 4, due
to the simple property, R2 = O, directly proved from Eq. (6.l). We call this R i e

reduction in the following. If we consider another 3-dimensional complex vector S and

its reduction n with S t n, we can easily show

                                 1                        (R*•S) =E (g*•n)2 , (6.4a)

                         1& ep1 2 1
               (R'S)=-i c, n, =rmiidet(g,n)12 • (6.4b)

   Now Iet us consider the h.o. expansion of the generating fttnctioxx A7(r, z) in Eq.

(3.13) in the angular-momenturn repyesentation ;

              A. (r, z) == ( ll?tl ) X exp {-tyr2 + 2v y (r • z) ww 312t }

                      =2VNem(ri7)* U(No)em(z) , (6.5a)
                        Nem

where r is a real vector, z is complex, and

                    VNem(r, ry)=RNe(r, or) Yem(f) , (6.5b)

                            31      RNem(r, ry) = VII5F (21it)l)a [(]ig81)ll -e {)i!)!!] i (2vyr)eLÅí+;(27r2) e-crr2

                                   with N== 2n+e, (6.5c)

                                          1         u(No)em(z) -- [(N rm e()2!.,e(+N2!e! + i)!.,]E (-z•z)" ye.(z) . (6.sd)

The spherical harmonic polynomial of order e, Ye.(z) ,ls given in ilq. (3.63). We

modify z in Eq. (6.5) into R and perform the reduction R l e . We can easily show that

  U( No)Em(R) = 6n,o lYem(R) , IYem(R) = (2e - 1)!! vem(C) for RSg . (6.6)

The last eqttation in Eq. (6.6) is the extension of Rge == vipa(C) in Eq. (6.2) and ls shown

as follows. We first use the angular-momentum C-G series



    MULTICLUSTER RESONATING-GROUP METHOD OF s-SHELL CLUSTER SYSTEMS l51

            [Yei(R)Ye2(R)],,.= 5ilti2e-<eiOe20leo>yem(R) ' (6.7)

                                                          'aRd show that the spherical harmonic polyRomlal is expressed as

                         1               Yem(R)=vm ['''l[RR]2R]3''']e. • (6•8)

Then, by R i e reductioR, we move to Rp = vige(g) and use (see Eq. (5-3-ll) of reÅí

[86])

                                          1          [ve,(g) ve,(e)]e. = 6e,e,+e, (2 (e> e+, e2))7ve,+e,,m(e) . (6.g)

Now going back to Eq. (6.5), the transformatioR z - R S 6 yields

                   3 Aty (r, R) IRig = (.21?tl ) lf emv2 e2 V57 ("R) IRig = ;. xe. (r, 7)" (2e - 1)!! ve. (4) ,

                                                             (6.IOa)

with

          xem (r, or) = Yeem(r, or) = xe (r, 7) Yem (f) ,

                        3Z          xe(r, 7) = (211t]l) if [(2e4+ri)!!]7 (2vs r)ee-7r2 , (6.iob)

or

               xem(r,7) == (2#tL)2cye.(2vyr)e-y2 . . (6.ioc)

   If we further express Eq. (6.IOa) as

           e2VY(r'R)IRie =2 Ve.(2VYr)' (2e-1)!!vem(g) (6•ll)
                        em

and modify 2VYr into a complex variable S, we obtaik

            e(R'S")IR;g :2 (2e-1)!!ve.(g)Ye.(S)' . (6•l2)
                        em

This is nothiRg but the R l g reduction of the reproducing kernel iR the Bargmann

space ;

               e(R'S*)= Åí U(No)e.(R) U(No)e.(S)' • (6-l3)
                       Nem
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6.1.2 Tramsformation Formula for One Yariable
   The Gaussian function we are going to deal with frorn Row on is xe(r;ry) in Eq.

(6.10b). In order to find the Bargmann image for this Gaussian function with an
arbitrary widtlt parameter or, we fust consider a simple Gaussian integral

      fdrA.(r, z)" A.,(r, z')

                 A      =: (2tyrw+y)2 exp {4 iii l,g (z*2-z'2) + 27rw+ 7, (z'•z')} (6•i4)

If we set ry - opry, 7' --> ry with n > O, this can be expressed as

  fdrAn7(r, z)" A.(r, z') == (1 -e2)g exp {-g (z*2 - z'2) + Vir III2(.* . .t) }

                                        1-n
                              with s= and -1<e<i. (6.l5)
                                        lÅÄep

When ny =1 or6 = O, Eq. (6.i5) is redaced to the expressioxx of the reproducing kerRel.

We set z -" R S g in Eq. (6.l5) aRd use Eq. (6.10a) and (6.i2). Then, by noting that

Yem(z) is a homogeneotts polynernial of order e, we can easily find

     fdrxem(r, n7) A.(r, z) == (1 -g2)}(e--g) IYe.(z) eSZ2 wwww- we.(z, s) . (6.l6)

Namely, tuem(z,E) is the BargmanB image ofxem(r,nor)•

   Let I(z) be a term of GCM kernels, for which the corresponding RGM kernel is

defined through

                                '                    M(r) =fdpa(z) A.(r, z)'J(z) . (6.l7)

In the foUowing, we find a convenieRt foymula for calctdating the RGM rnatrix eiement

                   fuie.(op) ww- fdrxe.(r, opor)M(r) . (6.l8)

First, the formula in ffq. (6.16) shows that Me.(w) is given by Åíhe Bargmaitn integral

         iVIem(n) =fdpa(z) wern(z*,g)I(z) with s== INwwFZ • (6•19)

The essential poifit of the present approach is tkat we can replace Åíhis Bargmann integral

with the original one 2n Eq. (6.l7) with a small modification of coeeecients. To show

this, we extend r in Ary(r, z) to a complex R and rr}ake a replacement

                        ll                               R, z-ffz, (6.20)                  r->                      2jff

where vi=El for e > O should be understoed as a princ;pal value. Then, we perform

R S g reduction and use Eq. (6.12). From this procedure, we can easily show that
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      ,`i. (k 2iilgi 7 V=ZiZ) RJe

             3      = (Zt?i) if ]lli.ll) (2e - i)!! (i - s2)-S(e-Yg) ve.(c) we.(z*,e)* . (6.2i)

This expression yields

     u.,e.(z*,E) == (1 -g2)S<e+g) (2el- 1)ll (illl)g

                Å~fdpa(g) vem(g) /icr ( 2ig 2i5}i , V=5 z) rp .te (6 22)

If we use this representation for we.(z*,6) in Eq. (6.19), we obtain

      Me.(op) =: (1 - s2)g(e"g) (2i- 1),, f du (c) ve. (g) M"V(g) IRte (6 23)

with

        M'V(R) ffE (glp)e fdpa(z) A, (vEl 2{X,V Ez)* I(z) (6 24)

Here we furtker use a property of Bargrr}ann iRtegra}s

            <f(c z) Ig(z)> :<f(z) lg(c* z)> for Vc GC , (6.25)

which is valid for arbitrary f(z) and g(z) in the Bargmann space. rltus we find

       MN(R) = (S)Efdpa(z) A. (# 25,z)* l(g*z) (6 26)

This lmplies that the R(}M kernel MN (R) iR Eq. (6.26) is easlly obtained from she new
GCM kernel IN(z) : f(V :Iii*z) by a simple replacemeRt R --> (R/2VY)*(1/F)"
in tke correspending RGM kernel, as long as she transformation forrnula in Eq. (6.l7)

is explicitly known. The extra Bargmann integral for ve.(e) in Eq. (6.23) is usualiy
unnecessary, slnce the expansion of MN (R)IRig in the basis states ve.(4) yleids much

easier rnethod to handle this process of aRgular-moraentum projectiolt.

                  '6.1.3 Amplication te n-CltLster RCM Kemels
   In n-cluster systems, we deal with angular-momentum coupled (n - 1)-body Gaus-

sian trial functions defined through

       xeLM(r;n) ur [••• [[%e,(ri,nyi7i)Xe2(r2,.op2or2)]e,, Xe3(r3,n373)]e,,,

                  '''Xen-i(rn-1,nn-1tyn-1)]LM 7 (6.27)
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and their RGM matrix eiements25

 Mest(is),et(ust)(n;n').":<[xeL(r;n)gs],. [ L' '                                   lM9(r;r')1 xet (r ;n')Cgt],M> •

                                                              (6.28)

Here, e etc. denotes a set of angular-momentum coupllngs specified by the following

Gel'fand pattern [86]

  Ie1L> i!EI [• ••[[e, e2l ei2,e3l ei23, ny ••,e.-i] L>

       el+•••+e.-1+L el+•••+e.-1-L o ny••••••-•••• o

  = el+e2+e3+e123 elÅÄe2+e3-e123 0 '
                       el+e2+e12 el+e2-e12
                                  2el
                                                              (6.29)

We use the same notation for 2 Å~ (n - 1) double Gel'fand (DG) polynomials [86] ;

   veL"(e) ii! cp$2, ",-') ("")(e)

         == ['t'[[vei(Ci)ve2(C2)le,, ve3(g3)le,,,'''ve.-i(gn-DlLM , (6•36)

where A+2pa =: 2 (ei -F e2+••-e.mi), A/2 = L and A/2-r : M. If we use a shorthand
notation I e I = ei -5- e2 + i • • +e.-i, the relationship between (Apa)r aRd LM is given by

              A= 2L , pa :I ei -L , r=: L-M. (6.3 1)
We extend the formula in Eqs. (6.23) N (6.26) to tbe (n - 1)-dimensional aitgular-

momentum coupied states, and apply it to the RGM matrix element in Eq. (6.28).
Then, we find

                                                           ttttttttttt 1 Mest(LJ.),,,(u.,)(ny ;n') -- (1 - e2)S(eÅÄg) (1 - f'2)5(e'+;) [ (2e nd i)!!1(2e, - 1)di

 Å~<[veL(e)Cs],.lMN9(R;R')IRse,Rtig, [veL,'(C')6g,],.> , (6•32)

where the matrix element is taken for the Bargmann integrals over dpa(6) dpa(C') and

                     33    MNst (R i Rt) urrm (S) if (g, ) lf fdpa(z) dpa(zt)A (k ,S , z)

                xA (k 2{il'iii ;z')* Jst (R*x;V :I57*z') . (6.33)

Ixx Eqs. (6.32) and (6.33), we have used some shortkand nosations through

 25In Eq. (6.28). Cs and eg, are the "forrnal" spin-isospin wave functions aRd should not be
confused with the 2 Å~ (n - 1) Bargmann variables 6 = (gi, • • - g.mD•
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                      n-1        (1 m ,2)s(g" g) ., g., (1 - .?)S(et+g) with e, =: li Zi ,

        (2e-i)i,=g.,i(2e,-i),i, (gll)g==tit.ii(,7,r,)g, (634)

and v` :15 is supposed to be an (n-1) Å~ (n-1) diagoRal rnatrix; V=E : (( v`=ZII)i,• ) =

( 6i,j V' :5I) etc. The modifieatioR z* - V :iiz* andz' - g* x' in Eq. (5.4) implies

  g -- Q == vt :ZilQV=157* , p --> fi; =g.p , .ii{i == ff*p, . (6.3s)

We set the coefficients of tke corresponding RGM kernel in Eqs. (5.leb) and (5.14e)

   N"v iv -.. -v )-s Aas P,A, A', C, f, g and -a"V,26 and further make a replacement R --, R/vr :Zll, R' -

R"/V=I57' and define

       AA=#(imAN) k , AAt =: rk. (2mANt) pt. ,

       A 1N1 -"s l'v 1       C="v=ECv=g7., f:v=Ef7 g-ff.g. (6.36)
From this procedure, M"V (R; R') in Eq. (6.33) is derived as

M"VN (R , R,) ,,,, D-; ,.p {i tR (AA + S, ) R+ gtB' * (AA' + i, ) Rt* + tRa R' *} ,

MNexp(R,Rt)=: JVi'N(R,R') G +iAa)g exp{-g i +AA..v v"V2} ,

MNst(R;R') == .lllexp(R;W) liiS9(R;R') , (6.37a)

with

                                     1
    cf}; st (.R} , Ri) .., (1 +iA..-) Z [`-fi;R+ `-i5R' ",`JP'X" +t"ii5'R] S (6 37b)

                       (i -i-iAa;)23viir6 [ y,(si•)s(2)](e)

Here, we have explicitly shown the 3-dimeltsional vector character of R by R = R =
(Ri, • • • , Rnwwi). In Eqs. (6.37a) and (6.37b), the coethcients for the normalization kemel

is given by

                Z5 == det(1 - e'`{?E(?) == det(1 - ([2e'`Qe) ,

                a=: (?(1 -e't([?E([?)-i == (1 - Qe'`(?e)ww'(2 ,

                AA                A = Ce't([? = (1 - ([2e'`(?6)M'(l]6'`{:? ,

                AAi .,, tgEa .. tc?e(?(1-E'`9E(?)m' , (6.37c)

 26Note that tke notation A'V, Arw' and O'V in Eq. (5.14d) is differently used from that here.



        R i}"g R= l.il.,l, i}'E;;• Ri = O }

        gtRAR .,, ii{'S' A,j (R, . Rj) .., -s "Åí'iA,j (6,j)2 ,

                Z<3 2<j
                   n-! n-1        gtR'*AtRt*-ZAt.,(R;.*•RS.*) =-g2A:,,(6t,,)2 ,

                   i<J' i<O'
        tRcRt* .,, lil'i}i c,j(]R., • Rs.*) : g "Åí'! c,j (g, •gs•*)2 ,

                i,1'--a i,1'--2
with 6i,• -- det(Ci,C,•) and 6C•,• -rm det(E;•,eS•) frorn Eq. (6.4). Then, we find

MNexp (RI I Rt)IRIc,Rt se, : Dww g I(e ; C') ,

i(c;6,) ii ..p g-S nÅí'iA,,. (6,,.)2 m i n2'iA:.,, (6;.,*. )2 +g n2'i q,, (e, . gs.*

          K i<j' i<j•                                       i,j'--1
where the coeflicients D, A, A' and C are given by

            -- A' A                     , C" Cmm 1+Aag f`g ,        D == D(1 + inN)

        /i =A-i-yAAtt fA`fA, A' == A'-i+AAbl gAtg.

On the other hand, fof the LS and tensor kernels, we use

          [ab]oo :--vig (atb) , [ab]ipa :iIiZl [aÅ~b]pa ,

          a,, ur= ffaYl.(a) = Ylp(a) ,

and define their reduced matrix elements by separating the spixx part ;27

unity; <s II s II S'> == <s Y s(2) II s'> = 1.

convenlence.
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and, for the iRteraction kernels,

           -. A .-H A           Prm (1+A6)P , P' = (1+A.'e')P' ,
           P =: `6aP , P' == ae'P' ,

           fA -- pA.P, , g.,, Pi .P,

                A .v A           N=: tPef -F tPt6tg , V= tf R+ tg R'* . (6.37d)

       AA AA AANote that A and A' are tke symmetric matrices ; i.e., tA = A and tA' == A'.

   The first step to derive the rnatrix elements in Eq. (6.32) is to make R S e and

                             N -vR' S e' reductions. In the central kernel MeXP(R;R') in Eq. (6.37a), we expand V2

term and use the property

        ti n-1 1 2

}2)

(6.38)

, (6.39a)

(6.39b)

(6.40)

27In this paper, we have assumed the reduced matrix elements of S and S(2) for the total system

                          However, they aye explicitly shown here for the !ater
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Mest(LJs),et(L,s,)(op;n') : (1 -e2)S(e"g) (l rm ,t2)g(e'ÅÄg) D"g

                      N

Å~

iki   Li

6L,Lt 6s,s, MeCL , e,L(n ; n')

J
o <s [I s II St> (- V6) (1 tA,--,)

J

J
o <s ll s(2) ll s,>3VliU(1 +IA

J

MNeLLS,e,Lt(7?;77')

2) tt

l57

for central

for LS

MNeTL;e,u(ny;77') for tensor .

                                                              (6.41a)

Here, MNestL,e,L, (ny ; n') are given by

                                 i
MNest

L -, e,Lt(n;n') == [(2e ww o!!1(2e, ww 1)!!]E <veL(C) II l(e;e') i}Sst(e;g') ll v,L,'(e')> ,

                                                             (6.41b)

with PNC = 1 and

      IZ5LS (c ; ct) ,,,, [ v, (tP R + `ii; R" ) [)2i (t ,iiS' R + `.Z}l' R' *) ] ,. IRIg, R.,lct ,

      li}IT(C;C') : L?2.(tfAR -- tgR'*)IR.ig,R.tict . (6.41c)

The central factor I(g ;e') in Eq. (6.41b) is given in Eq. (6.39a). The reduction of the

polynomial terms in Eq. (6.41c) is given iR g6.2.2.

6.2 Empansion by Doecble Gel'fand Polynomials

6.2.1 CentralMatrixElements
   In order to derive the matrix elements M'-VeCL;e,L(n;n') in Eq. (6.41b), we expand

I(C ;e') in Eq. (6.39a) as

                                      A'I(C i C') = .ll,ll, ,, NN (Apa iNH (Apat) IeL• e' (C ; A, A') .]Z. )-, gp S?e "- ') ("pa) (g) qS?, ,n ww i) ("pa') (et)* ,

                                                              (6.42)

where gS?enMi) (A")(6) is the 2 Å~ (n - 1) DG polynomials defined in Eq. (6.30). In Eq.

(6.42), leL,e, (C;A, A') is a function of Ci,• (i,j -- 1 Nn- 1), Ai,• and A:•,• (1 g i < o' <um

n- 1), aRd A, LL and LL' are related to L,lel andle'1through A = 2L, l- ==le1-L,
pa' ==l e' 1 -L (see Eq. (6.31)). Furthermore, IVH(Aps) is tke normalizatioR constant of

the highest-weight state for 2 Å~ 2 DG polynomials, and is given by [86]
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                  Ar. (Apa) =: [(A mlrm l)iMl" 11), rd ]g (6 43)

ORce the expansion Eq. (6.42) is obtained, the matrix elements are easily obtained

through the orthogonality of the DG polynomials. They are given by

 MNeCL,e,L(n,n') =: [(2e rm 1),,1(2e, rm 1)t!]S A,.(ApaiAr.(Apa,) feL,et(C,A, A') (6 k4)

   Let us first consider the expansion ofSU2-scalar part in I(C;6'). We set Yij• --
(gi •6S•") or Y == t6 e'* in (n- 1) Å~ (n- 1) matrix form and expand it in powers ofY ;

 exp (g ,tilS.lii, Cxj (et g;')2 ) = ,tili.li, klli,I,,],, 2k,,ik," c,h,w y,?hto iiii \ 2hik{ ck v2k

                                                              (6.45)

In the last equation in Eq. (6.45), we have used an abbreviated Rotatlon for the repeated
indices Ck igi II[;,i•:i C,le•`j etc. In order to expand V2fo in Eq. (6.45) further, we employ

the polynomial expansion of (n - 1) Å~ (n - 1) DG polynomials [81]

              qÅí?,-i "-')[f](v) == \[[il 2] (llin" , (6.46a)

or its inverse expaRsion

              lll'lf =[f2],.,,[[:l Åí] gS?b-in-i)[f](V) , (6•46b)

which can be derived by the orthogonality relationskip

                     ((llliPli Xt )=6k,k, (646,)

We can aiso use the product forrr}ula [86] of the DG poiynomials; i.e.,

gE?,'i n-i)if](v) = qsc,-i n-i){f](tce") =: A,}l[f] \gÅí?."ww')[f](c)g2?,Mi)[f](e')" .

                                                              (6.47)

We note that the irreducible repyesentation label [f] is actuaHy a two-row partition

lf] == [A -F pa, pa,O,• •• ,Ol == (Apa) for 2 Å~ (n- l) DG polynomials. We also use r, instead

of c, for the SU2 ireerRal quantum-number label, aRd tke parametrization by e in Eq.

(6.29) for a etc. Following these procedures, we find

    exp (S ,tiiS.li, cz, (e, gs*)2 1

    "" (,IX) il,,,, NHitpa) 'P'E•"e"' )(C) t"., `ioS?e"rmi) (A") (e) qÅí?e,"wwi) (A") (4')* , (6 4s)
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where Fe( ,Aeff)(C) are horaogeneous polynomials of Cij• (i,o' -- l tv n- 1) of order

A/2 + pa =iel=I e'1and are given by

            .p"E,),")(cy) ==\[(2i"2zi)l,)'']l(AeS`) 2ele' ] ch (6 4ga)

Note that the polynomial .FE,Ae,pa) (C) has a very similar structure to the DG polynomials ln

Eq. (6.46a). Kowever, the factors k : (kij•) are doubled aRd satisfy the weight condition

     n-1 n-1     Åíki3• -- eS• , 2kij• =ei , kio• =non-negative integers , (6.49b)

     i=1 j'-ww1
and A = even only. The appearance of the factor of the type [(2k - l)!!/(2k)!!]i12,

instead of 1/Vjlli, is a typical feature of this modification of the DG polynomials,

   Now we proceed to the mon-SU3-scalar part of f(e ; C') in Eq. (6.39a), and consider

expansion of (6ij•)2 part :

    exp (-g tkj Azj (6zo)2 ) : tilZj m;il,l.l.o (-i)M'j .i,,i A,m, ts (6,,)2mto

                          = ,llOIOII..l, (-g)MÅí,.ii!.lii,,..m tilir/ Am 62'" , (6 so)

where we have again used the abbreviated notation for the multi-dimensional index m.
Since 62M is an SU2-scalar polynornial, we can expand it by g8?e?,-i)(O 2M)(O with

Ie"I :2m. Thus we expand Eq. (6.50) as

       exp (-i tiiijl A,, (6,,)2 )

       == 2:OOI..l, (rmi)M N.(oi 2.) ;. aS9, 2M)(A)q8?,?,-i) (O 2m)(g) . (6.sl)

Note that, for a small value of n, the coeMcieRt polynomial GS9t 2M)(A) takes a very

simple form due to the condition 1 m< i < o' <rm n - 1. For 2-clttster systerns with n = 2,

this term does not exist. For 3-cluster systems with n == 3, the explicit expression of

2 Å~ 2 DG polynornials [86] yields

                      G80 2M)(A)=Ar/ g4Y2, (6•52a)

where we have used the SU2 Rotation r = O for the Gel'fand pattern e" in Eq. (6.5l) :

   Ee"> : AA+ÅÄpapa - .P ) =: 2M 2. 2M ) .,. ei +e2 2ei ei + e2 ) , (6 s2b)
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with e == 2L = O, pa : ei +e2 == 2m, and ei = e2 == m. Even in 4-cluster systems, we

oniy need to deal with polynomials of 6i2, 6i3 and 623 and the explicit expressioR of
2 Å~ 3 DG polynomials [86] yields GS9, 2M)(A) given by

                                             icse,?m)(A) = [i,2.MmawwS?,X)l!i.'--rgg,i()al'illl(r)i,:(/5)jl]SA,y"gA,,Eur, A,/T, , (6•s3a)

wkere the SU3 quantum numbers g = O rv 2m, r =: O N q are even only and are related

to e" through

                 ANF ps pa e 2m 2m O
         Ie"> -- A+ pa -p pa -q : 2m 2m -g
                    A-5- pa -p-r 2m -r

                 ei+e2+e3 ei+e2+e3 o
              = ei+e2+e3 ei+e2-e3 , (6.53b)
                               2el

with A == 2L = O, pa ur ei +e2 +e3 =: 2m (even only) andp =rm O. Note that tkis coupling

scheme is related to tlte SU2-scalar state l[vei (gl) ve2 (g2)le3 Ve3 (C3)le•

                                                                '
   In order to derive a general expression for GE9t 2M)(A) for an arbitrary n, we employ

Eq. (6.48) by assumingC = (-1/2)A aRd C" =: ( -Oi 6)6 ff-: Ee. By this assignmeRt,

the relationship (zgi • 2gS•*) = (`CEC)i,- -- det(ei, 2Sj) : 6i,• yields

  exp (-g tilli A,, (6,,)2 1

  = (,IX)Iil,,,, NHIAtt) FEi"eff) (rmg A) S., cp5?e"wwi) ("'`)(g) cp5?,,"-i) ("pa)(c6) , (6.s4)

where we ltave modified the (usually non-zero) diagonal matyix eleinents Aii into O ;
i.e., Aii = O (i = 1 rv n- 1). First we use the fact that I"E,),")(C) in Eq. (6.49a) is a

homogeneous polynomials of Cio• with the order A/2 -F pa (A == 2L xe even), and find

               FiE,),pa) (-gA) : (-S)}-`-" F,(,>pa)(A) . (6.ss)

Further, we can use the product formula of DG polynomials and use gS?.2,) (A)pt(E) =

6rt,A-r (-1)r Nff(Apa) to derive

gS?e,nwwi)("")(EC) =: N.l.),L,) :li,: <pS?.2,) (")"(E) gpS?,,", wwi)("pa)(e) == (-i)rgS2:,IE,i)("")(c) .

                                                                 (6.56)
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Then, by using the SU2 C-G coefficients < A/2 (A/2 - r) A/2 - (A/2 - r) l OO>
== (-1)r (1/VIX-lr-ir) and the C-G series for 2 Å~ (n - 1) DG polynornials [86], we find

  A 2soS?,"ww')("'`)(tg)gog?,,"mi)('Lpa)(Ee) = VX;ii [gc>S?,"ww')("it)((i)ypÅí?,,nffi)(AFt)(e)]gO)

 r :e
  " VX Vrr Arill(g()J,'tift)22L,) :ll,;, < (•>LsL)e (As`)e' E (o .>L + 2L`)e" >.", cp8?,,n, -i) (O "+2p)(c) ,

                                                              (6.57)

where we have used the two-row SU.wwi C-G coefficients <(Apa)e(Apa)e' 1 (OA+
2pa)e">n-i . These two-row SU.wwi C-G coeMcients are discussed in g6.2.3, Åíogether
with the polyRornial functions Fe( ,)ff)(C). Finally, we combine Åíqs. (6.54), (6.55) and

(6.57) and cornpare it with Eq. (6.51). Then we find that GS9, 2M)(A) is given by

GE9, 2m) (A) - 2 VX;[ NH (in) < (Apa)e (in)e' 1 (o A + 2pa)e" >.-i FE,),pa) (A) ,

             (x")e,e,
            X-F2"=2m
                                                              (6.58)

where tA == A with An = ''' ": An-1,n-1 = O•

   We use the same procedure for another noxx-SU2-scalar part in r(C ; C'). By com-

bining these, we find

 f(C;e') = ,,E,iilf,?;,, .Åí,., (rmg)M'M' NH(Ard NH(o i2m) iv'.(o 2m,)

          eti ,IErt t

 Å~ Fi,thpa)(c) GS9, 2M)(.4) cS9, 2m')(At)

 Å~ 2 (,pSiznfii) ("pa)(e),p8?,,n,-i) (O 2m)(6)) (g,Siz,nrmi) (Apa)(gt)gk,n, -i) (e 2m')(6t) )* ,

    r
                                                              (6.59)

where 'we have changed the notation e - eA' , e' --- ?' etc., to reservee and e' for the

later use. We again use the C-G series to combine two DG polynomials. After some
alteratlon of notation to fix the polynomial powers, we finally obtain

 feL,et (C ; A, A')

                ll+"l   min{pt, Ft'} me #o:l.lli)o.zr,,i (ma}) 2 ff"O Ai"(ApaO)zz,2,,.,z.<(A@o)e'V(O pa-pao)e"t(Apa)e>.wwi

  Å~<(Akeo)e'V' (O st' - sLe) e'W"I(AIL') e' >.wwi ,P7iiel"O)(C) GJE9, paM"O)(.tl) Gi19, pa'ma"O)(A') ,

                     • (6.60)
where )t = 2L, Lt =1 e I -L and pL' ==I e' ] -L.
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6.2.2 NoncentralMatrixElements
   In order to evaluate the noncentral matrix elements, we need some preparatioxx

to reduce the polynomial parts in Eq. (6.41c). The first formula is wlth respect to

3-dimeRsional vectors, Ri,•••,RnHi, and reads

   vem (Åí?rrM:2i Rt) =: e,+ ;til.nt,..e [ei{ eie.-it]g

                   Å~ ['''[)2ei(Ri) Ve2(R2)]e,+e,'''Ye.mai(Rn-i)]e. , (6•61)

where all the interraediate couplings are stretched ones ; i.e., ei2...s = ei + e2 + • • • + es

(s : 1 ev n- 2) and L = ei +•••e.-i = e in the Gel'fand pattern (6.29). "]rhis well-
known formula is easily proved by usixxg the generating function of Yem(R) in Eq. (6.12)

and the reductioR formula in Eq. (6.9). By using this formula, one can prove

 vem (`fRMRic = [ye. ("Åí'ifi Ri) == (2e)!! 2 F,(,2,e.O)(f) v,em. (c) , (6.62a)

                    Ni=1 / Ric le.1=e
where

                    F,(,2s.o)(f) ,. [(2&i) l,)iT]g fes (6 62b)

and e, denetes the stretched GeVfaRd patterR e. For example, if we write Eq. (6.62a)

explicitly, it means tkat

Yem (tlil.lli,i fz Rt) IRig =" (2e) '' ,,. ;,illl.-, ..,, [ (2ei (geliil :;2K )", i)" ] S

             Å~ flei...fÅínum-,i [•••[ve,(gl)ve,(e2)]e,+e,'''Ven-i(gn-1)]em '                                                                   (6.62c)

The tltird formutla we need for LS factors is

        [ [)"i (`f R) IYi (`g R) l ,. IRse == 2Vili 2 .FÅí2,')(f, g) v,iM(g) ,                                                                   (6.63a)
                                       e

where

        FÅí2,i) (f, g) =$ 2 <(2o)e, (2o)eg [(21)e >.mi fes gea . • (6.63b)

             • le.lmlekl :1

We note that the coupling by the two-row SI]f.wwi C-G coeescients in Eq. (6.63b) corre-

sponds to the outer product of two (n - 1)-dimenslonai vectors fi and gi. In fact, these

C-G coeeqcients show up in the C-G series of tke DG polynomials in

        [v2.(C) v2•. (C)],. == v`{i2<(2o)e, (2o)eg [(21)e>.wwiv2m(6) . (6.64)

                             e
Since[e. I==l e', l== 1 means that e, and e', just specify the vector components Ce. and

4eg , for example, we can rather use the ordered combination {e.eg}, in order to specify

the Gel'fand patterne for (Apa) = (21). Namely, we define, forIe, l=:l e3 ]=: 1,
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         vleTlek}(e) N! [vei.(e)v2,.(g)],. =[vi(Q.)vi(Cek)],m ) (6•65a)

                                                                  'from which we can show

             vlerpeg}(e)": wwvl,egg.}(g) , vterpe.}(C)"O• (6•65b)

                                               .By usiRg this identification e cu {e,eg}, the formula in Eq. (6.63a) is expressed as

         [ Yi (`f R) [)•'i ('g R) ],,. IRIc = 2 fes geg vleveeg}(C) . (6.66)

                                 le.Ian]eglml

   Now, we can use the formuiae ilt Eqs. (6.61), (6.62) and (6.66), in order to reduce

the polynomial factors in Eq. (6.41c). We find

     i25eitS(C ; {i') =" 1,.ltk, E.,,(-Pes "i5'ek v{',"`.,g}(c) + ji5es .ii}'gk wi,'`.,k}(6'*)

                -(pe. .p,eg - .Z5,es .15e'.) [v,i. (e) w,i,. (e'*)],. 1 , (6i67a)

                                     i       Cfigpa (g ; C') " 2V'ii i,2. i.., [ (2&i) l!)!! .] V { ffZs v,2." (g) + 'g'es w7.pa (e") }

                 mvE} 2 ffes gek [v2. (g) w2,. (e' *)],. ,                                                                (6.67b)
                      Ie.lmlekl=1

where we have used the conjugate spinor functions

                    wem (4*)= (-1)e+M ve,mm (g)* (6.68)

and their extensioR to 2 Å~ (n - 1) DG polynomials weLM(C') like veLM(e) in Eq. (6.30).

Throttgh these procedures, we only need to calculate the reduced matrix elements of
f(C ; C') P(rc)(e ; e') with respect to the tensor factors

                  ipErc) (e;e')- [vSo (e) wS,6 (g' ")]. (6.6g)

with re =: 1 and 2. The fuR expression is obtained through a simp}e superposition of

different types. The final result is giveR by

  Mest(L's),e•(L•s•)(n;ny') [(Ie]nvF(,L,".il!)(&rmrmL,il,(5'IEi -,L-',)-i-(g,)illlell)i,iii, L'):]g

                                  E  . (1 - .2)g(eÅÄg) (1 - .t2)s(e'+g) (l)) 2
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        6L,Lt6s,s,JeL,et(C;A,A') for central
 . < L ' S>Zs,L• st (1 +IA..v ) Ie(LL ?2,., (c ; A, A' ; ,l!i, .P, pA', .i5t)

                                  for LS
     < Si2 >Es,L,s, (1 +1A,N,)2 IE.T), ,,.(c ; .tl, A' ; fA, g)

                                for Tensor .

                                      (6.70a)
with

           Lt Si J
  <L• S> I)s,L,s, =: i i o <s ll s ll s'> v!Ei (-i)L' rk , (6.7ob)

           LSJ
           Lt St J
  < Si2 >Z,,.s, == 2 2 O <S ]l S(2) ll St> Vli(i (-1)L' th . (6.7o.)

           LSJ
The LS aRd tensor factors in Eqs. (6.70b) and (6.7ec) are symmetric with respect to tke
interchange of LS and L'S'. In Eq. (6.70a), the central factor IeL,et(C;A,A') is given

in Eq. (6.60). "I"he LS and tensor factors are expressed in terrr}s of these central factors

as follows:

Ji.Li 2,. (c ; .`s, A' ; ii), f5, ,Pt, .Pt)

==

 (-i)L"i l}Illli ]Illl) fzL,i, (C ; A, A') i,.itfal, Å}.., j5es JZ5'eg < (Xft) eN(2i){e,ef,} l (Apa)e>.-i

+(-i)L
 51il'li ][;,]) i,Lz, (C ; A, AZ,.ftA, i,., -i5es Jii"ek < (Aft') eN' (2i){e.eG} 1 (xti) e' >.ww,

-i-

\(-1)X IIilrllN' u•(L, lL1; z1) 1:Il,i}z, Iz'.V,7,(c;A, A.t) I,,itk, I=, (jSeg Jl5teg - uii;ies iPeg)

Å~<(.){1]Z)e(20) e,l(ALL)e>.-i<(ALNL') e' (20) ekl(.)t'LLt•) e' >.m, , (6.70d)

JELTI. etL, (c ; A, A' ; fA, g))

                        i
="

 (-i)L'
 Z XI) fzL,2• (C ; A, A') i,lilil.l., [ (2Seli)l!)!! ] 5 ffes < (XpaN) eN(4o) es l (in)e>n-i

                       i+(-i)"
 Z' ]Ill,]) ieL,z, (C ; A, A') t,li,illi .., i (2ii'el )l, !)!! ] 7 geg <(ipN') eN' (4o) eg t (xpa') e' >.-i
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-1-

 ]I{? (-1)zVll (ZiLAt) u( Lt 1L1i z2) ;,il)z, fzL'V,z,(clA, A,)

Å~ 2 ffes 'g.eZ <(Xft) e-V(2o) e, KApa) e>.m,<(Xft') e-"' (2o) egI(A' pa') e' >.wwi , (6.70e)

  le.i=:Ie'.1 :i

where A = 2L, LL ==I e 1 -L, N == 2L', tL' =i e' I -L', and 5( = 21Zi. IR the first ancl

second terms of Eqs. (6.70d) and (6.70e), the non-Regative values ft and psN' are given by

pt =lel-L'-2 and paN' :l e'1-L-2, while in the third terms these are pt=:1 el-L-1
and J' =1 e' I -Z - l. Furtherrnore, U(L' lL1; Z1) etc. deRote the unitary form of

the angular-momeRtum Racah coefficients.

6.2.3 lrwo-Row SU.-i C-a Coefiicients and the Empansion Coefiicients of
      FE,)ff) (c)

   The expressions of the central, LS and tensor manix elerr}ents !n Eqs. (6.60) and

(6.70) would be useless, if it were not possible to evaluate the SUnmi C-G coeMcieRts
aRd the coeeecients of polynomial functions Fe( ,)ff)(C). Fortunately, these are all of

the two-row type, and can be obtained from the staRdard angular-momentum WigRer
coeMcients.28

   Let us first consider the two-row SUn-i C-G coeeecients. We start from the C-G
series of 2 Å~ (n - 1) DG polynornials [86]

 l ,R S?,""i) ("'S) (6) q9e,"-i) ("' •`') (e) ] .., ., ww.,,

=:

 Ai'"iltl.pa)(AA,i',llpa,(,?'pa') ;,, <(Arde(A'pa') e't(A"pa") e" >.-i goS?,,7,7i) (""pt")(g) , (6.7i)

where the two-row condition is A+21Lt -F X+ 2Lt' =: N' -i- 2LL". We use the vector-

coupling expression in Eq. (6.3e), and redttce the left-haRd side of ilq. (6.7l) by the aid

of the angular-momentum recouplings and the reduction formula llt Eq. (6.9). From

this procedure, we find •"                                                                 '
       < (ApL)e (AtLtt)e' KAnptit)e" >.rmi

                                               1      =N.g,Z,("."#'i&,k,,[(3e21)(ZS'i') (:Shiil)]ff

           el e2 e12 e12 e3 e123 e12a•-n-2 en-1 L

       Å~ e', e5 el, el, eS e',,, •ny• el,....-, ea-, L' , (6•72)

           e',' eSt el'2 etli2 eSt elt23 etl'2....-2 ea'-1 L"

wkereA= 2L, pa =IeI-L, A' :2L', pa' =1 e'l-L', A" =2L", pa" :l e"I-L", aRd
ei + e:• == e:l (i ur 1 tv n - 1) (stretched). Here, the square bracket means the unitary

 28This is natural, since we are essentially dealing wlth the algebra of angular-momentum
proJectlons.



  e'i e'2 e'i2 N.(2el,,,e,+e2+et,+e5-e',',) [(2ei)(2e2)]

  e',t eSt elt2
                Å~<ei2 ei - e2 e'i2 e'i - eS ]el'2 ei - e2 ÅÄe', - eS >

                          for ei+e'i -- el' and e2+e5 =:e',r . (6.73)

If (Apa) e and (Npa') e' are both stretched angular-momentum coupllngs with A =: 2L =

2(el + • • • + e.-1), LL == e, e12..., == el -l- e2 + • • • + e. (s : 1 rv n - 1) aRd At : 2L' ==

2(el +• • •+e"-D, pa' == O, e12.... =: el +eS +• • •+ek, respectively, ail the 9-•j coeMcients

are of thls type. For the C-G coeeecients <(A'il)e'W (21){e,e'.} l (Apa)e>.mi etc. witlt

le, I=:I eg I= i iB Eq. (6.70d), we can ttse

      < (J)ttLNL) e'V(2i){e.eg } KAtL) e>.-i

      == VlliÅí< (XLNL) eN(21) et 1 (.)tLL)e>.", < (20) e, (20) eg K21) e' >.-i (6.74)

           e,

from Eqs. (6.64) and (6.65a).
   Next, let us consider the polyRomial functlons Fe(,Ae,pa)(C) in Eq. (6.49a). We oniy

need to coRsider the expansioR coeeecients [ (Ai[L) et l . "]]kese are easiiy obtained

                                    Le                                          2k J
from tke vector coupling expression of the (n - 1) Å~ (n -. 1) DG polynomials given in

Eq. (2-2-15a) of reÅí [86]. We find

[(AeL`) il] == z,,, ;t, .ww,<(2ei O) ki*(2e2 o) k2*l(2ei2 s•ei2)e-'i2>n-i

             Å~<(2ei2 pti2)e'Vi2 (2e3 O) k3.I(2ei23 pai23)e'Vi23>.wwi

             Å~---------
             Å~< (2e12•••n-2 LL12•J•n-2) e'V12•••n-2 (2en-1 O) kn-1 * I (ALL) e' >n-1 , (6.75)

                                                  '
where ki* == (kii,•-•,ki,n-D (i = 1 N n- 1) specifies internal quantum numbers of

the one-row SUn-i state with (2ei O) througk

                 2(kii ÅÄ ••• + K"i .ff i) O •-•-••••••••••• O

                        -t-    IK"i*;e" == 2(kii+ki2ÅÄki3) e o • (6•76)
                              2(ki, -i- ki2) O
                                      2kil
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form of the 9v' coefflclents. Furthermore, Nff(Apa) is givelt in gq. (6.43). The first 9-o'

coeeecient in Eq. (6.72) is stretcked for 2 columns, so that lt is expressed by a single C-G

coefficient (see Eq. (5-3-13) of [86]). Namely, we can show

  el e2 e12
                NH (2ei2, ei + e2 - ei2) NH (2e'i2, eii + eS - e'i2) 2eli 2eS' -S
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Note that kij• are non-negative integeys which satisfy the weight conditioR (6.49b). Fur-

ÅíherMOre, @12 = el+e2-e12, pa123 =: el+e2+e3-e123,''' , pa12••-n-2 =el+'''+en-2-

ei2...n-2 from the two-row conditions, and A = 2L and pa = ei +e2 + •••+ e.rmi - L.
The expressien of Fe( ,)ff)(C) ls also obtained from the original expression of Eq. (6.ig8)

directly by ttsing Eqs. (6.12), (6.9), (6.62a) and the C-G series in Eq. (6.7l).

6.3 EecamPles for 2- and 3-Cluster Systems

6.3.1 2-Clz`sterSystevns

   For 2-cluster systems, the SU.-i C-G coeMcieRts in Eqs. (6.60) and (6.70) become

simply KroRecker delta's for the conservation of weights and no C-G coeeecient appears
for the ceRtrai matrix elements. The expansioR coeflicieRt of FE,Ae,pa)(C) in Eq. (6.75) is

uBity and the polynomial GE9, 2M)(A) in Eq. (6.58) is not necessary. In this particular

case, iÅí is convenient to introduce the standard aRgular-spin wave functions

                   VlsM (F;spin) ifi [YL (?) es ],. , (6.77)

and define the LS and teRsor factors iR Eqs. (6.70b) and (6.70c) in a litÅíle different way.

Name!y, we define

    (L•S)Es,L,s, i!E <)21sM (EF;spin)I(L•s)1 Vl,tg, (ll;spin)>

                       L S' J

               = 6L,u 1 1 O (- VS) L(L A- 1) <S ll Sll S'> , (6.78a)

                       LSJ

(Si2)ls,L,st sii < )?lsM (?; spin)lSi2l[)•'ltg, (?; spin) >

              Lt S' J

              2 2 o VEI(ii<Lo2olLto><s ll s(2) ll st> ,

              LSJ

(6.78b)

where the LS factor is non-zero only for L == Li due to the parity conservation, and the

teRsor factor Si2 is defined through Si2 = os[Y2(?)S(2) ](O) ( see Eq. (3.62)). When

both clusters have spin l/2 and are identical, these definitions reduce to the ordinary

spin and tensor factors, usually adopted in the study of NN lnteraction through S =
(cri + cr2)/2, SÅí2) = 2 [SSIE2) == [aiff21Åí2) ( see Eqs. (4.l8) and (4.19)):

   (L' S)Es,us, = 6L,u 6s,st 6s,i S[J(•J +1) -L(L -l- 1) - S(S+ 1)] , (6.79a)

and

(Si2)ls,ust = 6s,si 6s,i(Si2)t,u (6.79b)

with
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          (S12)l,J == 2 , (s,2)iww,,Jdi, == (s12)l+1,J-1 .. 6 2JJ(J+l 1) ,

          (s,,)lww,,,ww,= 2i}-+Jl) , (s,,)s.,,,., =-2ifli) . (6.7g,)

   In this case, we should carefully divide the spin-!sospin factors in Eq. (4.27) with tke
   reduced matrix elements <1 II S II 1> =: Vii and <1 [I S(2) II 1> = 2Vlii7ii (see Eq. (4.21)).

   By using these notatioRs, the rnatrix elements iR Eq. (6.70) are expressed as

M(9.J,),(.,,,)(n,op,) ,. (1 rm ,2)i(Lag) (1 rm .i2)g(L'+g) (B)g

            6L,Lt 6s,st CL for central

        m6L,u (L'S)ls,Lst CL-ih for LS
Å~

    (Si2)Zs,Ltst {6L,Lt+2 (2L - 1)(2L + 1) CL' f2 -l- 6L+2,u (2Lt wu 1)(2.lz,t -y 1)

         Å~ CLg2+ 6L,Lt (2L+3) CLwwifg} for tensor ,

                                                                    (6.80)

   where the coeMcients, D, C, f, g and h, are given by

      P == b(1+Abl) , b == 1- ea'q2 ,

      -- 1      c\ = - =(el)2 -f- et.P'2 + 2eE'(2.P.P') ,

          D
                                     1)+ ff'<[?P' .P' -t- e(2P           (? - APP'                          P.F)t
      C" D ,h== D,f= D ,g== D . (6.81)
   Note that Q, P and P' are the coeeecients of tke GCM kernels defined through Eq.
   (5.4), and are explicitly given by (2 = 1 - x/pa, .F' rm p/ViZ and P' = g/V7i with

   ps =: AiA2/(Ai + A2), x == O rv min{Ai,A2} and p,q = O or Å} l. Furthermore, E and

   E' are defined through s = (1 - n)/(1 + n) and 6' =: (1 - n')/(1 + op'). The Coulornb

   and kinetic-eRergy matrlx elernents which correspond to the GCM kerRels in Eq. (5.4c)

   are obtained from the ceRtral matrix elements iR Eq. (6.80) by a siight modificatioR with
   D -. fi and

    cL -> 2Vliix/lilllii tg., ii-iF)ri (g)(a)L-r(2fAwwygbl)r f., couiomb, (6s2.)

       mmnv, (a)Lg(L+g)1-e-ED.'+eE'(22 for kinetic-energy, (6•82b)

         AA -"   where C, f, gA and D and the coeMcients C, f, g and D for A = O, respectively ; i.e.,

             .o ,., S. , fA= P+i) QP' , gha P' +beQP . (6.s2,)
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For the derivation of the Coulomb rnatrix elements, a simple integration formula

            f,i dx (i+rsx2)ww(rÅÄg) x2r == 2, i+ i(i+s)rm(rdig) (6.s3)

is employed.

6.3.2 3-Cluster Systems
   In 3-ciuster systems with n :3, the SU.-i C-G coeracients in Eq. (6.72) are nothing

but the angular-momentum C-G coecacients. The explicit correspondence is given by

  < (ALL)E (Xti')e' KA";LU)e" >2 = <Le, - e2 L' el - e'2 l L" e, - g2 + el - et2 > (6.8dya)

with

      A== 2L , pt -- ei -l- e2 -L , ei +e'i =e'i' ,

      A' == 2L' , pat = el + eS - L' , e2 + e'2 -- eS' ,

      Xt=2Lit , pa" =: elt -i- eSi-L" =ei+e2 -i- el+eS-Ltt . (6.84b)

The function Fe( ,Ae,pa)(C) in Eq. (6.49a) is therefore very simple. It is given by

  FEi ,),pa)(c) - P,) [(2i,iil);,)'']i

  Å~< kii + ki2 kn - ki2 k2i + k22 k2i - k22 lL k= - ki2 + k2i - k22 > Ch , (6.85)

where the summation over kio• (i,o' -- 1,2) is only for the non-negative integers which
satisfy the weight condition (6.49b). By using this expression and G80 2M)(A) in Eq.

(6.52a), we can explicitly write down the factors for the central maÅírix elements in Eq.

(6.60) as follows:

 ieLie2,eies(C,A,A') : i,]ll.llll,., (nvg)M"M' .ii.,, [(lkl +(2LL+"ill(i2i--i31'(2k),i]S

 Å~<kll + kl2 kll - k12 k21 + k22 k21 - k22 l L kll - k12 + k21 - k22 >

                  t xCh (Ai2)M (Al,)M , (6.86a)
where we have agaiB used the shorthand notation Ikl = kii+•••+k22, (2k)!! = (2kii)!!

•••
 (2k22)!!, Ch = Cikiii•••C2k222 etc. lrhe weight condition in Eq. (6.86a) is

            kll+k12+m=el , kll+k21+m' :el ,
            k-21+k22+m == e2 , ki2+k22+m'= eS . (6.86b)

                                                 A .-. AThe coerecients, C, 2tl and A', are given in Eq. (6.39b) with C, A and A' being those

for the normalization kernel. The expressions in Eq. (6.37c) are further simpllfied for

3-cluster systems by usiBg tlte cofactor matrix 6o = IOItOmi, From here on, we use
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the notation iOi to denote the determiRant of O ;iOl == (det O). For arbitrary 2 Å~ 2

matrices, O, A, B etc., we can show a number of simp}e yelationships sttch as

              O -t- `6o =: (Tr O)e , Ot6o = t6o O =: 10[e ,

              ie-Ol = 1- (Tr O) +iOi ,

              `.tlB+t6B6A =: (TrtAB)e=: (TT`6B6A)e ,

                                                       2(Irl +s+ s') +1

Å~( ()()( rrz'-s'
   ( )rii+ri2+S( )rn+r2i+S( )ri2Y22+S'

                                                                    (6.89)

where irl = rii + • • • + r22. For the derivation of the kinetic-energy matrix elements, we

need some algebra of transforming the coeMcient matrices with the aid of the formulae

in Eq. (6.87), The final result is givelt by modifying Eq. (6.86a) as

              6ewwtAB =e"t6A6B , 6AB =: 6A6B , (6.87)

where e is the 2 Å~ 2 unit matrix. By using tkese, we can easiiy show

                                          2
     Z5 = 1 - Tr(s' t([?sQ) + Ie[ Is'I l(2I2 : 1 - 2 ei eS• {[2?o• + ei s2 sl E> IQ[2 ,

                                        i,j =1

     A ij A AN A A'"l       uxxi A===) At==m:-t     C
         DD                                  D
     U - ag - 6e 6q6s•iQ[ =- ( gll ;Zi *, gi: Igl gli t :i2 eofl l$1 ) ,

     .N4 = <[?e't(2 - 6. Ie'il([?[2 , A'Vi2 :el ([?iiQ2i + 65 <[?i2(?22 ,

     A"Vt == teeq-6., lsl lql2 , AN12 -- ez qiRi2+62 q2iq22 • (6•88)

Here, we have newly defined the polynomial factors O, AN and A'S", which are usefttl for

numerica} calculations. 'I'lte 2 Å~ 2 matrix (? for particular nucleoR exchaftge is giveR in

Eq. (3.43) or Eq. (3.107) throttgh an appropriate transformatiofi for the selected Jacobi
                                     ANA A-eoordinates. On the other hand, the factors P, P, P' and Pt for the interaction kerxxeis

are obtained through Eq. (6.37d) by asslgning .Pi, P2, P{ and Pi to those in Table IV

for each interactioR type. (See Eq. (3.I l6).)

   ln order so derive the Coulomb matrix elements, we again empioy tke integrai
representation ofthe error function and the integration formula in Eq. (6.83). They are

given by a simple modification of the norm-kernel matrix elements through Eqs. (6.70a)
                             AAAand (6.86a). Namely, in IeL,e,,eles(Cl A,A'), we should modify

                                   '
ak (AAi2)M (AA'i2)M' ---> 2VliivEIIIIIii.X,.,, .i,li.,},E.lli,t/I,li.}, (-i)iri"S'S'

   ig111) ts2222 7gb 7g?t') (all)kii'rii (a22)k22-r22 (AA12)M-S (AA,12)

 Å~ fAl fA2 isr2i+r22+Sr gl ' g2
    arFriil vii"rs1 kvpmzl v{7rs
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             1s  aic (AAI2)M (AA12)M .ww, 0t (AA12)M (AA12)M

  Å~g(3+iel-}-ie'ii.i+,S,m-,k,, (i-kt{)-m{-lgiz-mtll-lll;}'zl , (6•goa)

where lel == ei g- e2 etc. and the new coeeecients, X, Z, Y and Y', are given throttgh29

    X == 2 - Tr(e + 6') + la'I Tr(`9a(2) + lal Tr(<[2E' `q) - 2 lel le'I l912

      =: 2 - Ei - E2 - el - eS + (e2 + eS) si el ([??i + (e2 + e'i)6i e'2 (2?2

       +(ei + eS)e2 E'i 9;i g- (ei +el)62E'2 ([232 - 2ai s2 el s'2 l(?l2 ,

                    E3-nvge:ijg;i E:::i:gl),gli) •     2=2Q-6.q-q6.t =:( i
     Y = e- 6. Tr((2e' `Q) +26, le'l 19I2 - l6'19`([? ,

       Yi2 ur -6'i e'2 (QiiQ2i +qi2Q22) ,

    Y' == e- 6.t Tr(`Qs Q) +26., lel I912 - lel `QQ ,

       Yi'2 :-ei e2 (QuQi2 -F Q2iq22) • (6.90b)
  FinaHy, we show the factors for LS and tensor matrix elements in Eqs. (6.70d) and

(6.70e) with respect to the 3-cluster systems. Tltese are given by

igLeS,L , elesL• (C i A, A' ; .Z), iii, ji"', .i5')

=:

 (pmi)L'"i 2(l)7s Z IeL,'wwi,e,-i,el,ee (C ; A, A') < L' ei - e2 1o l Lei - e2 > (pAi .P5 - pA, ,ii5f)

+(-i)L 2S Z' JeL,,e, ,el wwi,e6-i(C;AA') <Lel - eS iol L' el - eS > (i5i.iAt,' - P,.ii)D

ÅÄ 2 (- i)Z II2Zt l' u( L' i L i ; Z i ) S ]IllD fg', -e. , e, +e. -i ; ei -et, , es +e3 -i (C ; A' A')

  x 2L e.mu-oekrro
 Å~<Le, - e2 - 2e, +1 1 2e. -1lLe, - e, ><Lel - eS - 2e', -F 1 i 2e', -1l Lt el - e5 >

 Å~(-fl}2-e."PSmuek--iiii-e.Jiii2-eg) , (6.91a)

fe( i e)2L; el esu (C ; A, A' ; fA, 0)

       2
=:

 (-1)L' Z 2 feL,Le., e, -Fg.-2 ;el,es (C l A, A')

      e. ==o

29Note that Ai2, A12, Yi2 and IYf2 in [51] are defined wlth an opposite sign to the one adopted

here. Furthermoye, the difference of X is due to tlte trivial factor (n - 1) in Eq. (5.4c), which
means that we have included aR the re}ative kiRetic-energy contributions between clusters in the
present formu}a.
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  .g (g) g leS -il < Lt e, - e, - 2(e, - o 2 2(e, ww 1) 1 Le, - e, > (fA, )es (fA,) 2-es

         2
-l-(ww 1)L Z' Åí leL, ,e, ,el -ek, es+ek-2 (C i A, A')

        ei.--o
  .i (g) Se2 lmii <Lel ww es m2(eg rm i) 2 2(ek - i) lLt el - es > (g,)e2 (g2)2wwe2

nv
{um

 lili) (ww i)ZVtlll (Z2Z') U( L' i L i , IZ; 2 ) eS., t", .., JeZi -e.,e2+E.-i , el-ek, ei+eg-i(O , A A')

  Å~<Zei - e2 - 2e. +1 1 2e, -1lLei - e2 ><Ze', - e5 - 2e', +1 1 2eg -1l L' e', - eS >

  XfA2-e. g2-eg • (6.91b)
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