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Abstract

An analytic formulation of the multicluster resonating-group method (RGM) is presented for
systems composed of any number of (0s)-shell clusters. In this formulation, the construction of ex-
change integral kernels in the complex generator-coordinate space and the subsequent developement
to the RGM formalism is carried out in full generality with respect to the central, LS, and tensor
two-nucleon forces of the Gaussian type and to the Coulomb interaction. Each term in the interac-
tion kernel is classified not only by the modes in which nucleons are interchanged among clusters,
but also by the interaction types which specify particular combinations of the complex generator-
coordinate vectors involved in quadratic polynomials for Gaussian interaction factors. The interaction
kernel involves spin-isospin factors in a concise way, the evaluation of which requires specification of
spin-isospin coupling schemes for the particular system under consideration. In view of a practical
application of the present formalism to the systems composed of one c-cluster and two (0s)-shell
clusters, the spin-isospin factors are derived in analytic form for any spin-isospin configurations of
two s-shell clusters. The result is then extended to the case of the three-cluster kernels by employ-
ing the valence-orbital method. As an example of utilizing the resultant three-cluster RGM kernels,
coupled-channel equations with three different types of two-cluster channels are formulated. These
coupled-channel equations are then solved by a variational method employing Gaussian-type trial
functions. The matrix elements of the resonating-group kernels with respect to angular-momentum
coupled Gaussian basis functions are calculated easily with a new technique, which is specifically
developed for this investigation by making use of the theory of double Gel’fand polynomials and
transformation properties of the complex generator-coordinate kernels

Contents

§1.
§2.

§3.

Introduction and Summary . ... . ...................
Coupled-Channel Formulation of 3-Cluster Systems . . . . . ... ..

Structure of n-Cluster GCM Kernels for Systems Composed of (0s)-
Shell Clusters . . . . . . v v i o e e e e e e e e e
3.1 General Procedure to Evaluate the GCM Kernels . . . . . ..

3.2 Double-Coset Generator Expansion and Particle-Exchange Tables

3.3 Interaction Kernels . . . . . . . .. ... ... o o



92 Y. FUJIWARA and Y.C. TANG

3.3.1 Two-Body Interactions and Spatial Interaction Factors . . . . . 113
+ 3.3.2 2-Cluster Interaction Types . . . . . .. ... ... ... ... 118
3.3.3 3-Cluster Interaction Types . . . . . ... . ... ... ..... 119

3.4 Transformation Properties of the Coefficients Q[k] and P17} for Re-
arrangements of Jacobi Coordinates. . . . .. .. ... ... .. ... 122
§4. Evaluation of Spin-Isospin Factors . . . . . e 127
4.1 General Procedure . . . . . .. .. ... ... 127
4.2 2-Cluster Systems . . . . . .« . . . oo 134
4.3 Alpha Plus Two s-Shell-Cluster Systems . . . . .. ... ... . ... 138

§5.  Systematic Evaluation of RGM Kernels in the Complex Generator-

Coordinate Method . . . . . ... ... . ... ... ... ..., 144
§6. Gaussian Matrix Elements of RGM Kernels - . . . . . . .. ... .. 149
6.1 Transformation Formula for Gaussian Matrix Elements . . . . . . . . 149

6.1.1 Two-Dimensional Reduction of Three-Dimensional Bargmann
Variables . . . . . . .. oo Lo o 149
6.1.2 Transformation Formula for One Variable . . . . . ... . ... 152
6.1.3 Application to n-Cluster RGM Kernels. . . . . . ... .. ... 153
6.2 Expansion by Double Gel’fand Polynomials . . . . . .. .. ... .. 157
6.2.1 Central Matrix Elements . . . . . . . .. .. .. .. ...... 157
6.2.2 Noncentral Matrix Elements . . . . .. .. .. ... ... ... 162

6.2.3 Two-Row SU,_; C-G Coeflicients and the Expansion Coeffi-
cients of Fé};‘ft)(C) ......................... 165
6.3 Examples for 2- and 3-Cluster Systems . . . . . .. .. ... .. ... 167
6.3.1 2-Cluster Systems . . . . . . . v o b i e 167
6.3.2 3-Cluster Systems . . . . . . . . . .. 169

§1. Introduction and Summary

The resonating-group method (RGM), proposed by Wheeler [ 1] a long time ago, is a
full microscopic framework which makes much account of cluster correlations in nuclear
many-body problems. It is particularly suited to a unified description of bound-state,
scattering and reaction problems, in which nuclear clusters are frequently natural build-
ing blocks of the total system and their dynamical interplay provides an essential role in
many intricate nuclear phenomena, including structure changes from the shell-model-
like to cluster structures. Once a combination of an appropriately large model space
and an effective two-nucleon interaction is selected in view of physical considerations,
there is no room for any phenomenological parameters in the RGM calculation, and
the antisymmetrization due to the effect of the Pauli principle takes full account of clus-
ter dynamics, resulting in a unique solution for the physical observables such as the
bound-state energies and cross sections. Owing to these nice features, many detailed



MULTICLUSTER RESONATING-GROUP METHOD OF s-SHELL CLUSTER SYSTEMS 93

calculations have been performed by using this method, especially in light nuclear sys-
tems. As for these enormous outgrowth within the last fifty years or so, a number of
books [2], [3] and review articles [4]~ [14] should be referred to.

In the RGM calculations, it is essential to choose an appropriately large model
space that is spanned by a set of nonorthogonal basis functions representing various
cluster configurations. There exist at present a number of many-channel calculations,
as well as quite sophisticated single-channel calculations which take account of detailed
properties of cluster internal functions. [15]~ [76] We can categorize these into several
groups. The first one is multiconfiguration RGM calculations performed especially by
Hackenbroich and his collaborators, and later by Hofmann and his collaborators (see,
e.g., refs. [15]~ [33]). In the method of Hackenbroich, all necessary matrix elements
of many-nucleon systems are directly calculated by successively applying the algebraic
transformation formula of Gaussian integration, and all physical observables in the low-
energy region are reasonably reproduced by adopting a wide model space spanned
by many types of two-cluster configurations. The emphasis of these investigators is,
however, on studying the level structures in the low-excitation region of light p-shell
nuclei and the four-nucleon systerm. The second category is calculations by the method
of pseudo-inelastic configurations, first performed by Thompson and Tang [34], [35]
and subsequently by several authors {37}~ [42]. The main idea of this method is as
follows. In the deep inside of the nucleus or in the interaction region in a reaction pro-
cess, clusters are usually distorted from the original free particles due to the interaction
with the surrounding nucleons. This is called the specific distortion effect in ref. [3],
and is particularly important in the low energy region, when clusters with low com-
pressibility like the deuteron are involved. This effect is properly taken into account, if
one introduces additional degree of freedom into the resonating-group trial functions
and thereby improves the behavior of the compound system in the strongly interacting
region. This can be attained either by adding into the formulation physical reaction
channels as is done in the multiconfiguration RGM calculations or by employing the
pseudo-state method in which pseudo-inelastic configurations are utilized to enlarge the
model space. The main advantage of this method lies in its simplicity of formulation,
because the kernel functions representing the couplings among various cluster config-
urations can be rather easily derived. Another important effect of the pseudo-inelastic
configurations is to describe the direct breakup processes of clusters. The third one is
the multiconfiguration and multichannel resonating-group calculations by the present
authors [44] ~ [50], in which coupled-channel equations are derived by starting from
an analytic formulation of a three-cluster RGM [51]. In this formulation, we can easily
incorporate the following important effects : 1) the clustering effect of subsystems like
d + a structure of 9Li; 2) inelastic excitations to the simple rotational partner of the
ground state like I = 2 excited state of 8Li; 3) those to the states of intrinsic excita-
tions such as (3N + N)-like o* state; 4) those to the pseudo-inelastic configurations; 5)
effects of cluster-rearrangement configurations in reaction processes. Through detailed
systematic investigations of differential and reaction cross sections in 6-, 7-, 8-, and 10-
nucleon systems, the present authors have examined general characteristics of nuclear
reactions, such as the essential features of internuclear interactions, important reaction
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mechanisms and so on. For the interesting findings up to the present, a recent review
article [ 507 should be referred to. Needless to say, this formulation has some restriction
originating from dividing the total system into only three clusters. This is, in fact, a
part of the motivations to extend this formalism to four- and more-cluster systems in
the present paper. The fourth category is an attempt to solve 3-cluster systems directly
either in the RGM formalism or in the generator-coordinate method (GCM). We should
mention the very early variational RGM calculation of the 3 « system by Fukushima and
Kamimura [52], [53] and a GCM calculation by Uegaki, Okabe, Abe and Tanaka [54],
[55]. Through an extensive study by Baye and his collaborators [56] ~ [63], it has been
shown that the GCM is a suitable framework to incorporate many-cluster configurations
in the microscopic cluster theory. By Descouvemont and Baye [64], [65] and also by
Langanke and his collaborators [66]~ [69], it is successfully applied to many nuclear
reactions of astrophysical interest. For example, in the study of the 8-nucleon system
in ref. [64], the folding procedure for the 2-cluster subsystem is employed to formulate
the scattering problems for evaluating the astrophysical S-factors in "Be(p,v)®B and
"Li(n,y)®Li reactions. A few ambitious attempts to take into account the three-body
breakup processes and the effects of cluster excitations in the full microscopic 3-cluster
formulations by the techniques of hyper-spherical harmonics and others are found in
refs. [70]~ [76].

The purpose of this paper is to present a mathematical formulation of the three-
cluster RGM for systems composed of one a-cluster and two s-shell clusters, and thereby
provide technical details for the multiconfiguration and multichannel resonating-group
calculations by the present authors. In view of the recent rapid improvement of com-
puter facilities, we will extend the applicability of the present formulations to more
complicated systems such as four- and more-cluster systems. The only restriction is
that the systems are composed of s-shell clusters described by translationally-invariant
shell-model functions of the lowest configurations in harmonic-oscillator potential wells
having a common width parameter v. In contrast to the previous write-up [51], we will
here discuss not only central forces but also LS, tensor and Coulomb interactions. The
incorporation of these forces in the actual numerical calculations is a future project.
If the system is only composed of spin-isospin saturated a-clusters, both of the nor-
malization and interaction kernels are easily obtained from the standard techniques in
terms of the Bloch-Brink wave functions [77]. In fact, even the system of an infinitely
large number of a-clusters (a-matter) is discussed and the GCM kernels are elegantly
expressed by using the Lambert series and the elliptic theta functions [78]. However,
once the system has non-zero spin and isospin values, such a simple separation of the
spatial and spin-isospin degrees of freedom is no longer possible. In such a case, one
needs to handle a large number of analytic matrix inversions of large dimensionality cor-
responding to the nucleon number itself, which is still not easy even by using modern
computer softwares for algebraic computations. Here we instead use another standard
technique by the double-coset generator expansions, which was developed by Kramer
and Seligman [79], [80]. A nice feature of this technique is that we only need to deal
with the smallest number of independent terms for the exchange kernels from the very
beginning and that it gives a complete procedure to calculate spin-isospin factors for
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arbitrary systems in terms of shell-model-like ¢fp expansions. These authors use the
expansions even for the spatial part [82], but we rather use simpler Brink techniques
to handle this continuous degree of freedom. Each term in the interaction kernel is
classified not only by the modes in which nucleons are interchanged among clusters,
but also by the interaction types which specify particular combinations of the complex
generator-coordinate vectors involved in quadratic polynomials for Gaussian interaction
factors. These kernels have very simple structure for a clear separation of spin-isospin
factors and factorization of each term into the normalization, the central-Gaussian, and
the noncentral factors. By considering these kernels in the complex generator-coordinate
space, the subsequent transformation to the RGM kernels and evaluation of the matrix
elements for Gaussian-type trial functions are carried out in full generality irrespective
of the number of clusters.

Although the procedure to evaluate the spin-isospin factors is straightforward, we
need to specify spin-isospin coupling schemes for practical calculations of these fac-
tors. Even in 3-cluster systems, this process becomes fairly cumbersome for general
spin-isospin configurations. On the other hand, the systems we are concerned with
usually contain at least one a-cluster, and hence a full generality of the spin-isospin
configurations for 2-cluster subsystems is practically good enough for the description of
3-cluster systems. In this paper, we will analytically derive the spin-isospin factors in
the interaction kernels for any spin-isospin configurations of two (0s)-shell clusters, and
the result is then generalized to the case of 3-cluster kernels in the generator-coordinate
space, employing the valence-orbital method [83]. A computer-aided algebraic compu-
tation of these spin-isospin factors for arbitrary systems is certainly a promising future
direction to proceed.

Once the kernel functions are thus derived in the GCM or RGM representation,
the next important problem is how to solve these n-cluster integro-differential equations.
In principle, we should be able to formulate Faddeev-type connected-kernel equations
which take into account correct asymptotic behavior of many-cluster systems. How-
ever, a complete treatment of breakup processes is not yet accomplished even in the
Faddeev formalism for systems of structureless particles. In this paper, we only give a
possible application of the n-cluster RGM formalism, which is practically feasible and
still physically meaningful. Namely, we discuss 3-cluster systems composed of one a-
cluster and two (0s)-shell clusters, and formulate coupled-channel equations with three
different types of two-cluster kernels. We assume appropriate relative-motion functions
for 2-cluster subsystems composed of any pairs of the three clusters. In practice, these
relative-motion functions are selected according to a variational procedure constrained
by relevant experimental information such as the root-mean-square radius or the charge
form-factor data. These coupled-channel equations are then solved by the variational
method, employing Gaussian-type trial functions [85]. Through this procedure, we can
investigate the effect of channel couplings due to the cluster rearrangement, as well
as the effect of clustering in the sophisticated channel wave functions. We can even
incorporate the effect of cluster breakup in an approximate way, by introducing the
pseudo-state configurations for the subsystems [84].

The variational method for coupled-channel problems is extensively discussed by
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Kamimura [85], and has been used by many authors. In the application to multicluster
problems, it is crucial to have concise expressions of RGM matrix elements for efficiently
calculating the huge number of them, since the main computation time is spent for this
part. Such expressions are known to be obtained by using Gaussian-type basis func-
tions, by which another tedious process of angular-momentum projection is also greatly
simplified. We have developed in Appendix B of ref. [43] a new technique to calculate
Gaussian matrix elements for RGM kernels, directly starting from the GCM kernels.
This technique requires the transformation formula from GCM to RGM kernels, which
is easily obtained through the Bargmann integrals in the complex generator-coordinate
space. We have applied this technique to central matrix elements of 3-cluster systems
in ref. [51], and have obtained a concise expression which contains only one simple
Clebsch-Gordan (C-G) coefficient for the angular-momentum projection. Here we com-
bine this technique with the theory of double Gel'fand polynomials [86] developed for
the multiplicity-free problems in the representation theory of unitary groups. Instead
of taking the infinity limit of the RGM argument variables as is done in refs. [43]
and [51], we employ a simple reduction rule from 3-dimensional complex variables to
2-dimensional ones. This rule converts the process of calculating the RGM matrix el-
ements with respect to the angular-momentum coupled Gaussian basis functions into
that of expanding the generating functions in terms of two-row type SUs x SU,_;
double Gel’fand polynomials. Since the necessary SU, ., C-G coefficients are all ex-
pressed by the angular-momentum Wigner coefficients, this new technique corrresponds
to a transparent bookkeeping of the complicated angular-momentum projections of the
many-cluster systems in the quasi-spin or quasi-SU, 1 space.

Finally, a brief comment may be useful to clarify the characteristics of our approach.
The present many-cluster formalism is entirely analytic. This implies that we treat
explicitly kernel expressions in the RGM or GCM formalism for a definite multicluster
model space, and try to connect the complex many-body nature of nucleon systems
to various properties of the kernels which completely determine the relative motion
between clusters. Therefore, it is possible in our approach to examine the properties
of the kernels in terms of nucleon-exchange modes and interaction types, and also to
study the relationship of the multicluster kernels with coupling kernels in the coupled-
channel formalism and with the kernels of subsystems in cases where subsystems of many
clusters are approximately described by harmonic-oscillator shell-model wave functions.
These studies are important, in order to clarify such interesting microscopic effects as
nucleon-exchange effects, distortion effects, channel-coupling effects, clustering effects,
and other effects in various reaction processes. The completely analytic character of the
formulation makes it necessary to restrict to some extent the range and the nature of
systems that can be readily treated. On the other hand, it also results in the practical
advantage that the requirement of computational facilities is greatly reduced.

Another important nature of our approach is that our two-cluster coupled-channel
RGM equations are derived as a result of an approximation to the three-cluster RGM
equation. Thus, if one wishes to elucidate the foundation of such a coupled-channel
approximation, one only needs to investigate the properties of the three-cluster RGM
equation itself in much more detail. Although all necessary three-cluster kernels is de-
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rived in this paper, no investigation has yet been made concerning the problem of which
kind of three-cluster equations one should solve for the microscopic 3-cluster systems,
in order to insure a correct dynamical behavior for the relative motions among three
clusters in the sense of a three-body Faddeev-type theory. With a complete formu-
lation of the three-cluster RGM, one should be able to incorporate in a natural way
the three-cluster breakup effect, as well as the channel-coupling effect of two-cluster
channels. In this context, one might need to pay special attention to semi-direct poten-
tials resulting from partial antisymmetrization of 2-cluster subsystems in the framework
of a correct three-cluster RGM theory, since such potentials have never been directly
treated in any three-body formalism of structureless particles. Recently, Schmid and
other authors [87]~ [91] have discussed the relationship between three-cluster forces
and the elementary-particle concept of clusters, by introducing a certain type of off-shell
transformation in the three-cluster RGM equation. The approach developed in this
investigation might give some helpful hints as to how one could proceed with such a
theoretical investigation of three-cluster systems.

The organization of this paper is as follows. In §2, we first outline the coupled-
channel formulation of 3-cluster systems, which employ the n =3 case of the following
n-cluster RGM formalism. In §3, the structure of the n-cluster RGM kernels for systems
of (0s)-shell clusters is clarified. After a short comment on general procedure to evaluate
GCM kernels, double-coset generator expansion of the antisymmetrization operator is
introduced and employed to evaluate interaction kernels for central, LS, tensor inter-
actions, and for the Coulomb interaction as well.” Each term in the interaction kernel
is classified not only by the exchange modes of nucleons, but also by the interaction
types which involve somewhat increasing complexity for larger number of clusters. In
particular, for 3-cluster systems, it is shown that 3-cluster interaction types are specified
by a slight extension of simple 2-cluster interaction types, together with a particular set
of Jacobi coordinates which specifies the positions of clusters directly involved in the
particular two-nucleon matrix element under consideration. This classification scheme
of the 3-cluster interaction types is particularly convenient, when we discuss the trans-
formation properties of the coefficients of the GCM kernels for rearrangements of the
Jacobi coordinates. In §4, a few explicit examples of spin-isospin factors are given for
arbitrary spin-isospin configurations of 2-clusters and for 3-cluster systems which involve
one a-cluster and two (0s)-shell clusters. The 2-cluster case follows the general proce-
dure, which is in principle applicable to systems of any number of (0s)-shell clusters. On
the other hand, a simpler valence-orbital method is employed for the particular 3-cluster
systems considered, in which we can take full advantage of the spin-isospin saturated
nature of the a-cluster. The last two sections are devoted to a technical developement
for practical applications of n-cluster GCM kernels. In §5, we first discuss a systematic
evaluation of RGM kernels in the complex GCM. The transformation formula derived
here plays an essential role in the evaluation of Gaussian matrix elements of the RGM
kernels in §6. We can elaborate a new transformation formula for this purpose, by
employing a simple reduction rule of Bargmann variables. Through this procedure, we
can construct generating functions for the Gaussian matrix elements, from which those
for angular-momentum coupled n-cluster states are easily obtained by the expansion
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in terms of SU; x SU,,_; double Gel’fand polynomials. The 2- and 3-cluster formulae
for the Gaussian matrix elements of the RGM kernels with respect to the central, LS,
tensor, Coulomb, and the kinetic-energy terms are explicitly given to be readily used.

§2. Coupled-Channel Formulation of 3-Cluster Systems

In the multiconfiguration and multichannel RGM calculations by the present au-
thors [50], the 6-, 7-, 8- and 10-nucleon systems are considered to be 3-cluster systems
Cy1 + Cy + C3, with all three clusters described by translationally-invariant shell-model
functions of (0s)-configurations with a common harmonic-oscillator (h.o.) width param-
eter v. By using the mathematical techniques developed in ref. [51] or in the following
sections, one can derive the 3-cluster kernel functions for these systems. To be more
specific, let us express the 3-cluster basis functions in the RGM formalism as

U = A{¢(C1)$(C2)¢(Cs) x(£1,€2) Z(Xe) } 2.0

where ¢(Cy) (a=1, 2, 3) denotes the cluster internal wave function for C, and Z{Xg)
is any normalizable function describing the total center-of-mass (c.m.) motion. For
clarity in presentation, we shall conduct the following discussion by assuming that the
clusters have no spin-isospin quantum numbers and by omitting angular-momentum
couplings; in actual calculations these must of course be explicitly taken into consider-
ation. Furthermore, we assume that the three clusters, Cy, Cs, and Cj, are all different
from each other. In Eq. (2.1), A is the antisymmetrization operator among three clus-
ters and x(&,,&,) represents an intercluster relative-motion function with &, and &,
being an appropriate set of the Jacobi coordinates. (See Eq. (3.8), for example.) The
relative-motion function x(&;, &,) is dertermined from the variational RGM projection
equation

(6U|H — E|¥) =0 , 2.2)

where H is a Galilean-invariant Hamiltonian composed of the kinetic-energy term and
the two-nucleon interaction ;

A A
H:ZtS—TG—i-szt ) (2.3)
s=1 .

s<t
Here, A is the total mass number A = A; + Ay + A3 with A, (@ = 1 ~ 3) being that of
the cluster C,. The integro-differential equation for x(&;, &) is schematically written
as

(H—EN)x =0, (2.4)
where H and A are integral kernels defined through

{3 } = tscvscanca{  farvenscsca) . e

and their explicit derivation is the main subject of the following sections. Here we
assume that they are already derived and outline how we should proceed further to
derive coupled-channel equations.
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FIGURES

C] CI

Cz C2

FIG. 1. Three independent sets of Jacobi coordinates for 3-cluster systems; &7 = (£{,€7) with
J=11IL I, or J = (y) withy = 1, 2, and 3.

An advantage of having explicit expressions of 3-cluster GCM kernels is that one
can analyse their structure term by term, and hence investigate the roles of exchange
modes and interaction types in detail. In particular, as we know in 2-cluster systems,
the separation into the direct and exchange terms by the nucleon-exchange number is
very important, since these terms have different number of Dirac’s §-functions in the
form of RGM kernels, and a special treatment is needed to formulate RGM equations
as integro-differential equations. In 3-cluster systems, we find that another special class
called semi-direct terms emerges, which is characterized by nucleon exchange between
2-cluster subsystems with the third cluster left free. Naturally, almost all of these kernels
are expressed by 2-cluster kernels of the subsystems. An exception is the semi-direct
part of the interaction kernel, which can not be reduced to any kind of 2-cluster kernels,
in spite of the appearance of one §-function for the relative coordinate between theé
subsystem and the third cluster. This situation is conveniently described by introducing
three different types of Jacobi coordinates depicted in Fig. 1. Suppose (af7) is an even
permutation of (123). The subsystem Cog = Cy + Cp is specified by the third index -y.
We refer to Cp as a subsystem of y-pair, and use the notation v and ¥ to denote the

By using these notations, the structure of 3-cluster kernel is schematically expressed as

N=14 Y MDD 4 N
Y

K=KP+> k5P +Kk®
8
’CD = ZE%nt)(Ca)'FTy‘*‘Ti ’

k5P = NP (ER(Co) + ) + P

I=1°+> 1507 +10)
o
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7P =N EG(Cl) + Y VP,

3

I3P = NP BT (Co) + TP + V7P (26)

where K and 7 are kinetic-energy and interaction parts of H, respectively; H =K +Z.
In Eq. (2.6), Ty and T% are the relative kinetic-energy operators between C,, and Cg, and
between Cng and C,, respectively, VyD is the direct potential between C, and Cpg, and
V3D is the semi-direct potential. Furthermore, E(")(C,) = Egm)(Cﬁ,) + Egnt)(C’,y)
is the internal-energy contribution of the cluster C, and NA§2), /nyz) , and Ia(,z) are the
exchange kernels for the subsystem C,g. The genuine 3-cluster exchange kernels are
denoted by A/ 3}, K®), and I®, and they involve no §-functions.

Let us first consider the 2-cluster RGM equation for the subsystem of the y-pair.
It is given by

(K+I—-E{™N) ¢y =0, 2.7)

where N, K, and T are now 2-cluster kernels expressed as

N=1+NP ,
K =B (Co) + EX™(Cp) + T, + KB,
T = EG™(Co) + BS™(Cp) + VP + I3 (2.8)

We substitute Eq. (2.8) into Eq. (2.7) and introduce the relative energy €, of the y-pair
through

EU™) = ¢, + EG(C,) + B (Cp) (2.9)
Then, we obtain
(T + Vy —ey) dy =0 (2.10)
with
D E E 2 2 in
V,=VP+GE | GE=KP +IP - Ef"ING (2.11)

where G’f represents the contribution from the exchange kernels for the y-pair. The
normalization of ¢, is determined from the condition

(671 (1+NFD) [ dy) =1 . (2.12)
On the other hand, 3-cluster RGM equation in Eq. (2.4) is expressed as
(K+ZIT—-EN)x=0, (2.13)

where NV, K, and T are 3-cluster kernels given in Eq. (2.6). Let us introduce the relative
energy €5 for the vy-channel through

E = e5+ E™ 4 EGmY(C,) (2.14)
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Then, by substituting Eq. (2.6) into Eq. (2.13) and by using Eqgs. (2.11) and (2.14), we
obtain

[+ V= o) + (T = o)1+ M) + 3T V2 4+ V5P
oy
=~ D (CEP + 257 - BND) + (K9 + I - ENO)) | x . (2.15)
azty

Here we examine two types of approximations for the relative wave function x of the
3-cluster system. In the first type, we set in Eq. (2.15) x = ¢, 15 consisting of a
relative wave function ¢ between Cos and C, and perform the integration for the
inner product with ¢.. Then, by using Eqgs. (2.10) and (2.12), we obtain

(Ty+ Vo —ex) ¥y =0 , (2.16)
where we have defined
VWD = <¢7tZVo{)+V—ySD!¢"/> s
aFy
GE = (¢, > (KEP+I5P — ENP) + (K®) + 10 — EN®) | ¢,) . (217)
sty

This approximation corresponds to a single channel RGM equation for the relative-
motion function ¢z of the vy-channel, and V:(D in Eq. (2.17) is the corresponding direct
potential. The second type of approximation to obtain a coupled-channel RGM equa-
tion is achieved by assuming

X=0y P57+ > bats - (2.18)
agty
With this assumption, we obtain
(T5+ Ve —ex) 5+ Y (Hya — ENyo) g =0 (2.19)
agty

where we have defined, for a # -,

H“/a:<¢WIK+I[¢Q>=<¢7[H!¢M> ) N’Ya:<¢'ny|¢a> . (2.20)

§3. Structure of »-Cluster GCM Kernels for Systems Composed of (0s)-Shell
Clusters

3.1 General Procedure to Evaluate the GCM Kernels

Let C be one of the (0s)-shell cluster systems with mass number A < 4. The
shell-model wave function ¥(C) with a common h.o. constant v is composed of a
totally symmetric product of (0s) h.o. wave functions and a spin-isospin wave function
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£(1,2,---, A) which is antisymmetric with respect to arbitrary interchanges of spin-
isospin variables:

qu(os) (xi5v) €(1,2,-++, A) . 3.1)
Here, we have used a common notation
2\ }
v
Prosy(%5v) = <—7r_) v’ (3.2)

for the (0s) h.o. wave function with v, and the spin-isospin quantum numbers for the
SU, irreducible representation [f] = [14] of £(1,2, - - -, A) are suppressed for simplicity.

Owing to the complete quadratic nature of the Gaussian exponential factors, we
can separate the c.m. motion described by ¢(os)(X; Av) with X = Z _1 %i/A in Eq.
3.1):

P(C) = d05)(X; Av) 6(C) . (3.3)

We call ¢(C) in Eq. (3.3) an internal cluster wave function for the (0s)-shell cluster C.
The separation in Eq. (3.3) of the c.m. motion is of basic importance in the present
treatment. For example, the translation of the coordinate system, x;, — x; — S (i = 1 ~
A), produces a simple relationship

A
8) = [ [ dfoe) (xi3v) €(1,2,-+, A) = ¢35 (X; Av) 4(C) (3.4)
=1

where ¢(SOS)(X; V) = s (x — S5 v).

Next, we consider an n-body system composed of such (0s)-shell clusters C; (& =
1 ~ n). For a cm. coordinate X; of each cluster, it is sometimes more convenient to
use a normalized one X; = VA; X; by the mass number A;. In this paper, we use the
notation ~ in order to specify the coordinate vectors normalized by the corresponding
mass numbers [94]. The c.m. coordinate of a subsystem up to the ¢-th cluster thus
becomes X ZJ 1 \/__ X i/ \/H (i=1~n), where A; = Ay + Ay + -+ -+ A; is the

mass number of the subsystem (Cy + Ca + - - - 4+ C;). The Jacobi coordinates E and the
c.m. coordinate of the total system X are defined by using these notations as follows :

Ripr — (| 21 % (i=1~n—1)
2+1 z—l—l

Xe=) \/_XN“ X, , (3.5)

i=1

where A = A; + -+ + A, = A, and they satisfy

n—1 n
SE =% . . (3.6)
=1 =1
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The inverse transformation of Eq. (3.5) is found to be

|A;- A
\/—XGJr Aiag j:Aa: g (i=1~n) (37
7

under the convention §; = 0 and Z;:nl -«+ = 0. As an example, the unnormalized
Jacobi coordinates in the case n = 3 are shown in Fig. 1. Furthermore, we use §;
(i =1~ n), Sg and z;//v (i = 1 ~ n— 1) for the complex generator-coordinate
vectors corresponding to X; (1 = 1 ~ n), Xg = f(c/\/Z and /E\z = /i §; with
pi = A; Ajy1/ Aiyq, respectively. In Table I, we summarize various coordinate systems

used in this paper.

TABLE 1. Various coordinate systems used in this paper. In the second row, CGC denotes
complex generator coordinates. In 2/ /7, vi is given by v = \/fii v with s = A A1/ Asgr.

Besides these, the notation” is used to specify the coordinate vectors normalized by the correspond-
ing mass numbers.

usual coordinates Jacobi coordinates V-type coordinates
dynamical & (E=1~n-—1)
coordinates Xi (G=1~n) Xa
2/ (i=1~n—1) T; (i=1~n-1)
CGC S; (i=1~
i (% n) Se Se
For a fixed set of clusters C1,Cy,---,Cp with n > 3, there are in general several

different sets of Jacobi coordinates. The transformation among them is trivial, but
important for practical applications of the present multicluster RGM formalism. We
should be able to write down exchange kernels in any types of Jacobi coordinates, if we
try to consider rearrangements of cluster groups. Since our main concern is on 3-cluster
systems due to the present limitation of computer facilities, we will show transformations
of Jacobi coordinates in detail only for 3-cluster systems. Three different sets of Jacobi
coordinates £7 = (£7,€3) (J = I,1I or III) are defined as is shown in Fig. 1. We
reserve J = III as a standard set of the Jacobi coordinates and usually omit the
superscript I1] as is already assumed in Eq. (3.5) with n=3. This is convenient in
§4.3 for the calculation of spin-isospin factors, since we assume C3 as an a-core in
the course of applying the valence orbital method. Now, suppose (37) is an even
permutation of (123). If we introduce an alternative notation () to specify the type of
Jacobi coordinates J by (1) = I, (2) = I, (3) = III, we can compactly express 5(7)
(t=1,2andv=1,2,3) as

AXy + ApXg

(7) (7 _
=X X y =X
A 2 K Aa—i-Ag

Let us define the reduced mass numbers /,L(’Y) and ug/) by
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(M _ AaAﬂ (v _ (As + Aﬂ)Av
Hq y Mo~ = e,

with Aq + Ag + A, = A1 + Ay + Az = A. Then, the h.o. width parameters assigned
to the two types of relative motion of the three clusters in the Jacobi coordinates of
type-(y) are given by 7(7) = 57)1/ (i = 1,2). If we define a 3x2 matrix £&7) =
(", /€

?

(3.9)

, the orthogonal transformation of the Jacob-coordinates for an
arbitrary set of & and 8 (o, 8 = 1 ~ 3) is expressed as

E(ﬁ) /\(04) =(@)(8) ) (3.10)

where Z(®)) is a 9x2 orthogonal matrix given by

—@@ 1 bap A= /Achp =3 eapr/A A
- T Tae ac (3.11)
Afo% Z"y eapyy/ Ay A bap A VAo Ap

with A, = A — A, etc. In Eq. (3.11), we have introduced 3-dimensional antisymmetric
tensor defined through the usual rule; eqgy = 1 if (@fy) is an even permutation of
(123), —1 if (aBv) is an odd permutation, and zero otherwise.

The essential relationship which enables us to calculate the GCM kernels from the
matrix elements of the Brink-type wave functions is based on Eqgs. (3.4) and (3.6):

n—1 1 -1 n
IT 4 i 2) 678 (Xa, Av) = exp {5 > 2} [0 X dw) . (312
g==1

g=1 i=1

where y; = u;v and

g 2 \2 2
Av(é,z):(%;) eXp{-’y (ﬁ—wﬁ) +%} (3.13)

is the h.o. coherent state in the Bargmann space [92], [93]. The relationship between
7z, 1=1~n=-=1)and $; (¢ = 1 ~ n) are obtained from Eq. (3.5) or (3.7) by a trivial
replacement Ez — 7;//v and X, =8, = VA; S;. Here, we set S¢ = 0 in Eq. (3.12)
and multiply it by all the internal cluster functions ¢g = ¢(C1) ¢(C2) -+ ¢(Cy). Then,
by using Eq. (3.4), one finds

¢ A(E; )¢o—exp{ }Hw(cz,s : (3.14)
where a simplifying notation
ba = ¢ps)(Xa, Av) A& 2) = Ti:]: A (&, 2:) (3.15)
is used. Furthermore, we use 3 X (n — 1) matrix notation like 5 (&yi)

(517 527 Ty én—l): z = (Z"ﬂ) = (zh Z2, 0, Zn—l) and TT(tZZ) Z"/z yi T Z?:ll Z?
with v = z, y, and z. The explicit expressions for S; in terms of z; are given by !

'In Eq. (3.16a), the correct notation is not P, z but z P,, if we use the matrix notation P = (Pi,)
with Pio = (Pa);i. (See Eq. (3.97).) We avoid this clumsy notation, unless it is inevitable.
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n—1
VVSa =Paz=Y (Pa)i 2 (3.162)
=1
with
1
(Pa)'i = "'ﬁ (pa)i (3.16b)
and
0 t=1~a—2 a=1t+2~n
(Pa)i = —(A;]/ Aiyy) for { i=a—1 or { a=1i+1 . (3.16¢0)
(A,'H/Zi“) t=a~n-—1 a=1n~1
(We have used a notation @ = 1 ~ n, instead of 4, for the convenience of later

applications to GOCM kernels.) Note that we always have ZZ=1 A, Sy =0.
The relationship (3.12) is conveniently used for evaluating GCM kernels, which are
now defined through

Iz 2) = (A(& 2)do] O A |A(&; 2 )gho) (3.17)

for any A-particle symmetric operator O, The type of the GCM kernel is specified
by €, which we assign to 2 = N for the normalization kernel, 2 = K for the kinetic-
energy kernel, and any other types of the translationally and Galilean invariant two-body
interactions for the others :?

A A
oN=1, 0X=N"t,-Te, 0%=> P . (3.18)
sz==1 s<t

In OF, t, = (=h*/2M) V2, and T = (—h*/2AM) V% with M being the averaged
nucleon mass M = (M,, + M,)/2. (We neglect the small mass difference of the proton
and the neutron to utilize the isospin formalism.) The antisymmetrization operator A’
in Eq. (8.17) is only for permutations among different clusters with Al/(A;! -+ A,D
terms due to the antisymmetric property of the internal cluster wave functions. What
we need to do is to evaluate the matrix elements®

GS;8) = (A []w(Cis8:) |02 T w(Cis ) (3.19)

i=1 i=1

by using the standard shell-model techniques. Then the necessary GCM kernels (3.17)
are obtained through

IY(z; 2') = exp {-;-(Tr(tz*z*) + Tr(%’z')) } G(S;8") . (3.20)

20f course, it is also possible to deal with a one-body operator O = Z;:l oW,

3We move A’ to the bra side by using the totally symmetric nature of ©%, which turns out to be
convenient for later discussions.
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As to the normalization kernels for the systems of (0s)-shell clusters, a quite general
expression is already derived in refs. [95] and [96] by using the powerful techniques
of double Gel'fand polynomials [86]. (See, for example, Eq.(3.20) of ref. [95].) The
kinetic-energy kernels are simply obtained from the normalization kernel in the present
case, as is shown in the next subsection. The main reason for this simplicity is because
these operators do not involve any spin-isospin degrees of freedom. As a result, the
SU4 symmetry [f] and its internal quantum numbers, i.e., the total spin and isospin
values, are all conserved. On the other hand, the two-body interactions vg?) usually
involve the spin-isospin dependence and general treatment of their matrix elements with
respect to intricately coupled many-cluster spin-isospin wave functions is rather difficult.
Therefore, we will develope in the next subsections rather standard techniques [79] to
separately evaluate the spatial and spin-isospin matrix elements by the use of the double-
coset generator expansion of the antisymmetrization operator A’ and the ¢fp expansion
of the antisymmetric spin-isospin wave functions. A simpler treatment of three cluster

systems involving at least one a-cluster is discussed in §4.5.

3.2 Double-Coset Generator Expansion and Particle-Exchange Tables

Since a quite extensive description of the double-coset generator expansion is already
presented in the literature [ 79]~ [82], only the essential result needed in our application
is recapitulated here. Let us consider permutations of A particles,

1 2 ... A
p= ( ) €Sy, (3.21)

P1 P2 ' PA
where S 4 is the symmetric group of the ordered set A = {1,2,---, A}. Since this system
is composed of n clusters, Cy, Ca, - - -, Cyp, we can naturally introduce a subgroup of S4,

H C 5,4, the elements of which transform particles only inside of their own clusters :
H=8,8854,® -8®Sy4, , (3.22)

where 54, is composed of permutations of A; = {Zi_l + 1,41 +2,-- ,XZ-} with
A; = A;_1+ A; and Ap = 0. In terms of this subgroup H, S4 can be decomposed into
a direct sum of the double cosets, Sy = Uy Hz, H # namely,

p=gaf (9 f€H) (3.23)

with z;, being a generator of the double coset characterized by an index k. The central
issue here is to find the index k& which uniquely and completely characterizes the double
coset and to find the expicit form of the generator z;. It can be shown that these
are achieved by simply partitioning the A X A matrix representation of p = (ps;) with
Dst = Op, ¢ (8, =1~ A)into n? blocks as is shown below:

1t is also possible to use two different subgroups H = S4, ® Sa, ® --- ® Sa,, and K =
S'A/1 ®SA/2 ® @8y (Ar+-- -+ A, = A1+ -+ Aj, = A) to achieve a double-coset expansion
Sa = Up Hzp K. Through this procedure, we can extend the present formalism to the case when
two different cluster-decompositions are assumed for the bra and the ket states. (See, for example,
Eq.(3.20) of ref. [95].) We will not dare to complicate equations by this rather trivial generalization.
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Dy -+ Dig
p= . (3.24)
Dnl o Dnn

The blocks Dy; are A; x A; matrices with elements 1 or 0. The number of one in
each block, k;;, depends on the permutation p, but is apparently the same for any
permutations belonging to the same double coset. This is because D;; for p in Eq.
(3.23) is expressed as D;;(p) = g;D;;(2x)f; with g; € Sa, and f; € S4,. If we arrange
the non-negative integers k;; in the n X n ‘matrix form just like the decomposition of p
in Eq. (3.24), we can use this [k] = (k;;) as an index to specify the double coset in a
unique way. In order to enumerate all possible types of double cosets for H, we only
need to find solutions for the weight conditions

T n
Z kig = Ay Z kg = As ki; = non-negative integers. (3.25)
i=] j=1

Since we can show that the number of the elements for the double cosets [k] is given by
(Aq!--- Ap1)?/k! with the convention k! = .., H;‘L=1 ki;!, the sum formula®

... N2
) @;EM — Al (3.26)
(k] )

guarantees that all the permutations of 4 are reproduced through Eq. (3.23). These
n X n matrices [k] are called double-coset symbols or partition matrices.® It is also
legitimate to call these symbols particle-exchange tables, since among the A; particles
inA; = {Zj_l +1,451+2,-- ,Zj_l + A;}, kij particles are transformed to Cf, kg,
particles to Cy, - -, and k,; particles to Cy,. If we define ordered sets kyj, koj, -+, kn;
through the correspondence A; = {ky;, ko, -+, kn;}, the A; X A; submatrix D;;(z)
for z;, can be taken to be

5This formula is easily proved by combining several multi-nomial expansions.

®1t is stated at a footnote of ref. [79] that these symbols have been introduced by H. H.
Hackenbroich.
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(m—klj———)--- (—k’ij——% ""'—knj_‘)

namely, k;; X k;; subblock is the unit matrix and the others are zero. Then, since we have
Z?zl D;j(zx)A; = {ki1, ki2, - -, kin} = A], we get the correspondence z A; = A} or

R Al ey v e e e e (__An_____,)
zk:( 1 2 ... A ) :<k11 koy - kg k12'-'k1n”'knn>
(ze)1 (zK)2 -+ (2k)a kig kio o kin koy oo kng -0 Knn
(3.28)

By using these results, we can easily derive that the antisymmetrization operator A’ in
Eq. (3.19) is reduced to

1 Al Ay
A= Y Gy p— ) 6w =) Gz (3.29)
PO pesa (k) ' [+)

where 6, or &, is the signature of the permutation.
The next step is to separate the spatial and spin-isospin parts in Eq. (3.19). We
define [T, %(C5; 8) = @€ with

o= II dgysv) » e=Jle(Ei 41, 4)) (3.30)
J=1s€A; 7=1

for the bra state and ¢ &' for the ket state. Then, the normalization kernel GV (S; ")
is obtained from

GN($;8) =Y X JY (3.31)
(K]
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with
N N
X =Cr(z €8 , Ji ={zrp|y’) . (3.32)

In order to evaluate the spatial matrix elements J, é\’ , it is convenient to express ¢’ as

n

¢ =TITI T 4 (xeiv) - (3.33)
j=1

i=1 s€k;;

Then, the effect of zj ¢ is, from 2z, A; = A} = {kj1,kj2, -+, kjn} in Eq. (3.28),

avp =11 T i) =T1TI T 6 (xeiv)

J=1 sEA; J=1i=1seky;
n n
=TI1I II 4G (xssv) - (3.34)
j=1li=1s€kyy

The spatial overlap integral J, ,ﬁv is calculated to be

ﬁexp {—gkij (S; — S})z} = exp —-g Z ki (Sy—$5)% 5, (3.35)

n n
1d=1 7=11i=1

where we have used the single-particle overlap given by
’ v %
(8500 (550 | 0y (52)) = ((05)s] (09)s) =exp {2 (5" =)} . (330)

From here on, we use a simplifying notation |(0s)s) defined through (x|(0s)s) =
gb'(SOS)(x; V) = ¢(0s)(x — S;v). Thus we find, for GN(8;5") in Eq. (3.31),

GN(S;8") = exp {——; > A(S+ s;.z)} S XN expu Y ki(S; - S))
i=1 [k] i,j=1

(3.37)

The front exponential factor in Eq. (3.37) is cancelled with that in Eq. (3.20) due to Eq.
(3.6) for the generator coordinates. Further use of the coordinate transformation (3.16)
yields’

IN(z2) = ZX,{V exp {Tr(z* Q[k]*z")} , (3.38)
[¥]

"The simple result that IV (2; z') is a function of only (2 - Z;) (5, = 1 ~ n — 1) is due to the

SUs-scalar property of the antisymmetrization operator A’ with respect to the Elliott SU3 algebra
of h.o. wave functions [92], [97].
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where (n—1) x (n—1) matrix Q[k] represents the coeflicients of the particle exchange for
[k] and the matrix elements are explicitly given by (Q[k])i; = g 5—1 kap(Pa)i(Pa);

JS=

or

(@IK)y = VAT {51 DI o5 S o

Ja 18=1 J+1 =1

Fivnp + ki i i=l~mn—1) . (3.39
z+1A Z +1,8 z+1A +1,j+1} (1,7 ) - (3.39)

In particular, [k] for 2-cluster kernels is parametrized as

k] = {Alw" ‘” Af- i } with = =0 ~ min{A;, 45} , (3.40)
and the normalization kernel is given by

min{A;,A5}

IN(z2) = Z XNeXp{<l——~)( -z')}. (3.41)

In 3-cluster systems with n=3, [k] is parametrized in ref. [51] as

A~z U T—u z=0~A;, y=0~ Ay
k] = v Ay—vy y—v with u,v = 0 ~ min{z, y}
z—v y—u Az—z—-y+u-+tv z+y—u—v< Az .
(3.42)

The set of non-negative integers {z,y,u, v} are extensively used in ref. [51] to specify
the exchange types. In terms of these, the 2x 2 matrix Quyuwe = (Qij5) is given by

U-+v T—1u - 1
Qu=1- <A2+’g‘+'——>ﬂa1, Q12=<— +7 ) ]

Az A A Ay Ao H2
T —v —U TH+Y—Uu—v
Qo1 = (- +Y ) st ) Qa2 =1~ gry-s-t (3.43)
A As M2 H2

Next, let us consider in general a single-particle operator O = Ele us Wy, where
we keep in mind applications to the kinetic-energy operator, as well as the two-body
interaction in the next subsection. (The index § in O% is omitted for simplicity.) Here,
we have separated the operator into the spatial part u; and the spin-isospin part ws;.
The GCM kernel in this particular case is calculated from

G(S;S") ZOAZ (zrolus @) (2 €ws |€7) . (3.44)

s=1

The spatial integrals®

8The assumption u, = u(x,) does not mean that the translational invariance is not kept in
the present formalism. It is already incorporated into the whole GCM kernel at the time of
supplementing an appropriate c.m. integral. See the next example for the charge form factors.
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(o luele') = ([T T TT #fag(xe) uGx) | TTTT T o5 xi)) - 3:49)

j=11=1 teky; J=1i=1t€k;;

are composed of only n? independent types, depending on which partition keg (o, 8 =
1 ~ n) of A the particle index s belongs to. Thus, we can subdivide the summation
over s =1~ A in Eq. (3.44) into 377, 5_; 3 ey ,» and use the ordered pair {a, §} for
the purpose of specifying different ““interaction” types. (We use the word “‘interaction”,
since this type classification is nothing but the one-body operator version of that used
for the interaction kernels in the next subsection.) The basic one-body matrix element
for the type {, 3} is conveniently defined through

Tia,py = {(05)s, | (0s)sy, ) ™ {(0s)s, | u| (0s)sy, ) - (3.46)

Since the spatial integrals are given by J T(a,8})> the GCM kernel in Eq. (3.44) is given
by

ZJA Z Xifopy Tios} » (3.47)
a,B=1

where the spin-isospin factors are defined by

Xifasy = Cr (2 €] > w,]€) . (3.48)
Sekaﬁ

The transformation to I(z; 2') through Eq (3.20) yields
= Zexp {Tr(z* Qk]*2")} Z Xitapy Ta,B) - (3.49)
a,f=1

Let us now specialize our discussion to the kinetic-energy kernels. In this case, we
have us = ts, w; = 1, and the spin-isospin factor X1, gy in Eq. (3.48) is simply given
by Xlﬁia,ﬂ} = kqp X}’ . The spatial factor T(, g for ts is obtained from

3K%y

((0)s [¢] (0)s/) = S=r {1 = 5(8" = )2} {(0s)s | (0s)s/) (3.50a)
2
= %’% (1 +§ 58—> ((0s)s | (0s)s' ) - (3.50b)

It is now straightforward to use these results to obtain

ZXk exp{Tr )}

3h2

I®(z2) =

X{A—1—§<Tr(t *2*) + Tr(ts ')) + Tr( Q] tz')} . (3.51)
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For (0s)-shell cluster systems, however, the above procedure is not actually necessary.
The second equation in Eq. (3.50b) shows that the effect of the single-particle kinetic-
energy operator is simply generated through the differentiation of the h.o. width pa-
rameter v ; i.e., t — 1+ (2/3)v(8/8v) except for a simple factor. By using this simple
relationship, we can immediately write down

- 3n° 2 8 )
G (5:8) = (0 €| (Lt~ To) €)= 5ot <A~1+§V—a—y> GV(s;8)

g==1

(3.52)

from which the result in Eq. (8.51) is easily obtained by using the explicit expression of
GN(S;8") in Eq. (3.37).
As another example of the one-body operator, let us discuss the charge-form-factor
operator
- 147
O (q) = iq(x.—Xg) sz 3.53
(@=) e 5 (3.53)

s=1

For the spatial integral, we only need to consider u(x) = e*%, since the X -dependence
in Eq. (3.53) can be eliminated, if the c.m. integral

2
exp { 51} 0l 6% [gc) =1 (3.54)

is imposed. Then, Eq. (3.46) becomes

2
off _ 1 i cemd L il gy
Telhy = (09, 1 09)s, )™ {O9)s. | € | 05)s,) =exp { L + i3 (52 +55) - o

(8.55)
If we further define the spin-isospin factors by
c L+,
Xifhoy = Crlatl D —521€) (3.56)
s€kagp
the GCM kernel is given by
ff ’ q2 1 t 0
c . . — * [
I (2,2, q) = exp {-——S—V— <1 - Z) } %GXP {Tr(z*Q[k]*z")}
n ) 1 i
X Z Xg{iyﬁ}exp{z m(Paz +Pﬁz')-q} , (3.57)

,F=1

where P, z = Zn—l(Pa)i z; etc. with (P,); given in Eq. (3.16).

q=1
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3.3 Interaction Kernels
It is almost straightforward to extend the discussion for the one-body operator in

the preceding subsection to any kind of two-body interactions O = Ef« ’US}) with the

space and spin-isospin decomposition vé?) = ug?) wg?) , and to obtain the general form
of the GCM interaction kernels. Namely, we only need to consider the subdivision of

two summations for s and t (=1~ A) in vg?) as

A n n
dSo— D> Z > with s<t . (3.58)

s<t a,B=1,6=1 s€kqy 5 t€ky s

We denote this pairwise summation of {e, 8} and {v,6} by 3(,4.,6}, and introduce
the spatial interaction factors and the spin-isospin factors through

Topsy = ((08)s, 1 (08)s; )71 ((0s)s,, [ (0s)sy, )™ ((0s)s,, (0s)s, [u™ | (0s)sy, (0s)s;, )
(3.59a)

and

Q
X apiney = Cr (2 €] S W@y, (3.59b)
Sekag,t€k75,8<t
respectively. (See the similar definitions for one-body operators in Eqgs. (3.46) and (3.48).)
Then, as a natural extension of Eq. (3.49), we obtain

Iz 2") = Zexp {Tr(z* Q[K]*2")} Z X,?{aﬂ;,mT{‘;ﬁn&} ) (3.60a)
(k] {8576}

or more simply

1%z 2) = Z exp {Tr(z* Q[k]*z")} Z XL T (3.60b)
[K] T

if we identfy the combination {a; v6} with 7T itself; T{op;161 = 7. It is a trivial exercise
to extend this discussion to a general m-body interaction. However, this only means
that the calculation of the GCM interaction kernels is reduced to that of m-body spatial
matrix elements 7 like Eq. (3.59a) and to that of more difficult spin-isospin factors X§%-.
In this subsection, we restrict our discussion to rather standard two-body interactions of
the central, Coulomb, LS and tensor types, and derive explicit expressions for spatial
interaction factors with respect to n-cluster systems. It will be found that a more efficient
and physical type-classification scheme is available for 2- and 3-cluster systems.

3.3.1 Two-Body Interactions and Spatial Interaction Factors
For the two-body interaction, we assume [ 98], [99]
central : 0(©) = Vg e’ (W+ BP, —HP, — MP,P;)
,(CL) _ 1+, 1+
T 2 2
LS: &) = yg e~ (W—-HP;)(£-5)
tensor : v =y r? e (W —HP;) S , (3.61)

Coulomb :
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where r = x; — X, 7 = | 1|, £ = (—i)r x (8/0r), s = (o1 + 02)/2 and

Sip = 35‘1—1%”#9 — (01 - 02) = V24 [ Y3 (%) [01 02| D)@ (3.62)
We have also used a standard notation P, = (1+ 0 -02)/2(Pr = (1 4+ 11 -72)/2)
for the spin (isospin) exchange operator. The full antisymmetrization in the present
formalism allows us to use the generalized Pauli principle, P, P,P, = —1, through
which we can eliminate the isospin dependence in Eq. (3.61) except for the Coulomb
force.® We will discuss this procedure in §4. Here we simply assume that the spin-
isospin factors for w = (W 4+ BP, — HP, — MP,P,), w®E) = (1 4 71,)(1 + 72.)/4,
W) = (W — HP,)(o1 + 032)/2, and wT) = (W — HP,) [0, 02 ]ff) are obtained as
Xpr, XGF, XEZ'S, and X S;(LZ), respectively, through the defining relationship in Eq.
(3.59b).1° For LS and tensor factors, it is convenient to introduce a spin vector § and
the second-rank spin-tensor S&z) which are an abstract extension of s = (o1 + 0732)/2

and [oq 02 },(3) for two-nucleon systems, respectively. By using the spherical harmonic

polynomials
47 ¢ s
ygm(r) == m T ng(r) N (3.63)

the tensor factor 72 S15 in Eq. (3.62) is expressed as
72 S12 = 3V10 [ Vo (r)[01 02 ]2 @ . (3.64)

For more detailed definition of Xi% and X7, and their evaluations, §4 should again be
referred to. The explicit expressions of the spatial interaction factors 7 in Eq. (3.59a)
for the basic spatial functions u = exp{—rr?}, w(®D) = (1/7), ulFS) = exp{~rr} £
and u(T) = exp{—rr?} Vs, (r) are given by

_ v \? A, . _ K
Tﬂ(l/—}-fi) exp{ zp} with /\_2(1/4—5) )

2vv (el , 2 /w 2
CL _ _ t
TCL - o] erf( 3 with  erf(z) 7= ) dte ,

v v . # #
TLS:T(V+H> (_5) i[SL—S%,8, — 8],

2
TT=T< z ) <-§;) Yau(p) (3.65)

v+ K

where the Coulomb factor is obtained from the Gaussian factor by using a simple
formula

9Note that we can set P, = 1 for @ = LS and tensor, since these are non-zero only for pairs
with the spin-value S=1.

®We omit the type index C for the central Gaussian potential for simplicity, as long as no
confusion takes place.
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1 2 o0 2.2
- dye X" . 3.66
- ﬁ/o X € (3.66)

In Eq. (3.65), p = /v (8, — S} + 8 — 85) and the transformation from S, to z; etc. is
achieved through Eq. (3.16). We find that p for the type {a8; 76} is expressed as

n—1

* L (et e (88)
p=Plevig 4 pily = % 7 2} 4 p; : (3.67)
im1 VHi ( )

where P{¢7t = P, — P, or p{ = (Pa)i — (py); etc. are antisymmetric with respect
to the interchange of o and v, and are explicitly given by

0 I1<a<y<Ls
1 1<a<i, y=1i+1
Pl = A/ A for {1<a<i,i+2<vy<n (3.68)
—A;/ Ay a=i+1,i+2<y<n
0 i+2<a<y<n ,

for a particular order 1 < o < v < n. If we use a simplified notation P = P{e7} and
P! = P88} and express p as p = Pz* + P’ the full GCM kernel is given by

I(z2) = v (V : ,J %exp {Tr(=* QK] *2)} ;XW exp {—g(Pz* + P’z’)z} ,

! 2 1 * 1)
Iz =e %GXP{TT( )}ZXkT o \_{;/ /; (§)Pz +Pz|> ,

Wi

15 (21 2) = vy <U+ E) ZeXp (Tr(z Q) 1)} ;X,ff? exp {"%(Pz* + P’z’)z}

y (%) i[Pz*,P'7]-8 |
I (22') = v <V+ H) Zexp {Tr(z* QK] *2")} ;Xg:r exp {’"%(Pz* + P’z’)z}

X (&?) 3v10[)u(Pz* + P'2) S @ (3.69)

An important property of the spatial interaction factors 7% derived in Egs.
(3.65) and (3.67) is that the type index {af;~6} is further simplified by enumer-
ating independent quadratic polynomials of the Jacobi generator-coordinate vectors

=(Z’f,---,z;_1) andz':(z’l,---,z;_l);

z*

FOENBE (7 ) = (Plavty 4 ploslyy2 (3.70)

First of all we should note that these polynomials satisfy many symmetry properties:
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FEN@ (g ) = OGO (2 ) (3.71a)
FENBO) (7 fy = fBOEN (5 ) (3.71b)
FENBO) (g5 oy = plen6D) (gr ) (3.71c)

The first symmetry is a simple result of the quadratic nature of the polynomials, and
corresponds to the symmetry {a3;v6} = {v8; a8} for the interaction types.!! Thus we

2 —
have all together { ™ 1.2 7 1) = n2(n2+1)/2 independent combinations of B8,
g 2 Y

which we divide into several groups with different polynomial forms of z* and z/. Owing
to this symmetry, we can assume a < + in the following discussions without loss of
generality. The second symmetry (3.71b) is related to the hermiticity of the two-body
interaction. This means that we can also assume (ay) < (£6) with some appropriate
definition of ordering. The interaction factor with (ay) > (86) is obtained from that
of (ay) < (86) through the hermitian conjugation. If (ary) = (36), it is self-conjugate.
The third symmetry (3.71c) is related to the relative phase of the coefficients for z* and
7z and the case for 8 > § is obtained from 8 < § by the simple replacement z’ — —z'.
After all, we only need to consider the situations with & < =y, 8 < 6, (ay) < (B6) for
the complete type specification.
We first consider the following four cases.

Q1
2
3

(4

a=+v and fF=06: E-type
a#v and B=§8: S-type
a=v and B#6: S'-type
asy and F#6: D-type or V-type . (3.72)

—_~

~~
R i

For example, f(@®)B8) = 0 for E-type and this term of the GCM kernel is simply pro-
portional to that of the normalization kernel. In accordance with the type identification
T = ,Z-{ocﬁ;'yﬁ}: we set

(M1

v
Fop = Tiapiop) = <V = /«u) (3.73)

for n? such combinations of & and 8. This type contributes to the internal energies of
clusters and LS and tensor contributions in Eq. (3.69) are zero, since we are dealing
with only s-shell clusters. Similarly, we have n?(n — 1)/2 S-type and S’-type factors,
which we denote

3
(ey) _ _ v_)® _ Al plevt 2
Sﬁ —T{aﬂwﬁ} = <V+m> EXP{ 2(P z )

580 = §B8)  with 7* 4 . (3.74)

*1The same is applied to the spin-isospin factors in Eq. (8.59b), which is nothing but the exchange

symmetry wg?) = wi?).
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The type (3) is related to (2) by the hermitian conjugation in Eq. (8.71b). In general, we
use the notation 7" for the type which is obtained from 7" by the interchange z* < z'.
It is also clear from Eq. (3.69) that these types do not contribute to the LS kernels. Note
that the subscripts like 5 in .S’éw) and «, § in E,g are dummy indices which do not
affect the spatial interaction factors. Namely, we have n(n — 1)/2 independent S-type

spatial factors corresponding to the unordered pairs (ay) and their multiplicity is n for

2
each. Finally, let us consider 2< g ) =n?(n—1)%2/2 {aB;~8} factors belonging to the

type (4) in (3.72). These are specified by the combination of two unordered pairs (ay)
and {86) with the relative exchange of 3 and 8. ( Note that we have assumed o < . )
If (ary) coincides with (36) as a set, we call such {a3;v6} D-type and, if not, V-type:

(4a) (ay) =(B6) : D-type
(4b) (oy) <(B6) : V-type
(4e) (o) > (B6) :  V'-type . (3.75)

These types are further subdivided according to the relative sign of the coefficients for
z* and #'. For example, factors for D-type are composed of

6: Dy-type
B D_-type . (3.76)

(4a)1 a=L0 and 7=
(4a)- a=6 and «

For these types, we assign

3
o v o\? AL ofat ) s 2
DS-’Y) = Taamm) = <V+/$> exp{——§<P{ "z +z’)) } )

3 2
DV Ty = (U : K) exp {*% (p{a"/}(z* - z')) } , (3.77)

and they yield n(n — 1)/2 different D.-types, respectively. Note that these are self-
conjugate and related to each other through the sign change of # due to the symmetries
(8.71a)~(3.71c). The fact that V-type and V'-type always appear as a pair is also
confirmed by counting the total number of these factors n?(n — 1)?/2 — n(n — 1) =
(n—2)(n — 1)n(n -+ 1)/2, which is even. For (4b) the relative sign of z* and 2’ terms is
fixed by setting the order of & < v and § < §. Thus we get

(4b)y (ay) <(B8) and a<~y, B<8: Vi-type
(4b)- (ay) < (B6) and a<~y, 8>6: V_-type
(4c)y (ay)>(B6) and a<y, f<6: Vi-type
(4c)- (ay) > (B8) and a<~vy, B>6: V' -type , (3.78)

each of which consists of (n—2){(n—1)n(n+1)/8 different types. We specifically define
the V, -type interaction factors through

3
o 14 z )\ o . 2
v W’”=%m=(u H) exp{*§<P{ g 4 PP ) } ., (3.79)
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for (ay) < (B8) and @ < v, B < 8. The other types V_, V|, and V_ are obtained
through the general rule

T =7 with 22 |
T =T, with 2 — —2 . (3.80)

The structure of the spatial interaction factors discussed above may be more trans-
parently understood by geometrical consideration of two boxes in the double-coset sym-
bol [k]. We recall that the indices o and (3 in {a8;~é} are related to the assignment
of the particle index s to some particular ordered set kqpg ;5 € kog. This means that
the present type classification in terms of {&/3;v6} is nothing but counting two-boxes of
the double-coset symbol connected by the interaction. These two boxes are degencrate
for E-type, and located vertically or horizontally for S-type or S’-type. In D, -type,
two different boxes are selected from the diagonal part, and these are exchanged for
D_-type. The others are the irregular off-diagonal selection of two boxes for V-type.
The relationship between 7 and 7" corresponds to the transposition of the double-coset
symbol.

3.3.2  2-Cluster Interaction Types

The type classification of interaction factors 7% for 2-cluster systems is very simple,
since the factor Pl{lz} = —(1/\/R) with 4 = Ay Ay/(Ay + Az) is only needed. Since
the overall sign of P is irrelevant, the full 2-cluster GCM kernel is obtained by setting
P=(1/y/p)p and P' = (1/,/fi) q in Eq. (3.69), where p and g are 0 or &1 given in
Table II. These values depend on the type indices Fog, S/, 8g, Dy and D_, which
has the multiplicity 4, 2, 2, 1 and 1, respectively. The summation over the dummy
indices o and [ may be carried out for spin-isospin factors. Thus, these 10 terms can
be reduced to only 5 interaction types; 7 = E, S, S, D, and D_.12

TABLE II. Two-cluster interaction types and their factors Tiapiney = (v/(v + k)32
x exp{—(7\/2) e (2" 2V} in terms of the coefficients p and ¢ through P = p/./ii and
P = q/\/ﬁ with o= A1A2/(A1 + Ag)

T {Oéﬁ; ’75} multiplicity ) q f(a7)(ﬁ5>(z*, Z')
Eaop {ap; ap} 4 0 0 0

Sp 1185 26} 2 1 0 (z*)Q/ﬁ
S, {al; a2} 2 0 1 @/ VE
D+ {11; 22} 1 1 1 (Z* + Z,)Q/\//,—L
D_ {12; 21} 1 1 -1 (z* — Z')Q/\/ﬁ

From the geometrical interpretation of the interaction types discussed in the preced-

2The origin of these names is almost obvious from Table II. These are related to the structure
of the GCM interaction factors; namely, E for a unit factor, S and S’ for a single vector z* or 2’
involved in 7, and D+ for double vectors or for the direct term to which D type contributes.
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ing section, it is obvious that, for the direct term with no nucleon exchanged, £, and
D.,. types are only possible. The internal energies for clusters Cy and Cs get contribu-
tions only from E type, and the direct potential between C; and Cs are described by
the D -type interaction factor. If the two clusters Cy and Cy are identical, a complete
interchange between Cy and Cs gives the same contribution as that of the direct term
except for a possible sign change, but the types called here are Eop (o # ) and D_..
To LS terms only D, and D_. types contribute, while to tensor terms all but £ con-
tribute. The S and S’ types are hermitian conjugate to each other, while the others are
all self-conjugate in 2-cluster systems.

These five interaction types are, of course, well known in any formulations of 2-
cluster RGM. Different authors use different notations. For example, LeMere, Stubeda,
Horiuchi and Tang [100] have introduced the notation a, b, ¢ and (d, e) for E, D,
D_ and (S, ) types, respectively. This paper was followed by many detailed studies
on the different roles of the interaction types combined with the nucleon exchange
classification. (See, for example, refs. [101]~ [103].) It is well known that the D_-
type or c-type interaction term with a single nucleon exchange usually gives the most
important contribution among many complicated terms of exchange kernels. [ 104], [103]
This term is called a knock-on term in the study of light-ion optical potentials. The
importance of the so-called core-exchange terms for the systems with small mass-number
difference is also found through detailed studies of interaction types in terms of various
localization techniques of the nonlocal exchange kernels. [105], [106], [102] Thus, the
type classification of the interaction types is not just a matter of nomenclature, but has
benefited a great deal the microscopic understanding of interactions between composite
particles. [ 14], [50]

3.3.3 3-Cluster Interaction Types

The interaction types for 3-cluster systems are more conveniently expressed in terms
of the cyclic definition of the unordered pairs (o3) = =, where (af7v) is one of the
permutations of (123). This is related to the three different sets of Jacobi coordinates
£§7) introduced in Eq. (3.8). For the generator-coodinate vectors, the first equation in
Eq. (3.8) yields

(2)
z
\/;(sa—sq)=zem—1—(-; , (3.81)
/ (4
€ /'Ll
where € is uniquely specified for o # v through € = (ay). We can also prove Eq.
(3.81) directly from Eq. (3.68) by using the coordinate transformation in Egs. (3.10) and
(3.11). Namely, we can easily show

=) plen) = (1/ pi® ) (3.82)
; ,

for (yae)= an even permutation of (123). Then, if we note that z = (z1,2z) is the
standard set 2(®), the matrix multiplication
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VU (Sa—8y) = 23) plar} = 5le) =(©)(3) plev} (3.83)

with Eq. (3.82) yields Eq. (3.81). Therefore, the quadratic polynomials in Eq. (3.70) for
3-cluster systems are most easily expressed as

f(a"/)(ﬁts) (Z*, ZI) — Z zl + Z eSﬁ zl , (384‘)

by using appropriate types of Jacobi coordinates for the interaction type {a8;v6}. If
either of the pairs (a) or (86) is collapsed, one can adopt a natural definition

= B . : AL (x\?
S(7) = Tias 8y = (l/ T &> exp {—5;57—) (Zl ) ) (3.85)
which corresponds to S(®®) in Eq. (8.74). Also, (ay) = (B6) case is given by
3
- — v_\* AL M* )
Di(7) = Ttaaipsy = <V+n> exp {-§F ( + 27 ) , (3.86a)
3 A1 2
- () AL e
D_(v) = Tiapipay = <y T /<a> exp{ 5 N({y) (11 z; ) } , (3.86b)

where (afv) is again assumed to be a permutation of (123). These are just a 3-
dimensional generalization of the 2-cluster interaction types T = S, S’ and D4 for the
three different 2-cluster subsystems formed by C, and Cg. Thus we use the notation
T = TJ, where T = S, 8, Dy and J specifies one of the three different Jacobi
coordinates J = I, IT or 1] (or J = (y) with y=1, 2 or 3 ).

A similar classification scheme is also applied to the V-type interaction types. In
this case, € and A in Eq. (3.84) are uniquely specified by assuming that (fyae) and (68])
are permutations of (123). Thus we get

S5 AV

1
+€'yae LYeRN
A
/M§E) / ( )

Since we have « 5% v, 8 # 6 and ¢ # A, the v determined from v = (¢)) should again
be equal to & or v in (ay), and 8 or § in (36); namely, we have (ary) = (Av) and
(868) = (ev) as identical sets. This involves the following four different cases ;

FENBI (2 1y = (3.87)

=c . (3.88)
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Due to the symmetry (3.71a), we only need to consider the case i) or ii). In order to
fix the phase eyqe €585 in Eq. (8.87), we now assume that (Aev) is an even permutation
of (123). Then it is easy to see that e qe €sgy = —1 for 1) and 1 for ii). Thus we are
naturally led to the definition!?

L \3 NCENCY ?
Vo) = Traeon = | —— -z , 3.89
+(1/) {Ae;vv} (I/'f-l'%) €xXp \/F \/T ( a)
H1 221
3 ’ 2
v z A z(g)* 2N
Vo) =Ty wer = | —— | P+ , 3.89b
= Tow = (7)o -3 NPCRYAS (5:690)
Hq M1

where (Aev) is an even permutation of (123).}4 The explicit expressions for the 3-cluster
interaction types thus defined are summarized in Table III.

From this table, we can see that the symmetries in Eq. (3.80) are satisfied for T'J,
irrespective of J. In particular, we have

=(TJ)" , (3.90)

where the dagger symbol in the right-hand side means the operation of hermitian con-
jugation. Furthermore, it is easy to verify the following symmetries for V -type terms :

Vi(y) (@ B)=Vi(y) ,
Vi(a) (e« 8) =Vi(8) ,
Vi() (@~ B) =Vi(a) , (3.91)

where (af7y) = an even permutation of (123), and T'J ( & « 3 ) denotes the expression
obtained by the interchange of the clusters C,, and Cg in TJ.

In summary, we have obtained a simple conclusion that 3-cluster interaction types
T are specified by the combination of the 2-cluster interaction types T with a slight
extension to V4. and V] types, together with the type of Jacobi coordinates J specifying
the 2-cluster subsystems ; 7 = T'J. This type-specification scheme is extremely useful
for practical applications of the present 3-cluster formalism to coupled channel problems

13The origin of the name V for the members of this group is clear from Vy.(8) = T(12;33) in

Eq. (3.89a). Namely, the quadratic form in Eq. (3.84) is expressed as v (T} + T5)? in terms of
the V-type coordinates To, = Sq — Sz (=1, 2), which resembles the Dy type in the 2-cluster
classification scheme.

It seems to be natural to introduce the ordering (ary) < (86) in Eq. (3.75) by € < A for
e = {oy) and A = (86), and to identify V_ﬁaw(ﬁs) = V§* with V¥ by v = (¢)\). However,
this procedure gives a little different definition of V,.-type interaction types from Vi (v) due to
the cyclic permutation phase. The correct correspondence between Vi (v) and V> is given by
Vi(v) = Vi ¢ for v =1, 3 and VE* for v = 2, when (Aev) is an even permutation of (123).
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with many cluster configurations.

TABLE III. Three-cluster interaction types, 7 = TJ, and their factors in terms of
@B (¢ 4 in Eq. (3.87). The type of Jacobi coordinates J is specified by J = (7) etc.,
with (37) being an even permutation of (123). In S(v) or S’(v), 6 can be either of 1, 2 or 3. For
E-type, no specification of 7 is needed.

T=TJ {aB;~6} multiplicity f(av)(ﬁé)(z*’ z’)
E {aB; ap} 9 0

S() {ad; B8} 9 (zgw*)? / 0

S'(7) {6a; 68} 9 (Z(ly)/)z/u(?)

D (v) {aa; BB} 3 (Z(Iﬂ* +z(f’)'>2/,u(]7)

D_(v) {aB; Ba} 3 (Z(?)* _ Zm/)? /u(”

Vi(7) {aB; v} 3 (zgﬂw/\/‘ (a)//\/@)Q
V_) {ay; v8} 3 <z<lﬂ>*/m+z<la>//\/;<l&‘)>2
Vi) {Ba; vy} 3 (z(f‘)*/\/ﬁ )/\/ﬁ? 2
V() {Bv; va} 3 <Za>*/ <6>//\/;L1‘>2

3.4 Transformation Properties of the Coefficients Q[k] and P{e7} for Rearrange-
ments of Jacobi Coordinates.

One of the prominent properties of the GCM kernels derived in the preceding
subsections is their invariance with respect to a different choice of the Jacobi coordinates.
This particular property is a direct consequence from that the generating functions
A(&; 2) in Eq. (3.15) is mvanant with respect to simultanious orthogonal transformations
of the real coordinates 5 and the corresponding generator-coordinate vectors z/+/v. To
be more specific, let us consider the coordinate transformation

£=¢@ @ (3.92)

with some appropriate indices a for the bra side and b for the ket side. The invariance
of the GCM kernel defined by'S

IO, 01 = {AED;2) 6o | 0T A | AED;20) g0)  (399)

is expressed as

5 For systems of three non-alpha clusters or more, we also need to make spin-isospin recouplings
to achieve this rearrangement. We assume here that such a procedure is implicitly carried out in
the spin-isospin factors discussed in §4.
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I(a)(b)Q(z(a);z(b)l) — [Q(Z;Z/) — Iﬂ(z(a) E<a);z(b)/g(b)) , (3.94)

where A(6(®), 2(®)) = A(¢,2) etc. is used. Thus, in order to derive the GOM kernel
I@®) 2 (4 2} in the different sets of the Jacobi coordinates a and b, we only need to
apply the orthogonal transformation = in the explicit expressions obtained before. For
example, the normalization kernel I(®®)(z;2') are obtained from Eq. (3.38) by the
replacement »

Qlk] — 2@WQ[k]1'E® = QWO | (3.95)
Similarly, for the interaction kernels, we modify

pler} _, =@ plen} = plaj{er} (3.96a)
piss} _, =) p{ast . p){as}y (3.96b)

We can include the original case with respect to the standard Jacobi coordinates,
by assuming a = b = e and E(®) = E(€)(¢) = 1, Therefore, this transformation is simply
considered to be a result of different representations for the coefficients Q[k] and P{e7}.

In order to find the explicit expressions of the transformed coefficients Q(®)(®)[k]
etc. in Egs. (3.95) and (3.96), we return to the coordinate transformation in Eq. (3.16).
We express this in the matrix notation as

Vv S =zP | (3.97)

where P is the (n—1)Xn matrix with the matrix elements P;, = {Py); given in Eq. (3.16).
A simple example of the present transformation is the case in which the representation a

. . s . 1 2 -+ n 16 .
is reproduced by a permutation of n-clusters; i.e., a = Gy ay - ay ) The matrix

representation of a is denoted by M, in the following ; (Ma)ag = 6anp = Oa,a-1(8)- We
modify A;,---, A, to Ag,, -, Aq, in Eq. (3.97) and define z(®) instead of z. Since we
have (Sq,, **,84,) = S*M, = SM; !, this definition of 2(%) is expressed as

VS Mt =@ pla (3.98)

where P{®) denotes the matrix P with Ay, ---, A, being replaced with A, , -+, A,,.
From Egs. (3.97), (3.98) and z = #(®) Z(@) we can easily find

g p=p@y, . (3.99)

This equation relates the orthogonal transformation of the Jacobi coordinates with the
permutation matrix of n-cluster c.m. vectors. By using this relationship, Q[k] = Pk*P
in the standard Jacobi coordinate is transformed into

%1n four-cluster systems or more, we also have such types of relative coordinate systems as can
not be realized by the permutations of clusters from the standard set of Jacobi coordinates. For
example, we need H-type coordinates to describe a system of two ®Be-clusters for *¢O. In this case,
we simply use Eqgs. (3.95) and (8.96) to find the necessary coefficients for the GCM kernels.
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QWO = p@ g@® tp®)  with kDO = M kM, . (3.100)
Similarly, the interaction factors in Eq. (3.96) are given by

pletler} = pfa™(@ oM} g, (3.101)

Besides a trivial renaming of Ay, -+, A, to Ag,, -+, As,, we need a rearrangement
of rows and columns in £(¥®) and a transformation of the indices & and v for the
interaction types {¢/f3;76}.

In 3-cluster systems, it is convenient to use a permutation of (123) for three indepen-
dent Jacobi coordinate systems shown in Fig. 1. Namely, we identify (a) = (123)* with
a =1~ 3. In particular, (3) = (123)® = e specifies the standard Jacobi coordinate.
Furthermore, we use the (zyuv) parametrization of the 3 x 3 double-coset symbol in Eq.
(3.42), and also a notation Quyuy(A1, Az, As) for the 2 x 2 matrix given in Eq. (3.43).
In the following, we find compact expressions for

@) = 2@6) Qpyuo(Ar, Az, A3) EGO) (3.102)
TYUV Yy

and for necessary interaction factors.

Let us first consider the diagonal case ¢ = b = ¢ in Eq. (8.102). We can perform
a simultaneous transformation of rows and columns in k() = M_k*M. and choose
a new set of (z(9)y(yu()p(9)) such that the resultant matrix has the same form as the
original one with respect to the renamed particle numbers (Aq, Ag, A) for (A1, Az, As).
Here we assume that (a087) is an even permutation of (123). From this procedure, we
easily find

M y (2 T+y—u-—v
(1) — — (2)
Yy T+Yy—u-—"uv Yy z
_ _ . (3.103
ey Y- ’ u(® T—v ( )
v y—u v T —u

where 23 = g, y® = y, u® = u and v® = v. The matrix thus obtained can
be denoted by k(") in conformity with the notation rule adopted for P(*). Then, the
relationship (3.100) is expressed as

QUMK = PO M Etptn (3.104)
If we compare this with Q[k] = Pk*P, we obtain

QU = Quenyumvn (Aa, Ag, Ay) (3.105)

where (¢f7) is an even permutation of (123).

In order to obtain Q&‘L{Eﬁ) for a # b, we first calculate Q%)ﬁ) by using Eq. (5.105)

and

QM) —

TYuv

WEQRAD) = 2MPQ_ 2 @)@ (A3, A1, As)

Cgmyuv<f117fq27143) : (3.106)
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The straightforward calculation in terms of Egs. (3.43) and (3.11) vyields
Qxyuv(A17A2:A3) = (Qij) with

Quz = — f;%(l";%"r;%) )
Qa1 = f%(l~£2—)+%>a
@22=—\/§3§(1—A:4Azu> : (3.107)

Note that this expression gives

Quyun(A1, Az, As) = PO (M1k* M) PP (3.108)
a special case of Eq. (3.100). The same equation for a — « and b — (3 gives
QD = P (1, 5) PO
= PO M (MO kP MP2) t, PO (3.109)
where we have used M, = M with M; being a matrix representation of the per-
mutation (123). This notation is particulaly convenient, since we can easily show that

oa—1=f -2 = v (mode 3) if (¢fy) 1is an even permutation of (123), so that
EO) = M k*M7 in Eq. (3.104) yields

ng&}ﬂ) — P(a)(Mlk(v) M) tp(B) (3.110)

This is nothing but the renaming of A;, Az, Az and (z®)yEuC)y()) = (zyuv) in Eq.
-(3.108) by the permutation () = (123)7. Thus we find

QP = Quinyumo (Aar A, As) (3.111)

where (af7) is an even permutation of (123). If (¢8v) is an odd permutation of (123),
we can use th(cayL(f) = g(uz)v(f) and Eq. (3.111) to obtain

QLB =1Q iy (Ag, Aa, Ay) (3.112)

with {f7) being an odd permutation of (123). Note that the interchange of u and v
corresponds to that of u( and v(") in Eq. (3.103).
Let us finally proceed to the transformation of the interaction factors P127} in Eq.

(3.101). In 3-cluster systems, it is simpler to deal with vectors zgﬂ /A /,cg'” in Eq. (3.81)

directly. We express these vectors in zga) and zé‘” :
()
__zl( - =1} 2% + gAY, (3.113)
-

Hq
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where pY and ¢ are functions of A;, A and Aj; defined through
-y (@) {a™v(2), ™ (1)}
Pa N _ [ Br & . (3.114)
q Pg(a) {a™ 7(2), a7 y(1)}
In the right-hand side of Eq. (3.114), & and v should be understood as permutations;
a = (123)* etc. Although these factors are obtained from Pi{m} = —(1/ \/ﬁ{)p;{‘a"’}

in Eq. (3.68) through appropriate permutations of the mass-number indices, it is much
easier to use Eq. (3.11) directly ; namely, they are explicitly given by

1 1 1
P= =0 = e (B A= Ay)

C
ug’)’) Mga) e
1 1
Q= sl - Carp - (3.115)
7 45

Then the quadratic polynomials in Eq. (3.84) represented in the coordinate systems (o)
and () are given by

2
;"})(ﬁ)(z*; 7) = (Pl z§°‘) "+ P zga) i p| zgﬂ) "4 P zgﬁ) l) , (3.116)

where the coefficients Py, Py, P| and P} for each interaction types 7 = T'J can be
expressed in terms of pY and ¢ as shown in Table IV.

TABLE IV. The coefficients Py, P2, P{, and P, in Eq. (3.116) for the 3-cluster interaction
types 7 = T'J with the sets of Jacobi coordinates J = (a) in the bra state and J = (8) in the ket
state. The quantities p}, and g/ are defined in Eq. (3.115). The superscripts € and A in this table
are determined such that (e \y) becomes an even permutation of (123).

T=TJ P Py P P
E 0 0 0 0
S(v) 24 3 0 0
S'(v) 0 0 Pp a5
D.(v) % 2 P} a}
D_() 2 s —p} ~q5
V() Pa a —p§ —q5
V_(7) Pa % P a5
Vi) 5 % —pj —q3
VZ(y) i a% P} a3
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§4. Evaluation of Spin-Isospin Factors

4.1 General Procedure

In the preceding section, we have shown that, as long as the spatial part of GCM
kernels is concerned, a quite general formulation is possible even in n-cluster syetems if
they are composed of only s-shell clusters. Therefore, the main effort to set up the GCM
kernels is reduced to the evaluation of spin-isospin factors. There already exist numbers
of shell model calculations in which such spin-isospin factors are evaluated by using
the cfp expansions of the antisymmetrized wave functions and also by using recoupling
techniques in the angular momentum algebra. We can employ these techniques even
in cluster systems, although the nature of the procedure is a little different from the
shell-model one. This is because in cluster systems we need to deal with a number of
non-standard coupling schemes due to many different types of cluster decompositions
and to their rearrangements. In this section, we first try to clarify what are really needed
to construct whole set of the spin-isospin factors, and outline the general procedure to
obtain them. A good example of this procedure is given for general 2-cluster systems in
the next subsection. The result is then extended to the spin-isospin factors of 3-cluster
systems composed of an alpha cluster plus two s-shell clusters, in which a much simpler
technique called the valence orbital method can be employed.

The spin-isospin factors defined through Eq. (3.59b) are with respect to the spin-
isospin operators w involved in the two-body interactions in Eq. (3.61). These are
given by w = (W 4 BP, — HP, — MP,P;), w(®") = (1 4+ 79,)(1 + 72,) /4, wFS) =
(W — HP,) (o1 + 03)/2, and w™) = (W — HP,) [0y 09 }f) for the central, Coulomb,
LS and tensor forces, respectively. Let us first consider the central, LS and tensor
operators. As is already discussed in the §3.3.1, the isospin part of these interactions
can be eliminated by using the generalized Pauli principle (— P, P;) = P,, where Py is
the exchange operator of two particles in the spatial coordinates. Suppose T(,p:ys} is
the spatial interaction factor for a two-body interaction u defined through Eq. (3.59a).
In a shorthand notation A,p = ((0s)s,, | (Os)sfﬂ ), the interaction factor for u” = u Py
is given by

{26;—76} = A;,é A;,-él Acs Avp Tiasiypy - (4.1

We should use this in Eqg. (3.60b) to obtain the GCM kernel I"(z;2') for u”. The
readjustment of the powers of A,p etc. leads to the modification of the double-coset
symbol [k] in Q[k] as follows ;

k — kleBtt = | — o(aB) _ o(v8) 4 o(ad) 4 o(vF) (4.2)
where e(@® = (e{%%)) denotes an n x n matrix with the matrix element given by e\o/) =
8pua 6y3. We can rearrange the summation over [k] such that the norm exponential factor
Tr(zQ[k]*z’) is restored to the original form. If we further interchange 5 and § in the
summation of the interaction types {&f;v8}, we find that I"{z;2') is given by Eq.
(3.60a) with the following simple modification ;

Xk{a,B;'y&} - Xk{aﬁ:%}{aé;»yﬁ} . (4‘3)
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In terms of the type specification 7 introduced in the §3.3.1, this change can be ex-
pressed as follows. In E, S and S’ types which involve no = indices, their spin-isospin
factors are invariant, while in 7 = D, V and V" types in Eq. (3.72), 7, and 7_ types
are interchanged with an appropriate modification of the double-coset symbols. For
example, in 2-cluster systems, we have

KXo — Xo1 for T:Eozﬁa S;a Sﬁ )

X:I;D+ — Ag+1D. Xep_ — Xa:—lD+ . (4.4)

From this consideration, we essentially need to deal with the operators

1 .
wd =1 = poz_i‘_"él_.f.% , (4.52)
w(LS),‘ZL%E% ;o™ =[o10,]@ (4.5b)

and their spin-isospin factors defined through Eq. (3.59b).17 Then the full spin-isospin
factors for the central, LS and tensor forces are given by

c d d
Xty = Xitapey W+ Xifapys) B+ Xitasist (asiypy H + Xitasnsy fasiypy M
(4.6a)

total
(Xl?{a,@;'yé}> = Xl?{aﬂ;'yé} W+ X,?{ag;ﬂ,&}{mswﬂ} H  for Q= LS and tensor .
(4.6b)

The simplest spin-isospin factors Xg{ aBiys} AX€ obtained by counting the numbers of
pairs :

ko
Xg{ozﬁ;aﬁ} :( 2ﬁ>Xijﬂv for Eop ,
Xiiapnsy = kapkys X{  otherwise | (4.7)

where X}V is the spin-isospin factor for the normalization kernel defined in Eq. (3.32).
Similarly, the LS factors are reduced to one-body spin-isospin factors. This is a common
feature of the two-body interaction that can be expressed as a simple sum of a one-body
operator; We = W, + wy. In this case, all the two-body spin-isospin factors are reduced
to one-body spin-isospin factors through a similar relationship to Eq. (4.7) :

17 As is discussed in the §3.3.1, the LS and tensor spin-isospin factors can be conveniently defined
through the reduced matrix elements. If we set the LS and tensor matrix elements in Eq. (3.59b)

equal to X3 S and X s ,(f) in terms of formal operators S and S,(f) for the total system, these
reduced matrix elements should be divided by those of § and 5@, respectively. The choice of

(S|I'S] 8" and (S || S@ || §') is arbitrary (as long as they are non-zero) and they are assumed
to be unity in the following discussions. For the Coulomb factors, this procedure is not taken in
Eq. (3.69), since T}, is a conserved quantity related to the total charge.
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Xlg{aﬁ;aﬁ} = (kaﬁ - ]‘)Xl?{aﬁ} for Ea,@ 3
Xg{aﬁ;’)/&} = k,yg Xl?{aﬂ} -+ kaﬁ X}?{’Y‘S} otherwise (4‘8)
where X,?{aﬁ} is defined in Eq. (3.48). The LS operator in Eq. (4.5b) and (N — 1)1},

term in the Coulomb operator discussed below are of this type and these factors are
obtained by calculating the reduced matrix elements

X;Saél}) = Cy (zpésT || Z {Z:g} | €5 pr) (4.9)

SEkaﬂ

and by using the relationship in Eq. (4.8).

The standard procedure to calculate the spin-isospin factors X/ for the normaliza-
tion kernel and those for the one-body operators like X,?{a 5} in Eq. (4.9) is to use the
following decomposition of the antisymmetric spin-isospin wave functions £gr(1, -+, A) ;

Es(L,-, A) = Y (IM]SiT: [1*2])ST; | [14)ST)
S1T1S2T2

X {gSITl(l? e >A1)55'2T2<A1 + 1a e 7A)]ST (4"10)

with A = A; + A2 < 4. Here, the stretched SU, D SU; x SU, Clebsch-Gordan (C-G)
coefficients have simple values 1 or +1/+/2, depending on the combinations of [141]S;T}
and [142]S,T5. [96], [107]  For A; > Aj, these are given by

{3 i nmuzh = { 00

([11] { (1)‘1) } [11] { écl’ } I [1111]00) = { __11//*\% , @11

besides the trivial values ([1]$2[1]22 || [11]10) = (([111]$3[1]34 || [1111]00) = 1.
For the interchange between [1A1] Sy Ty and [142] S2 Ty, the above values should be
multiplied by an extra phase factor (—1)4142(~1)51+52=5(_1)T1+T2~T | By employing
Eq. (4.10), the spin-isospin coupled wave functions of n s-shell clusters are further
decomposed into those of n? s-shell clusters. We write this decomposition symbolically
as

{sr = Z (s HTisyrssT ({Si HTs br [}s) , (4.12)

{8 HTu;}r

where (s,.1{1,;}r;s7 denotes that the k;j-nucleon spin-isospin wave functions with .5;;
and T;; are coupled into the total S and T with extra spin-isospin quantum numbers 7
for intermediate couplings. The coefficient ({S;; }{T3;}7 |}€s7 ) is given as a product of
the SU4 C-G coeflicients in Eq. (4.10). In order to facilitate the operation z; in Eq. (3.28),
we also introduce §~{ S HT5}7ST in which the clusters C; with A; = {ky;, -+, ky;} are
decomposed into Cjq,---,Cj, with the particle numbers k;1,---,kj» and the spin-
isospin values 51751, -+, Sjn1}n, respectively ;
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Esr= D Esgmaner {SiHTF Yésr) (4.13)
{S;:HTy:}r

Then the eflect of z, on £gr restores it to the same form as in Eq. (4.12), but the
ordering of the intermediate couplings is entirely different :

2k €sT = Z E{Sﬁ}{Tji};';ST ( {SJ'L}{TM}? |} EsT > . (4.14)
{Ss: HTys}r

Then by applying the decomposition in Eq. (4.10) to the ket side also, we obtain

X' = Cr {2 sr | Es7)
=Cr  » . ({SiHTy)F Yesr) ({SyHTidr [Yesr)
{Si; HTizyrr

X <§{Sji}{Tji}:;5T | S{Sij}{Tij}’r‘;ST> . (4‘15)

The last matrix elements in Eq. (4.15) are obtained by the angular-momentum recou-
plings of n?-cluster spin-isospin wave functions. In order to calculate the one-body
spin-isospin factors XZ{%)[,} in Eq. (4.9), for example, we only need to assume S # S’
and augment the last matrix element in Eq. (4.15) with a multiplication of the one-
body reduced matrix element (£s,57us (Kap) || 2sexn s Ts/2 || €SapTus(kap)), which
is equal to 1/Sap{Sap + 1).

Before prceeding to the evaluation of the other spin-isospin factors for the operators
in Eq. (4.5) and also for the Coulomb operator w(¢L) = (1 + 71,)(1 + 72,)/4, let us
consider the tensorial representation of the operators. In the definition of spin-isospin
factors in Eq. (8.59b), we have summed up the two-body operators over the particle
indices (s < t) of wgz) with respect to all the nucleons which yield a common spatial
integral for some particular exchange and interaction type 7 = {a;v8}. Therefore, it
is useful to find simple expressions for

N
W =" (4.16)

s<t

for an N-nucleon system. For P, in Eq. (4.5a), it is given by

N N )
W =Z——2—---—=ZN(N—4)+S , (4.17)
s<t

where S = Zil os/2 is the total spin operator of the N-nucleon system.!® Similarly,
we find

8 This notation should not be confused with the formal spin § and the second-rank spin tensor
S ,82) in Eq. (3.69). These are not a sum of the total A-nucleon system and need not be represented as

S,(Lz) = 2[S S]ff) either. In fact, they have in general off-diagonal matrix elements (S || S || $’) # 0
etc., unlike the single particle operators of the N-nucleon system defined here.
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N
(L) N~ Tt Tt _
WES =3 5 (N-1)8 , (4.18)
s<t
N
W@ = Z [Us Ut}f}) =2 [SS},(,L?) = S,(f) . (4.19)
s<t

In the tensor operator, we have used [aa],(f) = 0 for the Pauli matrices . Furthermore,

the second-rank tensor for the N-nucleon system is defined by S,(f) =2 [SS},(P. For
the two-nucleon system with S = (o1 + 02)/2, this definition yields SELZ) = [0 02],82) as
expected. The reduced matrix elements of S = S() = § and Sﬁz) are obtained from
S(Z) = /6 (5% — 8%/3) and C-G coefficients
Sz
S(S+1)
352 - 8(S+1)

(88,10 | §8,) =

?

(55:20 | §5:) = VSEF1D)(2S-1)(25+3) (+.20)
with the results given by*®

(S18]8)=v8(S+1) ,

(81 8@ || 8) = \/§S(S +1)(25 - 1)(25+3) . (4.21)

The Coulomb factor W{CE) is also expressed by the tensor operators in the isospin
space :

N
W<CL>=Z}._%&£_%=E<E_1)+J_VQ;1@+§T5

2 2 4 \ 2
s<t
N (N 1 N — 2)
== (2 1) 4272 —T( . .
[4<2 )+6T} 7 T+2\/— (4.22)

Here, T and T,SZ) =2 [TT},SQ) are defined similarly to the spin case and their reduced
matrix elements are given by Eq. (4.21) with all the S being replaced by 7. As an
immediate application of W¢ derived here, we can calculate internal energies of s-shell
clusters. These are explicitly given by

3Ky

2M

Et9(C) = (N ~1)

V+K 2

N (N N -1 1
2 e2 LA A A -z T2 4.,
+e\/;[4(2 1>+ 7 TZ+2TZ] (4.23)

¥The reduced matrix elements in this paper are defined by : (full matrix element) = (reduced
matrix element) X (Wigner coefficient), without dimensional factors such as T t=1 / \/ZJ —{-

Also, 9-j symbols with square brackets are used for denoting their unitary form with T2 T34 Jis J24
factors

+vo( v >%{<N>(W+M)+ EN(N—LL)%-S(S—I-D} (B+H)}
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for (0s)" clusters with S.S,TT,, interacting by the two-nucleon interaction in Eq. (3.61).

One of the merits of W is that they are single particle operators of the N-nucleon
clusters, so that they do not transfer the spin and isospin values of clusters. This property
is conveniently used for evaluating the other spin-isospin factors just in the same way
as we have done for the single particle operators in the preceding paragraph. Namely,
for the non-E type interaction type {a;v6}, we consider a merged system ks U kys
and extend the definition of the spin-isospin factors in Eq. (3.59b) to

X oprotyey = Cr {2k € S w@ley (4.24)

s, t€kagUkys, s<t

The operator involved in Eq. (4.24) is W for the (kag + k+s)-nucleon subsystem. Then
if we further recouple {5, 1{r;;}r;57 in Eq. (4.15) in such a way that a coupled com-
bination [€s,,7.5(Kap) €557, s (Kv6) |SupysTupys 1S explicitly involved, we can replace
the operator with a possible c-number term and the reduced matrix elements of sin-
gle particle operators. Once X I?{aﬁ}u {5} are obtained, we can easily find X ,?{ aBi6}
through?®

Q ) Q Q
Xi{apisy = ch{aﬁ}u{qé} - Xk{aﬁ;aﬁ} - th& 6} - (4.25)

In the following, we deem Eq. (4.24) an extension of E-type spin-isospin factors X5
with 7 = {af; af} to T = {af} U {76}, and use a shorthand notation

X =Crla € | WE€) . (4.26)

From these discussions, a general procedure to evaluate the spin-isospin factors by
the use of the cfp expansions and angular-momentum recoupling techniques is formu-
lated as follows. For the extended E-type interaction types 7 described above, we first
calculate

Xy 1

X7 b =Crlzbsr | { S 3 || ) - (4.27)
(A A

X7 T

Here, Sér’\ ) and Tfl(r’\) are single-particle spin and isospin operators of rank A defined for
the nucleon ensemble specified by 7. To be more specific, we assume

S0 _ g2 ’ S,Sl) =S, , S!(L?) =9 [SS];?) (4.28)

for the spin operators and S — T for the isospin operators. The reduced matrix
elements of these operators are given in Eq. (4.21), together with $% = S(S + 1). After
these factors are converted to two-body spin-isospin factors X§5 for W, those for
general interaction types 7 are obtained by using Eq. (4.25). The exchange central
factors Xg{aﬂ;yé} in Eq. (4.6a) are given by

29The results in Egs. (4.7) and (4.8) are also obtained from this procedure.
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1 o(0
X}“{aﬁ 0‘5} kaﬁ( af _4) letv +Xk"§ot)ﬂ;aﬂ} for Eaﬂ s
Xifapysy = 515043 ks XiY + X}Z{(z)ﬁ;,y‘s} otherwise , (4.29)
where Xk{aﬁ ~5}) Br€ defined through Eq. (4.25) with @ = o(0). For the LS factors (and

also for a part of Coulomb factors), the definition of X, (1) or X (1) in Eq. (4.27) is
equivalent to that in Eq. (4.9), if we identify the type classn‘icanon {a,@ } of the one-body
operators with E,g for the two-body interaction types. Due to the additivity of these
first-rank tensors, we only need to calculate these Eg-type factors. The others are
obtained through Eq. (4.8) ; namely,?*

X’ﬂL{iﬁ;aﬁ} = (kap — 1) X k{aﬁ aB} for Eu.p ,
1 .
XkL{iﬁ;’Yé} = kys Xk{aﬂ;aﬁ} + kap X;:{(,ng 5} otherwise . (4.30)

The tensor factors in Eq. (4.6b) are directly given by

T o (2)
Xk{aﬁwé} = Xk{aﬁ o} (4.31)

(We have assumed unity for the reduced matrix elements of the formal spin and tensor
operators in Eq. (3.69).) Finally, the Coulomb factors are given by

k k 1 kap — 1
CL . af af 7(0) a7¢)
Xk{ap;epy = 611 {_4‘ (T - 1) + _Xk{aﬁ~a,8}:| +(T'T:10 | TTz>-—§——~—

(1) 7(2)
XXk{aﬁ;aﬁ} +(T'T,20 | TT) \/_Xk{aﬁ a8} for Ea.p ,

1
CL — ~(0)
Xi(apiyey = 01,17 [Zk“ﬁk"/‘s + EXk{aﬁ;vﬁ}}

1 . .
HT'TA0 | TT.) 5 [ Koo X ag) + Ko Ko nsy

+(T"T,20 | TT,) \/_ngi)ﬂ 5} otherwise .

(4.32)

Before closing this subsection, it is useful to show some kind of sum formulae for spin-
isospin factors, which can be easily obtained as a further extension of the relationship in
Eq. (4.25). These formulae are also useful for a check of spin-isospin factors in numerical
calculations. These are given by

ZXkE B + Z X 5(04“1) )ST H;;?Q ) (4‘33&)
(@)

ZX,CE B + Z X}gS'(B‘S) (Xk: )SITI 3 (4‘33b)
(88)

22 Note that the relationship in Eq. (4.25) is not directly applicable to X;;(«l) and X Zé-l ) in Eq.
(4.27). For example, we need to use WX = (N — 1) §, instead of S itself.
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where different spin-isospin values ST and S’71” for the bra and the ket sides, respec-
tively, are possible in general. Furthermore, H! etc. are factors of subunit clusters
defined through

H = (| Y, o), (4.34a)
s, tEAg, s<t

HY=(esr| > o |esor) . (4.34b)
8,tEA 4, s<t

In particular, the central factors are explicitly given by

HS = (‘2‘“) (W + M) + [%AQ(AQ —4) 4+ Su(Se+1) | (B+H) , (4.35)

where S, is the spin-value of the cluster C,. Another relationship is obtained if we add
up all the spin-isospin factors :

Z Xiapmsy = 05,5 6r.0 X HY (4.36)
{aB;v6}-

where H§! is given by

A
HE = (esp | Y wl | €sr) = 5ST|Zw<Q’|sST . 4.37)

s<t s<t

4.2 2-Cluster Systems

In order to carry out the procedure discussed in the preceding subsection for general
2-cluster systems composed of A = A; + Ay (1 < A3 < Ay < 4) nucleons, we assume a
particular spin-isospin wave function

€51 5288, 7T, = €5y (1,5 A1) sy (AL 4+ 1, -+ A) |ss.rr (4.38)

for the bra state and €s1 75,1y ;5501772 for the ket state with S7 = S, and T, = T5,.

First of all, as to the coefficients with A = 1 in Eq. (4.27), we only need to calculate
them for four 7 = F,p types. When A=0 and 2, the sum formulae in Eqs. (4.33) and
(4.36) reduce the number of independent coeflicients to a great extent. One can easily
show that,

S Sy 8
Y = A 0 A (S 18D]8), (4.39)
S S S

S Sy 8§
HY =10 A x| (S)sV]s) , (4.39b)
Sy Sy S ’
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B
H™ =X 0 x| (S1sMs) (4:39¢)
St S5 S ]

S, Sy S8
HM =10 A A |[(S515V8p) (+:39)
L S1 S 5|

for the operators S in Eq. (4.28). The factors for Hg, ™ and HlﬁT ) are obtained by
S — T. Then, X° O and X7 in Eq. 4.29), for example, are obtained from??
z Sp q P

z S
X = HEOXN - xI P (4.40a)
5
X790 = xNar® -3 x70 (4.40b)
&

with S = §' and T' = T". We can also add up these spin-isospin factors with respect to
the dummy indices a and § for the spatial integrals. Namely, in general €2, we define

XPp=> XI5, (4.412)
af

XPo =) XTo ,  XIg=> X (4.41b)

o B
HY=Y"H} , H"=) Hf . (4.41c)

o B
Then, we find

X8, = HOXY - X8 | (4.42a)
X% = XN - X8 . (4.42b)

On the other hand, X9 p, and X £, are also related to each other through the sum
formula in Eq. (4.36). Thus we only need to introduce just one extra E-type factor
X§{12}U{21} in Eq. (4.24). We call T = {12} U {21} E_ type. Then we find

Xp =Xip —XPp, - Xim, (4.432)

2The interaction-type indices S, and Sp should not be confused with the spin values of clusters.
They always come up with the nucleon exchange number .
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X§D+ = 65,560 XNHS + X5 — XNH'® — gOXY — X§p . (4.43b)

After all, we only need to calculate the spin-isospin factors in Eq. (4.27) for 7 = E,g
and E_,if A=0or 2.
After a straightforward calculation, we obtain

XN

Ux T A A -z x
XID b =(-1) (;)( 2) Z (14771811 T [17]S12The || 1481 T )
X7 {SapHTup}

X ( [1°]S21 T [142 7] S0 T || [142] 8T, ) ( 14471811 Tua [17] 21 Ton || (14177 )
XonXan
X {[17]S12Tua (142 7"] 800 Tha || [142)8575) § X220 X7y (4.44)
InXTP
with

S11 Sz Sy

Xgn =bss | Sa1 S22 So )

s. S, S
[ S11 S12 S
o) A0 A | (S ISP S
X:aEu Sll 512 Si’ S{/ Sg S’ :
S S12 St
ZZ 521 822 SQ /\ 0 )\
sy [ S11 S12 1"
ng\l)z S{ Sé S’ 51 Sy S o
0 XA A | ({Si2 ]| S Si2)
| S11 S12 Si |
[ Sa1 Sap S ]
o(N) A 0 A (‘521 ” S()\) H S21>
Xo Ean S Sz 51 S 8y S
L S21 S22 S2 |
=> | S Sz S§|] 0 XA A
S [ S21 Sz2 S2" ]
X7 s s 5| |s s S
” 0 A A | (S | SV || S0)
| S21 S22 52 |
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S11 S12 S S Sz S Sy sy s

X% = Z (~1)252=%2=S2+87 | 500 Sy Sa Saa S12 59 0 A A
sy, 8y
s sy s | sy sy s |syosyos

X(SY ISV Sy (A=0 or 2) .
(4.45)

In Eq. (4.44), the summation {S,p} means that over Sy, S12,S2; and Spg etc. The
reduced matrix elements of the spin operators are given in Eq. (4.21) and (S || S© ||
S) = S(S+1) for S© = 82, For X;,(T)‘), all the S should be converted into T in Eq.
(4.45).

Although Eqgs. (4.44) and (4.45) are not too much complicated, we can efficiently
compute them with a computer machine. However, if one of the two s-shell clusters is
an alpha cluster (4; = 4, for example), we can obtain simple analytic expressions for
the spin-isospin factors, if we use the valence orbital method [83]. Since this technique
is discussed in the next subsection in some detail, we show here only the final result of
the calculations for the diagonal (5T = S’ T”) configurations :

Xy =(-1)° (‘12> ,  Xer=XNF.r | (4.46)
with
z z(x —1

Fog, = Xog, — ™ (Xop, +X1p_) + AQEAZ _)1)X0322 ,

_ _ x(z-1)
FwElz ‘"‘FIEEzl = AZ(AQ—].)XOE22 ,

(A2 - LE)(AQ - — 1)
F, = X ,
E22 A2 (AQ - 1) 0E22
b r—1

Frs, =Fyg = . <X0D+ +Xip_ “‘ZZ;‘:‘IXOEw) ,

z = Ly ;o Qe t
FSz S5 Az(Az"l)

x T
Fop, =[1--= S, Ve, ’
D. (1 2) <XDD+ 2 ; 1X0E22)

T -1
Fep. = T4 (XID__ —‘2——————X0E22> . (4.47)
2

The basic spin-isospin factors, X¢ g,,, Xo £,,, Xop, and X; p_ are easily derived for
each type of interactions. They are explicitly given by
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[ central ]
Xog, =Xq+Xe ,
A 1
XOE‘m:HC:<22>(W+M)+[ZAQ(A2—4)+S(S+1) (B+H) ,

A A
Xop, = “2‘2‘Xd , Xip_ = 72Xe , (4.48a)

where Xq = 8W + 4B —4H — 2M and X, =8M + 4H — 4B — 2W as usual,

[ LS ]
XoB,, A, —1
Xop, =0, Xop, ¢ = 4 VS(S+1) (4.48Db)
Xip_ —4
[ tensor ]
2
Xop, = Xop, =X1p_ =0, X0 By = \/§S(S +1)(25-1)(25+3) ,
(4.48¢)
[ Coulomb ]
1
Xopy =1, Xopn = §AP(AP— 1), Xop, =24, , Xip.=-4,,
(4.484)

where Ap = A2 /2+ T, is the number of the protons in Cy, and § = Sy is the spin value
of Cs or the total system. It should be noted that D -types and S-, §'-, D4 -types only
contribute to LS and tensor kernels, respectively, due to the spatial factors. (See §3.3.2.)

43 Alpha Plus Two s-Shell-Cluster Systems

If we employ the valence orbital method, we can extend the spin-isospin factors,
obtained in the preceding section for general 2-cluster systems, to 3-cluster systems which
involve an extra o-cluster. Suppose that Cy, Cy and Cs are two s-shell clusters with
mass numbers, 4y, 43 (1 < Ay < Ay < 4) and an a-cluster with As =4, respectively,
and that the spin-isospin wave functions for the total A = A; + Az + 4 nucleon system
are described by &g, 1, 5,75 ;97 in Eq. (4.38), augmented with the c-cluster wave function
&(a). By using the property that () is spin-isospin saturated and also the effect of
antisymmetrization, the single particle wave functions ¢, =| (0s)s,) and ¢¥g =| (03)%)
in the GCM kernel in Eq. (3.19) can be modified into

Pa — (Ea = Pa ! ¢3>(¢3 1 ‘Pa><¢3 | (P3>M1 s
s — s = s— | a)(ws | Yp)les | ¥s)™" (4.49)
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for &, 8 = 1 or 2. For the normalization kernel, this replacement simplifies the effect
of antisymmetrization A’ such that the permutation between Cy U Cy and « gives zero
contribution due to (B, | ¥3) = {©3 | 12,3) =0 for o, 8=1 or 2. As the result, we only
need to consider a 2 cluster normalization kernel with 1 respect to the single particle wave
functions @, and wﬁ The overlap between &, and ¢'ﬁ is

~ JURE AnsA
Aop = (Pa | ¥p) = Aap — 7333—39 , (4.50)

where Aap = ((0s)s, | (Os)s/ﬁ) (o, 8 = 1,2,3) is used. We assume that the 2-cluster
double-coset symbol Q[k] is specified by  — a in Eq. (3.40). Then the full spatial
overlap, which corresponds to J,jcv in Eq. (3.35), is given by

2
~ ke
J?r: II Aa; A§3
a,fB=1
ki1 kiz  kar ko2
-3 Y S MWMM)HW
111=0n12=0 ng1 =0 ngoe=0 a,f=1 Tap a,B=1
2
kap—To ko o 4- (bap—nap)
HAEE 1 (hap—nap) H = (kap— nﬁ)ASSEQ,a 1 kbap=nap , 451)
=1 :

where the binomial expansions of Xag, in Eq. (4.50) are employed. For the powers of
Aqs etc., we can use the weight conservation Zi___l kap = Ap and Z?):& kag = Aq.
Then, if we extend nqp to include a, B=3 by defining 743, n3g and ngz through

2 2
naS:Aa—Znaﬁ ; n3ﬁ=Aﬁ’znaﬁ ;
B=1 oz=]
2
ngg =4—A; — Ay + Z Nag (4.52)
a,B=1
we find
3 3
Y nap=Aa D Tap=A4g . (4.53)
B=1 =1

Namely, the 3x3 matrix [n] is nothing but the 3-cluster double-coset symbol given by
Eq. (3.42). In terms of [n], the full overlap in Eq. (4.51) is expressed as

k11 kaz
=S S I (5) I (459

ny1==0 gz =0 a,B=1 o, fB=1

which is combined with the 2-cluster spin-isospin factors X ,{V as in Eq. (3.31) and yields

N(§; ) = ZXN H AT (4.55)
a,B=1
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with

2
XN =23 ] (:“ﬁ>x,§v . (4.56)

(k] af=1 N B

We can write this symbolically

XN =(-nmed <k> xN . (4.57)

N\

If we use the notation XY and X, (J\iyw) for the 2-cluster and 3-cluster spin-isospin
factors, respectively, the relationship in Eq. (4.56) or Eq. (4.57) is explicitly given by

min{z,y}
Ay —a\fa\[/a\[Az—~a
N — (_1\Tty—u-—v 1 2 N
Xeyun = (=) 2 <A1 - 93) (u) <U> <A2 - y) Y - 439

a=max{u,v}

Namely, the 3-cluster spin-isospin factors are given by a simple superposition of the
2-cluster factors.

We can easily extend the above discussion to the spin-isospin factors for the inter-
action kernel. In this case, the sum of the two-body interaction ) st Wst 18 divided into
three groups; namely,

A
§ Vst = § Vst + E § Vst + _—>_ Ust (4"59)
s<t s,tea,8<t s€CLUCy tea 5,t€C1UC,,s<t

which we call a-core, Hartree-Fock, and valence contributions, respectively. For the
a-core contribution, we can easily show

Geore — ZX;;OT&A”I]—{33 33} (4.60)
[n]

where X2°7¢ is proportional to XY ;

4
Xere = XN (€(e) | Y ws | £(0)) (4.61)

s<t

In Eq. (4.60), a shorthand notation A™ = Hi,,@:l Azgﬁ is employed. The Hartree-Fock

contribution is composed of the direct term GPF(?) and the exchange term GHF(e),
The direct term is given by

2
GHFD =N A A% >~ Xip Eap (4.62)
[k} a,B=1

where the Hartree-Fock type spin-isospin factors are given by

i, = xtn, = (e () (%)
X(2aEsT(C1UC)E(@) | D Y wse | € (C1UCa)E(a)) (4.63)

S€EE,p tEQ
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and

Eop = A3 A7 (Baps | u | dpths)

_ AzA
= Aa;-} {Aaﬁlf{a,ﬁ ;33 — Z333ﬂ [7-{013 ;33} + 7‘{3[3;33} - 7'{33 ;33}:'} . (464)

We use this Eag in Eq. (4.62) and expand Ak by using the notation
kB = — e(2f) and nf =n —el®h) (4.65)

for o, =1, 2 and 1, 2, 3, respectively. Then we find

2
HF(d) _ n HF(1) HF(2)
GHF@ =% A 3 {Xn o Tt 33y + X o) [Trassay + Tispasy — Tyas ;33}]} )

[n] @,B=1
(4.66)
with
HF(1) B
X {aB) (nes)
= (-1 Xtg., - (4.67)
XHF(Z) () LoB
n{af} *.)
Similarly, we can obtain GH¥ (e) by the modification vg; — — Ps; vs: ; namely,
2 HF
e n 3
GHF() = ZA Xn{a(ﬁi [Tta336) — T{asssy — Tspasy + Tisaa3y)
[n] a,f=1
(4.68)
where
ks
Xf{’fﬁ’i EEDY ( . )Xg Bup (4.69)
[&]
with

e e a A A
Xk By = Xap,, = (—1) (al) ( az)

x (24 €s7(C1UC)E(@) | Y S (=Puwat | €57 (CLUC)E(e)) . (4.70)

s€E,p t€a

Finally, the valence contribution is given through

Gralence Z ZkAgg ZX]C T’f , 4.71)
(K] T

with
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Xgr = Xa {aB;v8}

= (-1)* <A1> <fi2)(za €sT(C1UCh) | iwst | €sim (C1 U Co)) (4.72)

a

s<t
and
T = Tiaprey
A-1A-] Ay3Ass

B AaﬂA76 {AaﬂA%T{aﬁW&} = Aap Ass [7{0‘5;36} + Tapiysy — Tiap ;33}}

AnsAsp

Ass Ars [T{Sﬁ;y&} + Tiasysy = T{33;75}J

AcsAsp AysAss

e | (T3, . Tion.
* Asg Az {( (o393} + T(ap 36y + Ty33.33})

+(77{a3 ;38 ,I{aB ;33 T 7¢{3ﬁ;33}) + (7%3['3 v3} — 7—{33 3y T 7:{33 ;36 )}} :
(4.73)

The expansion of A* in Eq. (4.71) yields

2
valence n V(@
G = Z A Z {Xn -Ea)ﬂ;'yzS}tz—{aﬁW‘s}
[n] {aBv8}

V()
+2Xn Eaﬁ;’yé} [’Z-{O«’B 73} + ?ﬂ{aﬂ ;361 II{aﬂ ;33}]
X sy [ (Tias sy + Tiapissy + Tiao o) +2 (Tias o) — Tras o3y — Tz o) |

(4.74)
where the basic factors X XE;)B;vé} etc. are defined by
V(1) kB ié
Xn {aB;v6} (nal’ ?‘75)
V(2 n Lo fd 1 vE
Xn gozﬁ’;'yé} = (.“1) @ z (Ana; ) X {aB;v6} (475)
(k]
V{(3) |86
X, {aB;v6} ( n )
with
kB o plaB) _ o(v8) and noPivd — p — elah) _ (v8) (4.76)

The full spin-isospin factors X, {o3;ys} for the interaction kernel is obtained through
G = GTe GHF(d) + GHF(e) + Gvalence

3
= ZAn Z Xn {aB;v6} 7‘{aﬁ;'y6} ) (4.77)
[n] {aB;v6}

with the final result given by (o, 5,7, 6 = 1 or 2)
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_ V()
Xn {aBsv6} = Xn {(aﬁ,'y&} ’
_ v(2) v (2)
Xn {aBv3} = Xn {aB;v6} + 6"/» Xn {aB;aB}
é

— V(2) V(2)
Xn {aB;36} — Z Xn {aBv6} + 65’ﬁXn {aB;aB}
HF(1) V(2) xV®
X {aB:33} = n{aﬁ} ZXn{aﬁ B n{aﬁ af} 0

= V(3) V(3)
X" {333} = (1 - 55a:7) ZXn {aB;v6} + ba ”‘/2 Xn {(aﬁ af}

X (3p;36) = 5ﬁ 5 ZXn {apivsy T 08, 5 X, (o sam)
X {3536} = :T{ll(;}) +ZX7‘1/§Z),6 oy :Ei)a b}
Xn{a3;33) = Z(Xf{Fa(ﬂzi TIL{{I;([?; Z XX’E% 6} Z Vﬁ‘)ﬁ ief}y
B8 Byv,6
Xogaony = 2 (X, + Xty ) = 20 X {oloysy = Z X (b sosy
o a,y,8
Xnqassy = X37° — E;ngx(ﬁz})f f{i(g; ) +{ %:5} {aﬁ v8} (4.78)
@, (27

. HF(1) HF(2) HF(3) V(1) V(2) V(3)
Here, the basic factors X {ep} X, {aB}> X, (B} X {aBiv6} X, {(aﬁwa} and X, {aB;vy6}

are obtained through Egs. (4.67), (4.69) and (4.75), by using

(Xa+ Xe) central
xgore = xN 1 for Coulomb , (4.79a)
0 LS and tensor

Xd
k Bap } = kap X1 5 { X for central (4.79b)

X Bup Xe ’

Xip, = (-2 Xfp,, =kes XY +2(T'T10 | TT.) X7 5 for Coulomb

(4.79¢)
Xig o) [ (AW —2H)
C= 4.7
X5 Bag X os { @g—2w) o L8 (4.79d)
XI?EQB =XiB., =0 for tensor . (4.79¢)

Furthermore, X ,ﬁv and Xy (ap;vs} are the 2-cluster spin-isospin factors derived in the
preceding subsection, and Xg4, X, X,:ggﬁ and X,:g:ﬁ are given by Xg = 8W + 4B —
4H —2M, X, = 8M + 4H — 4B — 2W and Eqgs. (4.44), (4.45).
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§5. Systematic Evaluation of RGM Kernels in the Complex Generator-
Coordinate Method

In §3, we have found that the GCM kernels for n-cluster systems of (0s)-shell
clusters have rather simple structure with respect to the (n — 1)-dimensional set of
complex generator-coordinate vectors, z = (z1,-*-,2,-1), whatsoever we choose for
relative-coordinate systems between clusters. These kernels are usually referred to as
complex GCM kernels. It is well known that the complex GCM kernels have a nice
property of non-singular transformation between the GCM and RGM kernels. [108],

. [10] There exist a couple of different versions of complex GCM. [92], [7] However,
these are essentially equivalent to each other and they share the property mentioned
above ; namely, the transformation from GCM to RGM kernels are easily carried out
by simple Gaussian integration. Here, we use the Bargmann-integral [93] version of
complex GCM, developed by Horiuchi [92] for particular applications to eigenvalue
problems of normalization kernels in Elliott SUs scheme [97]. We find in the next
section that this scheme is also convenient for evaluating Gaussian matrix elements of
RGM kernels.

A basic relationship used for the present kernel transformation is the Bargmann’s
integral representation for the Dirac’s é-function, which is satisfied by the generating
function A,(&,2) in Eq. (3.13) ;

/ d(2) Ay (r,2)" A, (€,2) = 6(x— €) | 5.1)
where d u{z) is the 3-dimensional Bargmann measure [93] defined by
du(z) =32 B (R2) d*(S2) . (5.2)

By using 3(n — 1)-dimensional version of Eq. (5.1), we can find the RGM kernel for
I%(z;2') in Eq. (3.17) through

ME(R;R)=(6(6~R)¢o | OFA | 6(6 — R)¢o)

— [ an@ du) ARs2) AR ) 1025 5.9
where R = (Ry,--+, Ro_1), 8(6 — B) = [I15) 6(&; — Ra), du(2) = [[75] d (i) etc,
and A(R; z) is given in Eq. (3.15). Here again, we can get quite general expressions for
the explicit result of Bargmann integrals, due to the Gaussian nature of GCM kernels
for s-shell cluster systems. If we fix a particular type of nucleon-exchange [k] and also

an interaction type 7 for interaction kernels, each term of the GCM kernels in Egs.
(3.38), (3.51) and (3.69) is conveniently factorized into

IN(z;2) =exp {Tr(z* Q'7)} ,
TP (2 2") = IV (2;2)) exp {——;\—(Pz* + P'z')z} )

Iz 2) = I(%2') Péom (7)) (5.4a)
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with
1 central
Plom(z 7)) = i [Pz*,P'Z]-8 for Q={ LS . (54b)
3v10 [Yo(Pz* + P'2) 5@ ](O) tensor

The transformation of the Coulomb and kinetic energy kernels is easily obtained from
that of I°*P(z;2’) and I"(z;2’), but for later convenience we also give explicit forms
of these GCM kernels as

ICE (2 7)) = (

27 1.
Z;Z,) m erf <§|PZ -+ PIZ,I> ,

IE(z;2) = IV (2, 2") {n —1- —;— (Tr(tz*2*) + Tr(*'2")) + %Tr(z* Qtz')} . (5.4c)

We call these I**(z;2') with parameters Q, P and P’ the standard form of complex
GCM kernels for (0s)-shell cluster systems and all the transformations in this and the
following sections are carried out with respect to these forms.

The Bargmann integrals in Eq. (5.3) are most efficiently carried out by using some
formulae which are specifically derived for this purpose involving many-dimensional
Gaussian transformations. Since almost all these formulae can be straightforwardly
obtained, only brief comments are made concerning their derivation. We first derive
these for n-dimensional vectors z = (21,22, -, 2n), instead of 3(n — 1) dimensional
ones z = (21, -, 2n—1), since the reduction to the case of our present interest is easily
implemented. The starting point is a real Gaussian integral

> 2 ™ %
/ dze™® = (——) (a>0) , (5.5a)
or its extension '
oo 1
/ dge@+u)® = (-71) * (ueG a>0), (5.5b)
oo a

where u is an arbitrary complex number v € G. A standard procedure yields the
following n-dimensional formula for Gaussian integrals ;

oo
t t n 1t a1
/ dzy---dz,e” “ATTUE = 13 (det A)"2e vA Y (5.6)
_—00
where v = (u1, - ,un) € C" is an arbitrary complex vector and A is a real
symmetric matrix (*A = A) satisfying the positive-definiteness condition. Now

we move to Bargmann integrals with one-dimensional Bargmann measure d u(z) =
7 le~*"2d(R2)d(3z) and their n-dimensional extension d u(z) = dpu(z1) - - d p(z,).
By applying the formula Eq. (5.6) to the real and imaginary parts, separately, we can

easily prove®?

#3The formula Eq. (5.7) is well known, for example, in the Bargmann-Fock space approach to
path integrals in the quantum field theory. See Eq. (9.56) in [109].
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/du(z) e—tz*(C-1)z+tu*z+tz*'u — (det C)—~1 etu*C_lv , (5.7)

for arbitrary u,v € C" and a real, symmetric and positive-definite matrix C ({C = C).
We can extend the formula in Eq. (5.7) to include *2* Az* and tzBz type terms also, by
linearizing the 2™ and z terms with the aid of Eq. (5.6). Namely, we use z* and z for
u in Eq. (5.6) and use Eq. (5.7) first and then integrate over z etc. by using Eq. (5.6)
again. Through this procedure, we can get the following formula for n-dimensional
Gaussian Bargmann integrals, which is most convenient for our purpose ;

/du(z) exp {—%t *Az* - %tsz —2C - Dz + " u+ tvz}
= [det (ACA™'C — AB)]‘% exp { - % tw(CB™C — A)™ru — % ty(CA™'C ~ B)™ v
+hu(C — BC‘lA)‘lv} , (5.82)

where u,v € C* and A, B and C are all n X n real and symmetric matrices. In the
process of the proof, we have assumed that the matrix A= — C~1BC~! is positive
definite, which guarantees that the determinant in Eq. (5.8a) is non-zero ;

det (ACA™'C — AB) = det (BCB™C — BA) #£0 . (5.8b)

Note that this determinant is symmetric with respect to the interchange of A and B.
Now we can use the formula in Eq. (5.8) and the property of exp{‘z*z’} as a
reproducing kernel

[an@s@e= = 5 59)
to derive
/ du()du() A(R;2) AR 3 2)* exp{t7*Q2' + t2*u + fvz')
_ (2__@)17 oo~ (a-1) R~ 1® (w- 1) R iRoR
™ 2 2
+'R (Au — Cv) +'(A'v — tCu) R — % fuduy — % fpAlv + fuCo } ) (5.10a)

where B = (27 R, -+, 2/ Ry) etc. and

D =det (1 -'QQ) = det (1 — Q*Q)
A=(1-QQ7, A=0-‘QQ7",
C=Q(1-'QQ)™"' =(1-Q'Q)™'Q . (5.10b)

In Eq. (5.10a), we have assumed (v1,---,7,) for the n-dimensional A(R;z) and
(71,7 for A(R';2"), and used a shorthand notation

WP\ ViY; ;
('} ) =H<___~7r ) , (5.10¢)

t==]
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At this stage, we move to the 3(n—1) dimensional parametrization z; — 2q; (@ = 2,9, 2
andi=1,---,n—1and R = (271 Ry, -+, 24/Yn1 Rp_1) etc., and use the property
that Qai,ﬁj hand 5a,ﬁQi,j yields D = det (5a,,86i,j - (tQQ)i,jéa,ﬁ) = {det (1 - tQQ)}g
We also use the vector notation z = (21, *-,2,—1) and u = (uy,* -, Up—1) €tc., and
their inner product (u - z*) = Z;:ll (u; - z). Then by assuming the coefficients in Eq.
(5.10b) for (n — 1) x (n — 1) matrix @, we find that the Bargmann transformation of
the GCM kernel, exp{Tr(z*Q'z’) + (u-z*) + (v-2')}, is given by the same exponential
form as in Eq. (5.10a) with v — u and v — v, but a slight modification of the front
factor into

3 3 3
2SN 2 ISINZ T o [T\ 2
(—W—> D% with (——ﬂ) =11 (wﬂ> . (5.10d)
i 7 e w
In particular, if we set u = v = 0, it gives a transformation of the normalization kernel :

3
MN(R,R/> — (2\/77,)2 D--%

™

_Lip N _ Yim(g_ Yo inqp
xexp{ 2R<A 2>R 2R<A 2>R+RCR}. (5.11)

In order to derive transformation formulae for the interaction kernels, we first assume
that the GCM kernel is given by

I(z;2) = IN(2;,2') Facm(z2) (5.12a)
with
Feom(z;2') = exp {—g (Pz* + P'2')?> + (u-z*) + (v- z’)} . (5.12b)

Here again, we can use the Gaussian-integral representation

exp{—-gp2} = (WA)'%/dy exp{—§y2+i\/§(p-y)} (A>0), (513

to linearize the quadratic term of z* and 2’ in Eq. (5.12b). Then we can use the formula
in Eq. (5.10) again and carry out the y-integral after that. From this procedure, we can
show that the RGM kernel for I}(z;2’) in Eq. (5.12a) is given by

M(R;R) = MY(R;R) F(R; R (5.14a)

with

3
1 \? 1 A e
fRRI — = 2 t - /
(R;R') (1_M> exp{ 5TV + (AR - CR)u
-~ —— 1. ~ 1, -~ ~
+tv(A'R’—tCR)—§tuAu—éth’v+tuC’v} . (5.14b)

Here, various coefficients are given by



148 Y. FUJIWARA and Y.C. TANG

f=AP-CP | g=A'P'~*CP  ((n-1) -dimensional vectors ) ,
a='Pf+Pg="'PAP +'P'A'P' —2'PCP |
V=fR+'%R , (5.14¢)
and
A=A+ Fif T=at—2 gt
1- /\oz ’ 1- o ’
~ A ‘
G=c-———f' . (5.14d)

In particular, u = v = 0 case in Egs. (5.12) ~ (5.14) yields the RGM kernel for
I¢P(z; 2’} in Eq. (5.4a), which corresponds to the Gaussian central interaction.

We can extend the reduction of Faeon(z;2’) in Eq. (5.12b) a step further, to
separate out the linear term Pgop(z;2) = exp{(u - z*) + (v - 2')} which serves as
a generatmg function of the non-central polynomlal terms. The corresponding RGM
factor ’P(R R ) contains the coefficients A, A" and C as s seen in Eq. (5.14b). However,
the first-rank and second-rank tensorial properties of the LS and tensor factors greatly
simplify the final expression due to the relationship in Eq. (5.14d). The final expressions
of the RGM kernels in Eq. (5.3) are given by®*

3
: 1A
MR R = MBS ) <1—1Aa) eXp{"§1-,\aVz} ’

MYR;R) = M*P(R;R) P*(R;R) , (5.15a)
with
1
PUR: ) = (-1-:3;) i {tP(AE.-Cﬁ') tP'(A'ﬁ'—fcﬁ)} 'S
(©)
() 3VI0 [2:(v) 5@
central
for Q= LS . (5.15b)
tensor

Besides the normalization kernel MY (R; R') and its coefficients A, A’ and C in Egs.
(5.11) and (5.10Db), the necessary coefficients for the interaction kernels are given in Eq.
(5.14c). The transformation of the Coulomb and the kinetic energy kernels in Eq. (5.4¢)
is given by

MCL(R; Ry = MN(R; R) 2&/7'— erf (%) ,
MR R) = MY (R R) { = (1= 1) +2Tr(A+ 4) - < ['R (44 - 34) R

1 ~
=R
3

PR (44’2 —34) R — 'R (8AQA' — 20) R/ ]} (5.15¢)

24This simple result of factorization in Eq. (5.15) was first obtained for 2-cluster systems in the
RGM study of noncentral NN potentials in terms of a quark model. [110], [111]
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§6. Gaussian Matrix Elements of RGM Kernels

For practical applications of the many-cluster RGM kernels derived in the preceding
section, it is essential that we can easily carry out the angular-momentum projection to
cope with many involved angular-momentum couplings of the relative wave functions
due to cluster rearrangements. Although this procedure is well defined and contains no
essential difficulties, it becomes quite tedious for the systems of more than three clusters.
It is therefore very useful if we have some nice method to evaluate the RGM matrix
elements with respect to basis states with some specific angular-momentum couplings
for the relative motion. This is achieved by using Gaussian-type basis wave functions
with arbitrary width parameters, in which the expression of the RGM matrix elements
turns out to be given by only finite number of terms corresponding to the intermediate
angular-momentum couplings. In fact, almost all the 3-cluster RGM calculations (and
also multiconfiguration RGM calculations by Hackenbroich, Hofmann et al. [16], [20],
[31]) up to the present have been performed in the variational method for scattering
and bound-state problems with these Gaussian-type trial wave functions.

In this section, we combine the Bargmann-integration techniques for the kernel
transformation with the theory of double Gel'fand polynomials developed for the rep-
resentation theory of unitary groups [86], and derive a convenient formula for the
Gaussian matrix elements of RGM kernels. The derivation is composed of three steps.
First we introduce some kind of reduction rule from 3-dimensional complex vectors to
2-dimensional ones, which eliminates the Og-invariant polynomial terms of h.o. wave
functions in the angular-momentum representation. This new technique is used to de-
rive a transformation formula for Gaussian matrix elements directly from GCM kernels.
Since the structure of this transformation is only slightly different from the one for GCM
to RGM transformation, we can employ the full result in the preceding section in order
to derive generating functions for Gaussian matrix elements. Finally, we expand these
generating functions in terms of the double Gel’fand polynomials, and obtain the RGM
matrix elements as the expansion coefficients.

6.1 Transformation Formula for Gaussian Matrix Elements

6.1.1 Two-Dimensional Reduction of Three-Dimensional Bargmann Variables
Suppose R = (R, Ry, R;) and £ = (£1,£2) are 3-dimensional and 2-dimensional
complex variables, respectively, connected by a simple relationship

Ro=1(-6+8) . R=ii@+8). R-t&. (6.1)

If we use the standard spherical tensor notation of real 3-dimensional vectors even for
the complex vector R, the relationship (6.1) can be expressed as

_%(Rm—{-iRy) = %Ef =wv11(€) ,

Ry =R, =¢& & =v10(8)
Ry = % (Re—iRy) = %fg —0a(E) . 6.2

Ry =
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Here, we have also used the Schwinger’s spinor representation [ 1127, [93] for angular-
momentum states ;

£f+m Eg—m
VEF M) —m)!

The essence of the transformation in Eq. (6.1) or (6.2) lies in the restriction of the six
independent real variables of the complex R to the four independent ones of &, due
to the simple property, R? = 0, directly proved from Eq. (6.1). We call this R | &
reduction in the following. If we consider another 3-dimensional complex vector § and
its reduction 7 with S | m, we can easily show

vem (€) = (6.3)

(R -8)= (€ n)” | (6.42)
1{& m ? 1 2
R-8)==3| | ==l deatem) P (6.4)
2 72

Now let us consider the h.o. expansion of the generating function A, (r,z) in Eq.
(3.13) in the angular-momentum representation ;

Aﬁn@=<ﬁ)%wp{ﬁﬁ+%ﬁh“@~§}

™

= Vem(®7) Unvoyem(2) (6.5a)
Ni&m

where r is a real vector, z is complex, and

Vem(x,7) = Rne(r, ) Yo (T) (6.5b)

i) = (2) [ ] v e

Nti11)
with N=2n+¢ (6.5¢)
20+ 1) B
U(No)gm(z) == [(N—fg” (_J;%)*é—{— 1)”} (—z- z)" yém(z) . (6.5d)

The spherical harmonic polynomial of order £, Vo, (z) , is given in Eq. (3.63). We
modify z in Eq. (6.5) into R and perform the reduction R | £ . We can easily show that

Uwvoyem(R) = 6n0 Yem(R) , Vem(R) = /(26 = DN (§) for RIE . (6.6)

The last equation in Eq. (6.6) is the extension of R, = v1,(€) in Eq. (6.2) and is shown
as follows. We first use the angular-momentum C-G series
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_hb
em  \fdr b

and show that the spherical harmonic polynomial is expressed as

[ Y, (R) Ve, ()| (£10£0 | £0) Vi (R) 6.7)

L
Ve

Then, by R | £ reduction, we move to R, = v1,(£) and use (see Eq. (5-3-11) of ref.
[86])

(6.8)

Vem(R) = ["'“RR]z R}s"']

{m

Y
(06O 0w = cvres (* g 1 V) @) 69)

Now going back to Eq. (6.5), the transformation z — R | £ yields

27\i . _ .
AfeBlnse = (2] e Iy = 3 v (52)" V= D oen(€)
m

(6.10a)
with
Xﬁm(r) 7) = Wﬂm(ry ’Y) = XE(T7 ’7) Y:‘fm(?) 3
2 i 4 3 o
xe(r,y) = (%) {m} (2vAr)fe (6.10b)
or
3
2v\ 1 —yr?
Xem(t,7) = | — ) Vem(2y/71)e : (6.10¢)
If we further express Eq. (6.10a) as
VTR R e =Y Vom (207 1)V (2L = 1)1 v (€) (6.11)
£m

and modify 2,/ r into a complex variable S, we obtain
eB S = /(20— D) vgm (&) Vem(9)* (6.12)
m
This is nothing but the R | & reduction of the reproducing kernel in the Bargmann
space ;

eBS7) = Z Uvoyem (R) Unvoyem (8)™ (6.13)
Nétm
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6.1.2 Transformation Formula for One Variable

The Gaussian function we are going to deal with from now on is x,(r;7v) in Eq.
(6.10b). In order to find the Bargmann image for this Gaussian function with an
arbitrary width parameter -y, we first consider a simple Gaussian integral

/ dr A (r,2)" Ay (x, 7))
- (BT) e {Z2L L () 2T ()

T+ Y+Y'2 v+

(6.14)

If we set v — 1y, v — v with > 0, this can be expressed as

/drAm(r, 2)* Ay (r,2) = (1 - 52)% exp {—-;— (22 —2%) +1-e2(z" - &) }

1 —
with 5:1 and —1<e<1 . (6.15)

Whenn =1 ore = 0, Eq. (6.15) is reduced to the expression of the reproducing kernel.
We set z — R | € in Eq. (6.15) and use Eq. (6.102) and (6.12). Then, by noting that
Ve (2) is a homogeneous polynomial of order ¢, we can easily find

/drxgm(r, ny) Ay(r,2) = (1 — 82)%(£+%) Ve (2) 5% = Wern (2,€) . (6.16)

Namely, wen (2, €) is the Bargmann image of xgm (x, 77).
Let I(z) be a term of GCM kernels, for which the corresponding RGM kernel is
defined through

M(x) =/du(z) A (r,2)" I(z) . (6.17)

In the following, we find a convenient formula for calculating the RGM matrix element

Mem(n) :/drxgm(r,n’y)/\/i(r) . (6.18)

First, the formula in Eq. (6.16) shows that My, (n) is given by the Bargmann integral

1 -
Mim(n) = /du(z) wem (2", €) I(2) with &= " (6.19)
147
The essential point of the present approach is that we can replace this Bargmann integral
with the original one in Eq. (6.17) with a small modification of coefficients. To show

this, we extend r in A,(r,z) to a complex R and make a replacement
11
s e B
2. /7 —¢
where /—e for e > 0 should be understood as a principal value. Then, we perform
R | &€ reduction and use Eq. (6.12). From this procedure, we can easily show that

r z-—\/—€cz , (6.20)
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1 R
)
’7<\/:— 2\/‘ R|E
( )Z @D (1— &) 2 (&) wem (2, 6)* (6.21)

This expression yields

. 3e+3) L 7\
oenl) = (=Y L (1)

x [ du(©)ven(®) 4, (\/-{zg 5% = ) N (6.22)
If we use this representation for wep, (2%, €) in Eq. (6.19), we obtain
Mym(m) = (1 - ) 164D [ @ ven© MR 629
T
with
M(R) = (f—)z /dp(z)A7 (-—1— —R—,\/:—Ez)* I(z) . (6.24)
2y V—e 2,/
Here we further use a property of Bargmann integrals
(flen) | 9(2)) = (f(z) | 9(c"z)) for "ceC , (6.25)

which is valid for arbitrary f(z) and g(z) in the Bargmann space. Thus we find

M(R) = (%)3 /du(z) A, (\/—%-__—E ?%,zy IW=e*z) . (6.26)

This implies that the RGM kernel M (R) in Eq. (6.26) is easily obtained from the new
GCM kernel I(z) = I(v/—¢*z) by a simple replacement R — (R/2,/7)* (1/v/—¢ )
in the corresponding RGM kernel, as long as the transformation formula in Eq. (6.17)
is explicitly known. The extra Bargmann integral for v, (€) in Eq. (6.23) is usually
unnecessary, since the expansion of M (R)|r ¢ in the basis states vg,(€) yields much
easier method to handle this process of angular-momentum projection.

6.1.3 Application to n-Cluster RGM Kernels
In n-cluster systems, we deal with angular-momentum coupled (n — 1)-body Gaus-
sian trial functions defined through

Xf’M(T;’ﬂ) = [ e [{Xﬁl(rl»'r}lf)’l)XEg(r27v772'72)]£12 Xea(r3>77373)]

£123

' 'Xen_l(rn—lynn~17n—l)]LM , (627)
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and their RGM matrix elements®®
MEtsy sy i) = ( [XEim)€s] 5y | MO | [xd 05m)es ] )
(6.28)

Here, £ etc. denotes a set of angular-momentum couplings specified by the following
Gelfand pattern [86]

[ €50 =] [ [[# 8] l12,83] lr23, - €no1] L)
i+t by +L b+ by —L 0 e 0
= b+ ly+ s+ ligg £y + Ly + L5 — U123 0 )

Lyl + by £+ Ly — Lo
240,

(6.29)

We use the same notation for 2 x (n — 1) double Gel’fand (DG) polynomials [86] ;

,UélM (g) — (P(2 n—1) (Ap) (5)

= r,

= [ e H'Uh (El) Vey (62) }512 Veg (63) ]g123 TV, (En—l)}LM ) (6.30)

where A+2p = 2 (£ +Ly+- - £p1), A\/2= L and A\/2—r = M. If we use a shorthand
notation | £ |= &4 + €y + -+ - +£,_1, the relationship between (Ap) r and LM is given by

A=2L , p=|¢|-L, r=L-M. (6.31)

We extend the formula in Egs. (6.23) ~ (6.26) to the (n — 1)-dimensional angular-
momentum coupled states, and apply it to the RGM matrix element in Eq. (6.28).
Then, we find

1
2

l(g+§) L2
Msy s = (1 =27 (1 - o2y 3¢ 2){

1
@) (20 = 1)!!}
x ( [0(€) &5 ] gl MRS R miemrse l [Uﬁl (f')&’SILM> , (6.32)

where the matrix element is taken for the Bargmann integrals over d u(€) d u(¢') and
1 1 1 R
NQ , T 4 T 4 ,
T R) = | — — d Al = ——;
Wowr) = (£) (%) [ an (o= 5=s2)
><A<—£——£~‘z')* IQ( —e*z; —6’*z’) . (6.33)

In Egs. (6.32) and (6.33), we have used some shorthand notations through

“In Eq. (6.28). €5 and &4 are the “formal” spin-isospin wave functions and should not be
confused with the 2 x (n — 1) Bargmann variables & = (£,,---¢,,_;).
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(1 _ 62)%(24%) — ﬁ (1 . 6?)%(&'4—%) with &; = 1—mn ’
i1 147

n-—1 n—1 (%
(2 — ) = H(zei -, <1> = ];[1 (57—;-) , (6.34)

g==] 2’7

e

and v/—¢ is supposed to be an (n—1) x (n— 1) diagonal matrix; /—e = ({(V/~¢)i; ) =
(8,5 /—¢i) etc. The modification z2* — /—¢ z* and 2’ — v/—¢’ * 2 in Eq. (5.4) implies

Q—-Q=v——eQvV—*, P—P=y—eP, P=v"Jd*P . (635

We set th~e cgefﬁNCients of the corresponding RGM kernel in Eqgs. (5.10b) and (5.14c)
as D,A, A, C, f, g and —&,?® and further make a replacement R — R/y/—¢, R/ —
R'*/\/—&'* and define

~ 1 w1 & 1 a1
Az\/:g(l—A)\/:g, X oemr 0= A)

- 1 -~ 1 = 1

C= = g= g . 6.36

From this procedure, M(R;R’ ) in Eq. (6.33) is derived as

TN PN — 3 !‘_t n _1_ }t EN Y _:.I;_ 1% tp A pl*
MY (R;RY=D 2exp{2 R(A+25>R+2 R <A+25’ R"+*RCR ,

) (e
R,

Me?(R;R') = MY (R; R)) (

ME(R; R') = M**?(R; R') PXR; (6.372)
with
1
1 - tD top/* tD/plx | t D/
_ - PR+'PR*'P'R'* +'P'R|-S
PR R = <1+A )Z[ +'PR| (6.37b)

() v [a@rs0]”

Here, we have explicitly shown the 3-dimensional vector character of R by R = R =
(Ry, -, Ry-1). In Egs. (6.37a) and (6.37b), the coefficients for the normalization kernel

is given by

det(1 — £'QeQ) = det(1 — Qe'*Qe)

QL -€e"QeQ)™ = (1- Qe"Qe)71Q

A ,tQ __( —-QEItQE)—lQEItQ ,

tQEC thQ(l _ e’tQaQ) (6.37¢)

:z>> my Oy
il

26Note that the notation X, A and C in Eq. (5.14d) is differently used from that here.
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and, for the interaction kernels,

P=(1+A4)P , P =Q1+4¢)P

P=tCeP | P =Ce'P

F=P+P , G=P+P,

G="'Pef+'Peg, V=!fR+'GR" . (6.37d)

Note that A and A are the symmetric matrices ; i.e., 'A = A and tA = AT

The first step to derive the matrix elements in Eq. (6.32) is to make R | £ and
R’ | & reductions. In the central kernel Mezp (R;R') in Eq. (6.37a), we expand V2
term and use the property

tRMR Z——R?_o ,

n--1
ztRAR > Ay (R; - Ry) ZAW )2

i< z<g
étRl*A,RI*ZZA;](R;*R;*):—““~ ZA 6/* ’

1<j 1<j

n—1 1 n--1
‘RCR" =) C;Ri-RY)=5 ) Cyl& &), (6.38)

ig=1 ig=1

with 6;5 = det(§;,&;) and &}; = det(&;,¢;) from Eq. (6.4). Then, we find
Mewp(R;Rl>iRl§’Rll€l mm D“% I(é,fl) ;
1 n—1 1 n-1
I(&;€) = exp -5 > Ay (65)% - 3 > AL (85)? Z Cij (&:- €)% ¢, (6.3%)
i<j i<j 4,j=1

where the coefficients D, A, A’ and C are given by

D=D@1+xa c=0C- g
(1+3a) | A=
A=A- 2 fiF A= q 2 gt (6.39b)
1+ A& ’ 1+ A& ' ’
On the other hand, for the LS and tensor kernels, we use
1 !
[ab]00=“7§(a'b) ; [ab]m:z—\/—é[axb}“ ,

a, = \/_4??@ 1/1“(/5) = ylu(a) ) (640)

and define their reduced matrix elements by separating the spin part ;%7

*"In this paper, we have assumed the reduced matrix elements of § and S @ for the total system

unity; (S| S| S) = (S| 5@ || 8’y = 1. However, they are explicitly shown here for the later
convenience.
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F(e+3 Le+8) 3
MEEI{S);Z’(L'S')(an) = (1—52)2( z) (1_5/2)2( 2) p-3

61,1 bs,57 ]\A@CL;@L(UW’) for central

s J
x L S J

(L s g )

1 —_
2 2 0[(S]S@|s) 3\/1—0<1+)\&> MZ,;B'L'(WW/) for tensor .
L S J
(6.41a)

Here, I\?[;QL,E/ 1 (n;7') are given by

ENTO

Mo (i) = [ G 1)!!1@@ - 1),!} (FOI1EPUG | 9 (©))

(6.41b)
with P€ =1 and
PES(E;¢) = [Mi(PR+PRON(PR+PRY))  RiERE
PLE;E) = Vou TR+ GR *)|Rye, rter - (6.41c)

The central factor I(¢;¢’) in Eq. (6.41Db) is given in Eq. (6.39a). The reduction of the
polynomial terms in Eq. (6.41c) is given in §6.2.2.

6.2 Expansion by Double Gel’fand Polynomials

6.2.1 Central Matrix Elements
In order to derive the matrix elements M, eCL; o1 (m;7') in Eq. (6.41b), we expand
I{¢;¢") in Eq. (6.392) as
2 A A
2 n— 2 n—-1
I (C5 A, A) S @B O () o2 “ley

r==0

oo Nu /\M)NH 1)

(6.42)

where o, ™" *)(¢) s the 2 x (n — 1) DG polynomials defined in Eq. (6.30). In Eq.
(6.42), Iefje, (C;A,A') is a function of Cy5 (5,j =1 ~n—1), Ajj and A; 1 <i<j<
n—1),and A, p and p’ are related to L, | £ | and | £ | through A = 2L, p =| £ | —L,
w =€ | —L (see Eq. (6.31)). Furthermore, Ng(Au) is the normalization constant of
the highest-weight state for 2 x 2 DG polynomials, and is given by [86]
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Nir(s) = [ : At } (6.43)

A+ p+ Dl
Once the expansion Eq. (6.42) is obtained, the matrix elements are easily obtained
through the orthogonality of the DG polynomials. They are given by

~ 1 3 1
< i) = L/ N ! . .
MZL;Z’L(U)"]) [(%—1)”(28’—1)”] NH(/\M)NH(/\/«L/) IL’,Z (CvAaA) (64'4)

Let us first consider the expansion of SUs-scalar part in I(£;£’). We set Vj; =
(&;-&5") or V ="£&* in (n—1) X (n— 1) matrix form and expand it in powers of V' ;

n-1
€xXp % Z O’L] (&'L ) '5;*)2 H Z 2]\'”]{: T C i Vzh” = Z W Ck V2k .

i1 4,j=1 kg =0
(6.45)

In the last equation in Eq. (6.45), we have used an abbreviated notation for the repeated
indices C* = H’kl C’k” etc. In order to expand V2* in Eq. (6.45) further, we employ

1,7=1
the polynomial expansion of (n — 1) X (n — 1) DG polynomials [81]
(=1 n-n)ifl - [ ] 0] VE
(pa (V) - Zk: |: a k A 3 (6.4‘63.)
or its inverse expansion
\/_ 3 { } Pty (6.46b)
T [fhab
which can be derived by the orthogonality relationship
vE | V¥
< __]:7—1 _\/_k:/- > = 6};‘];;/ . (64‘6(‘,)

We can also use the product formula [86] of the DG polynomials; i.e.,

(=1 n=DIf] ) = =1 =D kg gy - 1 2 n=1)[f] (g} H(@ 2= DI 1y
900,,1; ( ) (pa, ( ‘55 ) NH[.f] gtpc,a (5) Qac,b (5 )

(6.47)

We note that the irreducible representation label [f] is actually a two-row partition
[f1=[A+u, 0,0, --,0] = (An) for 2 x {n—1) DG polynomials. We also use 7, instead
of ¢, for the SU; internal quantum-number label, and the parametrization by £ in Eq.
(6.29) for a etc. Following these procedures, we find

n—1
1 *
exp 5 > Ciy (&€

4,j=1

A
1 A 2 ne A 2 e A «
=2 5 O Fi(0) Yol M (g) o M ey (6.48)
() &,¢/ H =0
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where Fe(’zfi )(C’) are homogeneous polynomials of C;; (1,7 = 1 ~ n — 1) of order

A2+ p=12]|=|¢| and are given by

F}W(O):;[%!ﬂr [«QEM) ;;J ck . (6.492)

Note that the polynomial F; E(,;fl ) (C) has a very similar structure to the DG polynomials in
Eq. (6.46a). However, the factors k = (k;;) are doubled and satisfy the weight condition

Z ki; = E' , Z ki =4; , k;; = non-negative integers , (6.49b)

=1

and \ = even only. The appearance of the factor of the type [(2k — 1)!!/(2k)!1]1/2,
instead of 1/+/k!, is a typical feature of this modification of the DG polynomials.

Now we proceed to the non-SUs-scalar part of I{(£;¢’) in Eq. (6.39a), and consider
expansion of (6;;)? part :

n--1 mij;
P ‘%ZA"j(éij)z H Z( > mlij!A:;ij (8i5)%™

i<g 1<j my;=0

_ Z (%) > ;11—',4"‘62"‘ , (6.50)
m=0 :

mij=m

i<

where we have again used the abbreviated notation for the multi-dimensional index m.
Since 6™ is an SUj-scalar polynomial, we can expand it by <p((f 57—1)(0 2m) (&) with

£"| = 2m. Thus we expand Eq. (6.50) as
q

n-—1
1
exp{ —5 > Aij (6)°

i<j
! 02 2 n—1)(0 2m
- Z< 2) WZG§” ™ (A) e m PO T e) (6.51)
e//
Note that, for a small value of n, the coefficient polynomial Gz(e?/ 2m) (A) takes a very

simple form due to the condition 1 <1 < j < n — 1. For 2-cluster systems with n = 2,
this term does not exist. For 3-cluster systems with n = 3, the explicit expression of
2 x 2 DG polynomials [86] yields

GP ™ (4) = A12 , (6.52a)

where we have used the SU, notation r = 0 for the Gel’fand pattern £” in Eq. (6.51) :

ny _ | At+p p\ _|2m 2m \ |4+ L £y + 4y
&%) = Adu—r - 2m N 20, ’ (6.52b)
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with £ = 2L = 0, = 1 + &3 = 2m, and {; = {5 = m. Even in 4-cluster systems, we
only need to deal with polynomials of 619, 613 and 623 and the explicit expression of
2 x 3 DG polynomials [86] yields Gg), 2m) (A) given by

m 2m—q-D(g—r =D (r =1 |7 s
GO 2m) gy - | L ATTEALT A2 (653
v = G 1)t (m— )1 ()1 (31 | 2 et A 69%)

where the SUs quantum numbers ¢ = 0 ~ 2m, 7 = 0 ~ ¢ are even only and are related
to £” through

A I 0 2m 2m 0
€)= A+p-p p—g = 2m  2m—q
Adpu—p—r 2m —~r
by + 4oy + 43 O+l + Us 0
== by + 8y + by €1+ €y —¥E3 s (6.53b)
204

with A = 2L = 0, p = ¢ -+ €o + 3 = 2m (even only) and p = 0. Note that this coupling
scheme is related to the SUs-scalar state | [ve, (€1) ve, (€5) Jes ves (€3) Jo-

In order to derive a general expression for Gg(,), 2m) (A) for an arbitrary n, we employ

Eq. (6.48) by assuming C = (—1/2) A and £'* = ( _01 (1)

the relationship (£, - £") = (*€ €£)y; = det(€;,€;) = §; yields

) ¢ = e£. By this assignment,

n—1
1
eXpq| —3 > Aij (6)°

1<y

A

1 1 - n—

= E : N ()\ ) Fl?(,yl) <_§ A) ‘Pfe B Ow) (g) (1051?8’ D Ow (65) ’ (654')
O g AN r=0

where we have modified the (usually non-zero) diagonal matrlx elements A;; into 0 ;
ie, A;; =0 (@ =1~ n—1). First we use the fact that Fe P (C) in Eq. (6.49a) is a
homogeneous polynomials of Cy; with the order A/2 + p (A = 2L = even), and find

1 1\ 2+
Fip <-—2- A> = (—§> Foo(A) . (6.55)

Further, we can use the product formula of DG polynomials and use (p(zz) Pn (e) =

8t a—r (—1)" Ny (M) to derive

(2 n—1) (i) 1 22) (M\p (2 n—1) (Ap) (2 n—1) (An)
, [ ¥ € s o == - " .
r £ ( f) = NH()\ ) ET/ Wr,r ( ) Py R4 ('5) ( ) P~ —7,0 (é)

(6.56)
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Then, by using the SU; C-G coefficients (A/2(A\/2 —7) A/2 — (A\/2~7)]|00)
= (—=1)" (1/v/A + 1) and the C-G series for 2 x (n — 1) DG polynomials [86], we find

A
- n— - n— (0)
Pl V() 0l T M () = VAT [ I M () oV |
r=0
Ni(Ow) —
A+1 _“““(g(,\i 5 )Z LA | (0 X+ 20)8" Yy @D O T2 (g
EII

(6.57)

where we have used the two-row SU,_; C-G coefficients {((Ap)(Ap)d | (OA +
2u)e" }y—1 . These two-row SU,,_; C-G coefficients are discussed in §6.2.3, together

with the polynomial functions Fe(”}f‘ )(C'). Finally, we combine Eqgs. (6.54), (6.55) and

(6.57) and compare it with Eq. (6.51). Then we find that G ?™ (A) is given by

GLP(A) = Y VAT IN(w) (WAL | (0 X+ 208 ) OO (4)

(An) &8’
A42pu=2m

(6.58)

where A=A with A}y =+ = A, 1,1 =0.
We use the same procedure for another non-SUsz-scalar part in I(£;&"). By com-
bining these, we find

> () 1

N )ﬁ o 2 NH(/\/,L) NH(O 2m) NH(O 2m’)
)L, 3

gll,ell

x Fﬁ’l,“>(0) G ™ (4) 63 2m) (4"

n—1) (A n— m n— n— m’ *
XZ( (2 n=1) (\m) &)soffgu 1)(0 2 )(5)) (wizel D Ow) g1y, (2 n=1) (0 2 )(£)> ’

0 EI/

(6.59)

where ‘we have changed the notation £ — ¢, £’ — ¢’ etc., to reserve £ and £ for the
later use. We again use the C-G series to combine two DG polynomials. After some
alteration of notation to fix the polynomial powers, we finally obtain

IFp(C; A A"

min{p, 4’} = -
= Y <~§> Nu(uo) D (o) (0 = po) £ | (Mz) £)ns

s e
(o) & (0 1/ = o) B | (M) € )y EL(C) G5 7400 (4) GO (')

(6.60)

where A= 2L, u=|£| —L and p/ =| ¢ | —L.



162 Y. FUJIWARA and Y.C. TANG

6.2.2 Noncentral Matrix Elements
In order to evaluate the noncentral matrix elements, we need some preparation
to reduce the polynomial parts in Eq. (6.41c). The first formula is with respect to

3-dimensional vectors, Ry, -+, R,—1, and reads
o 5
1 _ .
Vem (Zz— Rz) = X {zlz---en_lz}
Lyt =L
X [ [V (R) Ve, (R2) gy gy - Veus Ru-1) ], (661)

where all the intermediate couplings are stretched ones ; i.e., f19..s =y +Llo + -+ £
(s=1l~mn—2)and L =43+ -£,_1 = £ in the Gel’fand pattern (6.29). This well-
known formula is easily proved by using the generating function of Ve, (R) in Eq. (6.12)
and the reduction formula in Eq. (6.9). By using this formula, one can prove

n-—1
Vem (*f R) |lrie = Vem (Z fi Ri)

=/@OU " FZ O(f) vf™(€) , (6.62a)

=1 Rl¢ |25 |=¢
where
(2120) (26, - 1)1 ]? ¢
(= {-—————(% i } f (6.62b)

and £, denotes the stretched Gel'fand pattern £. For example, if we write Eq. (6.62a)
explicitly, it means that

o (Sam e 5 [Sg e

b4l =L

x fh... [ [ve, (61) vea (€2) gy gy Vs (€n) ], - (6.620)

The third formula we need for LS factors is

[(VCFRVICIR)],, Irie =2V2 ZF@” £9)v™E) (6.632)
where
PP (fg) = QIEJI:IZ_ZEIJ@O)& (2006, (21)8)nr £ g% (6.63b)

We note that the coupling by the two-row SU,,—1 C-G coeflicients in Eq. (6.63b) corre-
sponds to the outer product of two (n — 1)-dimensional vectors f; and g;. In fact, these
C-G coeflicients show up in the C-G series of the DG polynomials in

[vL©vy(©)], =VEY (20 Q0L @D v™E) - (664
4

Since | £; |=| £, [= 1 means that £5 and £ just specify the vector components &, and
¢ 2> for example, we can rather use the ordered combination {£s¢,}, in order to specify
the Gel’'fand pattern £ for (Aun) = (21). Namely, we define, for | 4 |=| £, |= 1,
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gy (€) = [vés(f) v%;(ﬁ)]lm = {vl(ﬁes)vl(ﬁe;)}lm , (6.65a)
from which we can show
U%Ze;}(f) = ’“Uﬁzes}(f) ; Ve (€) =0 . (6.65b)
By using this identification £ = {£,£.}, the formula in Eq. (6.63a) is expressed as
(M RVCIR) ], e = > g% ol (©) - (6.66)
jes1=Te3 =1

Now, we can use the formulae in Eqgs. (6.61), (6.62) and (6.66), in order to reduce
the polynomial factors in Eq. (6.41c). We find

P& = Y {13138 P U%Zfz’s}(@ + Pt Pt W%Ze;}(g*)
|M=!L’;l=1

_ (ﬁeg pré. _ pres ﬁd) {’053(5) w%;(fl*)}m} 7 (6.672)

o) =2vE 3 | BB ] (e + ¢ uie )

[tsl=2

-vz 3 fegn [vés(ﬁ)w%;(ﬁ’*)] , (6.67b)

21
[€s|=l€,]=1

where we have used the conjugate spinor functions
wem (§7) = (=1)+" ve,-m (£)" (6.68)

and their extension to 2 X (n — 1) DG polynomials wf™ (¢*) like vF¥ (€) in Eq. (6.30).
Through these procedures, we only need to calculate the reduced matrix elements of
I(¢;¢)PW) (& ¢') with respect to the tensor factors

PEE) = [ @uE)] (6.:69)

with Kk = 1 and 2. The full expression is obtained through a simple superposition of
different types. The final result is given by

1
MR ) = (e + L+ DI (|e| =D)L (€| + L'+ D)1 (j¢] - L) 2
E(LS); £ (L SV (2L+1)(20— DU (QRL +1) (20 — !

3
x (1~ 62)%(“%) (1- 5/2)%(‘”%) (%) ?
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5L,L/6S,5/I£e,(C;A,A') for central
1 e
y (L-8)]g s <m> IS (C3 A A PP, P P for LS
J 1 2T >
(812018 s (m&:> I§L?E,L,(C;A,A';f,§) for Tensor .
\
(6.702)
with
(LS T
L-SY =11 10|88 V6(=1) e | 6.70b
(L-S)isps (Slsls)ve(-1) ST (6.70b)
L S J |
(LS J]
J 1
(S12)isps =12 2 0 |(S]S® ||S’)\/§5(—1)L\/—§f—~—_ﬁ. (6.70¢)
L § J

The LS and tensor factors in Egs. (6.70b) and (6.70c) are symmetric with respect to the
interchange of LS and I/S’. In Eq. (6.70a), the central factor I}je,(C' ; A, A') is given
in Eq. (6.60). The LS and tensor factors are expressed in terms of these central factors
as follows :

I3, (CA AP, B, P, P

= (L fzu,c;A,A@ > PP (WD TRV} () )y

€5 ]=]£4 =1

e ZIL (©;a,a) S BB (OF)F QUL (VE) £ )

£
l€s[=1¢;1=1
+Z( 1)L (L'1L1;L1) ZI~~C 4,4y N (ﬁesﬁ"v’bﬁ’%ﬁf’s)
or [es[=1e5]=1
<w> £(20) £ | () €)ny ((\F) £ (20) £, | (N ) € Yt (6.70d)

T T
I (C3 A, A F9)

P B i) 5 [ BB R om0 6] o) s
7 |£]=2 o

) LIZI;E,(C A4 12%{(—2@7;)—?1} 5% ()7 (40) €| (Vi) € Y
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+) ( 1)L\[ (LL/> U(L'1L1; L2)ZI£~C A, A")

Z eel

x oy PRt (O E(20) L | () €)nr () (20) €, | (Vi) £ Yner , (6.708)
185 |=1€, =1

h

where A = 2L, p =] £ | =L, X = 2L/, 4/ =| ¢ | =L, and X = 2L. In the first and
second terms of Egs. (6.70d) and (6.70¢), the non-negative values 1i and i’ are given by
i=|£| —L' =2 and i =| ¢' | —L—2, while in the third terms these are i =| £ | —L —1
and i’ =| # | =L — 1. Furthermore, U(L'1L1; L1) etc. denote the unitary form of
the angular-momentum Racah coefficients.

6.2.3 Two-Row SU,.; C-G Coefficients and the Expansion Coefficients of
FOw (©)
2,0

The expressions of the central, LS and tensor matrix elements in Egs. (6.60) and
(6.70) would be useless, if it were not possible to evaluate the SU,,_1 C-G coefficients
and the coefficients of polynomial functions F, &f‘ )(C’)‘ Fortunately, these are all of
the two-row type, and can be obtained from the standard angular-momentum Wigner
coefficients.?®

Let us first consider the two-row SU,,_1 C-G coefficients. We start from the C-G
series of 2 x (n — 1) DG polynomials [86]

[Wf n—1) (An) ©) (pgefl—l)( 7 )(5)]

_ Na(Apw) Na(N'y')
- NH (X/N//)

124 1 1t
L L e

ST LN TN W) Yy G 5TV XE D €) , (6.71)
_el/

where the two-row condition is A + 2u + X + 24’ = M + 2u”. We use the vector-
coupling expression in Eq. (6.30), and reduce the left-hand side of Eq. (6.71) by the aid
of the angular-momentum recouplings and the reduction formula in Eq. (6.9). From
this procedure, we find

(e N )T (X" )

_ Na) [ (26\ (28N (200 1\ ]*
T Npg(w) Ng(Wu') | \26,) \ 26, 20,4

4l by lio 3 L123 bioom—n fpy L
X |4 £y Ll 12 £ o | | Bloepen Loy L] (6.72)
goo o) Loy g en] e e, o

where A= 2L, u=|¢| L, N =2L', /' =| ¢ | =L, N =2L", /' =|¢" | —=L", and
£+ 0, =8 (i =1~ n~—1) (stretched). Here, the square bracket means the unitary

28This is natural, since we are essentially dealing with the algebra of angular-momentum
projections.
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form of the 9-j coefficients. Furthermore, Ng(Au) is given in Eq. (6.43). The first 9-5
coeflicient in Eq. (6.72) is stretched for 2 columns, so that it is expressed by a single C-G
coefficient (see Eq. (5-3-13) of [86]). Namely, we can show

b4y Ly fyo

o oo oo | o NERh2 it b~ b)) Na(20,, 6 +6 ~ by) [ (267 (265 17
vt 2 Ny (28,61 + b + 0 + €, — €},) 201 ) \ 26,

Ev

e/l ell 4
1 2 12 ! ! ! 1/ ! !
><<£12€1“£2 12£1“ezl 1251_€2+€1“€2>

for £, +0) =40 and {fy+ 4, =104 . (6.73)

If (M) £ and (N ') £ are both stretched angular-momentum couplings with A = 2L =
2(£1+"'+‘€n—-1),l1/:0, 612.,.5 =31 +e2+"'+£s (S= 1~n-1) and )\'=2L,=
2000440, ), 1 =0, =0 +E5+- -+ L, respectively, all the 9-j coefficients
are of this type. For the C-G coefficients ( (V)¢ (21){£s2.} | (Aw))n—y ctc. with
[ &5 |=| £ |=1 in Eq. (6.70d), we can use

(VB £(20){L 0.3 | (Att) £
= V2> (VB 1) € | (M) £)n {(20) £ (20) 6] (21) € )y (6.74)
7

from Egs. (6.64) and (6.65a).
Next, let us consider the polynomial functions F&ﬁu)(C’) in Eq. (6.49a). We only

Ap)
need to consider the expansion coefficients ( :) or | These are easily obtained
from the vector coupling expression of the (n — 1) x (n — 1) DG polynomials given in

Eq. (2-2-15a) of ref. [86]. We find

(Aw) £ ~
o = Z ((2€1 0) k1 (282 0) ko | (2012 1112) £12 Y1

~ pos
L1z, lizin2

x{((2€12 p12) o (203 0) k3« | (20123 /«5123)2123 Yn—1

X( (2812....,1,.2 [ng..An_.Q) 212...71_2 (2en_.1 0) kn—l # I ()\/J,) v )n-l s (675)

where kiy = (kir, -, kin—1) ¢ = 1 ~ n — 1) specifies internal quantum numbers of
the one-row SU,,_; state with (2¢; 0) through

2(ki1+"'+kin—l) O v 0

[kiw 3 €s) = 2k + kiz + kis) 0 0 . (6.76)
2(ki + ki2) 0
2k
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Note that k;; are non-negative integers which satisfy the weight condition (6.49b). Fur-
thermore, p12 = £y +43 —£19, p123 = by +Hlo+Ll3—Lia3, -+, pigm—g = 1+ +Lly o~
£19...n—2 from the two-row conditions, and A = 2L and p = € + by + -+ €1 — L.
The expression of Fe(,/;'“ )(C') is also obtained from the original expression of Eq. (6.48)
directly by using Eqs. (6.12), (6.9), (6.62a) and the C-G series in Eq. (6.71).

6.3 Examples for 2- and 3-Cluster Systems

6.3.1 2-Cluster Systems
For 2-cluster systems, the SU,,_; C-G coeflicients in Egs. (6.60) and (6.70) become

simply Kronecker delta’s for the conservation of weights and no C-G coefficient appears
for the central matrix elements. The expansion coeflicient of F&," )(C’) in Eq. (6.75) is

unity and the polynomial GEZS 2m) (A) in Eq. (6.58) is not necessary. In this particular
case, it is convenient to introduce the standard angular-spin wave functions

VI¥(®;spin) = [YL(®) sy (6.77)

and define the LS and tensor factors in Egs. (6.70b) and (6.70c¢) in a little different way.
Namely, we define

(L- S)iS,L'S' = (VI (F; spin)|(L- 8)| Y1/ (T; spin) )

L s J
=6 |1 1 0 | (=V3VLIL+1)(S|S|S) , (6.78a)
L 5§ J

(Slz)is,ys' = (V7§ (F; spin)|S12| Vi/5 (75 spin) )

L s J
=|2 2 0 |+V30(L0O20|L0) (S| SP || &) , (6.78b)
L S J

where the LS factor is non-zero only for L = L’ due to the parity conservation, and the
tensor factor Sy is defined through S12 = v/247 [ Y2(3)S® ] ( see Eq. (3.62)). When
both clusters have spin 1/2 and are identical, these definitions reduce to the ordinary
spin and tensor factors, usually adopted in the study of NN interaction through § =
(o1 +03)/2, SO =2[89)? = [0102) P ( see Eqgs. (4.18) and (4.19)) :

1
(LS5 s = b1, 65,5 8515 [J(J +1) - LE+1)-SS+1)] . (679%)

and

(S12)1s.1rs = 65,5 651 (S12)1, 1 (6.79b)

with
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6«/J(J—F1)

(Slg)i] =2 , (512)§~1,J+1 = (512)§+1,J—1 = 2J +1 !
2(1 - J) 2(J +2)
J
(S12)7-1,5-1 = oJ+1 ($12)341,741 = - 2J+1 (6.792)

In this case, we should carefully divide the spin-isospin factors in Eq. (4.27) with the
reduced matrix elements (1 || $ || 1) = v/2 and (1 || S@® || 1) = 2+/5/3 (see Eq. (4.21)).
By using these notations, the matrix elements in Eq. (6.70) are expressed as

3
1 3 i([/+3 1\2
MBS s (i) = (1— ) 20F8 (1 gr2) 50 (2’5)

6,1 65,50 CL for  central

—'5L,Ll (L * S)iS,LS' CL_l h for LS

(S12)1s, 05 {6L,L’+2\/(2L —DEL+1) C¥ f2 4+ 8p40,0/CL = 1)(2L + 1)

\ x CLg? 4 6r.rr 2L+ 3)CEL fg} for tensor
(6.80)
where the coefficients, D, C, f, g and h, are given by
D—1~)(1+>\&) , D=1-e'Q*,
a = "l:):(EPQ +elP'? +2¢'QPP
C:Q___%Jffﬁ, h:P§,> f:——-mp+gQP,, g:fl_i%"gf.. (6.81)

Note that @, P and P’ are the coefficients of the GCM kernels defined through Eq.
(5.4), and are explicitly given by Q = 1 —x/u, P = p/\/ii and P’ = ¢/\/li with
w=A1As/(As + As), z =0 ~ min{4;, A2} and p,q = 0 or & 1. Furthermore, ¢ and
¢’ are defined throughe = (1 —7)/(1+7n) and &’ = (1 —7')/(1 +7'). The Coulomb
and kinetic-energy matrix elements which correspond to the GCM kernels in Eq. (5.4c)
are obtained from the central matrix elements in Eq. (6.80) by a slight modification with
D — D and

L
N ) fg
— 2[ s Tz; T+1< ) ) (2+ ) for Coulomb, (6.82a)

Y 112
@2 (14 d) et

5 for kinetic-energy , (6.82b)

where 6, f, g and D and the coefficients C , > g and D for A = 0, respectively ; i.e

. Q - -
C=-= s f~_———~—‘ s R m— (6.82C
5 g )
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For the derivation of the Coulomb matrix elements, a simple integration formula

1
2r+1

1
/ dz (1 + Ba?)~(r+3) g2 = (1+8) 0+ (6.83)
0

is employed.

6.3.2 3-Cluster Systems
In 3—cluster systems with n =3, the SU,,_; C-G coefficients in Eq. (6.72) are nothing
but the angular-momentum C-G coefficients. The explicit correspondence is given by

(OEN YL (V' WD Yy = (L by — 8 L' — 8| L 61 — b+ € — £, (6.84a)

with
A=2L , p=4f1+4—L | O+ =2,
XN =2L, =0 +e-L by + 4, =15 |
N =9L" | W=y 40—~ L' =l + L+ 0+ 0L . (6.84b)

The function Fe(”zf‘ )(C’) in Eq. (6.49a) is therefore very simple. It is given by

y 2k — 1)1 %
=3 S

X (ki1 + kiz kiy — k1o ko1 + koo ko1 — koo | L ki1 — kg + ko1 — koo ) CF 1, (6.85)

where the summation over k;; (4,7 = 1,2) is only for the non-negative integers which
satisfy the weight condition (6.49b). By using this expression and G(()O 2m) (4) in Eq.
(6.52a), we can explicitly write down the factors for the central matrix elements in Eq.
(6.60) as follows :

Iéfz,é;f;(C;A’A/) = Z

{k],m,m’

(1>m+m' 1 { (2L +1) (2k — 1! z
(

2 mim/l | (Jk] + L+ 1) (Jk] — L) (2k)!!

X( ki1 + k12 k11 — k1o ko1 + kaz ka1 — koo | Lkin — ka2 + k21 — ka2 )

x C* (Ar)™ (A3)™ (6.862)
where we have again used the shorthand notation |k| = kyy -+ « -+ kag, (2k)!! = (2k11)!!
o 2k, CR =P CE22 eic. The weight condition in Eq. (6.86a) is

kst kip+m=14 kiy+koy +m/ =4,
ko1 + koo +m = £y , kig + koo + m' = €’2 . (6.86h)
The coefficients, C, 4 and A’, are given in Eq. (6.39b) with 6, A and A’ being those

for the normalization kernel. The expressions in Eq. (6.37¢) are further simplified for
3-cluster systems by using the cofactor matrix 6o = |O|*O~!. From here on, we use
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the notation |O] to denote the determinant of O ; |O| = (det O). For arbitrary 2 x 2
matrices, O, A, B etc., we can show a number of simple relationships such as

O+ %o = (TrO)e , O%%o ='%00=10|e ,
le—=O0|=1-(TrO)+|0] , '

tAB 4 5564 = (Tr'AB)e = (Tr'sgéa)e

be—tap = €—"646p , bap = 640p , (6.87)

where e is the 2 X 2 unit matrix. By using these, we can easily show

2
D=1-Tr('QeQ) + el || IQP =1- Y e:6j Q% +e1e261 5 |QF
1,=1

e e
-4, -4 ,

D D
~ Qi —e265Q22|Q] Qia+e261 Qo fQi)
C=Q—65806./|Q| = ,

@ @bl <Q21 +e165Q12|Q] Qa2 —e1€] Q111Q]

A=QetQ -6, le'1Q Ay = g1 Q11Q21 + &5 Q12Q22
A= ‘QeQ — b || foz , g’m =€; Q11Q12 + 2 Q21022 - (6.88)

C =

3

Sy

Here, we have newly defined the polynomial factors c , A and A’ , which are useful for
numerical calculations. The 2 X 2 matrix ) for particular nucleon exchange is given in
Eq. (3.43) or Eq. (3.107) through an approprlate transformation for the selected Jacobi
coordinates. On the other hand, the factors P, P, P’ and P' for the interaction kernels
are obtained through Eq. (6.37d) by assigning Pi, P, P| and Pj to those in Table IV
for each interaction type. (See Eq. (3.116).)

In order to derive the Coulomb matrix elements, we again employ the integral
representation of the error function and the integration formula in Eq. (6.83). They are
given by a simple modification of the norm-kernel matrix elements through Eqgs. (6.70a)
and (6.86a). Namely, in Ie122 e, (6 ; .Z, 121\’), we should modify

m’ k11 ks m m |7 +s+s"
c* (A12> (Al? - 2\[\/ Z ZZZ lv("ii)s+s)+1

Top=0 §=0 /=

() () ) @) )™ () )

. ]?1 T +T12+8 f2 r21+r22+s < §1 >r11+7‘21+3' < §2 >r12+1~22+3’
V2+a V2+a 2+a vzva/)
(6.89)

where |r| = ry1 + - - + ra2. For the derivation of the kinetic-energy matrix elements, we
need some algebra of transforming the coefficient matrices with the aid of the formulae
in Eq. (6.87). The final result is given by modifying Eq. (6.86a) as
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, (6.902)

MULTICLUSTER RESONATING-GROUP METHOD OF s-SHELL CLUSTER SYSTEMS
+
1
Al?

o) = 8 (A)" (R)”

ol (212>m (K’
3+|£|+|€’| X X, i s ( ___:_)
Cyj

— MY =
i,j=1 A12
where |£| = £; + €5 etc. and the new coefficients, X, Z, Y and Y’, are given through?®
(€2 +e1)e1e5Q

2
X—.

3

X =2-Tr(e+&)+ || Tr(*QeQ) + || Tr(Qe'*Q) — 2[¢] || |QJ
=2—¢g) —ey—¢€) —eh+ (g2 +eh) el Q) +

(e1+¢))e0eh Q3 — 2618281 €5 |QF
g2 — &) Qn (2—e2—¢€7) Qu2 )
/ ’

(61 +e5) ezl Q3
Z7=2Q-60Q-Q56 —<<2‘ I
: : (2—e1—¢e5) Qa1 (2—e1—¢1)Qa
Y =e-6.Tr(Q"'Q) +26:'11QF° - €' Q*Q
Viz = —€} €5 (QuQa1 + Q12Q22)
Vi=e—6sTr(*Qe Q) + 26 e IQ|2 - lel'QQ ,
Y]y = ~e1€2 (Q11Q12 + Q21Q22) (6.90b)
Finally, we show the factors for LS and tensor matrix elements in Eqgs. (6.70d) and
(6.70e) with respect to the 3-cluster systems. These are given by
(C;AA":P,P P P
LIE s (CHAA) (D 0 £, 10| Lty — £y) (131132 Pzpl)
EIE b1 (C A AN (L8 — 8y 10|18 — ) (PP — B,

LS)
IéleoL Z/E'L’
= (—1 L' +1
(-1 2\/»
1
+(=1)F =
(-1) Wi
EZ » 1 1 -
+D (V)P UL ILG L) Y 0 I re,o1 e, e -1 (C5 A A)
7 2L 2,=0£1=0
(Ll — 0y — 28+ 1120 —1|Lby — ) (L& — 0y —20,+11 20, —1|L' 8} — £})
(Pz £ 1321 els‘—ﬁzl..gspz E’) ) (6.91a)
T o~
Iéle)zL;z;e;L/(O ;A A f,9)

2
L' 7 L’
N L Z Iyl o, tgrt—2;00 0. (C; A AT
2 Note that Ayz, Als, Yiz and Y, in [51] are defined with an opposite sign to the one adopted

£,=0
pu ~, .
here. Furthermore, the difference of X is due to the trivial factor (n — 1) in Eq. (5.4c), which
means that we have included all the relative kinetic-energy contributions between clusters in the

present formula
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‘;‘IES“” SN\ s
x% (‘2‘) (L8 — 8y —2(8s —1) 22(8s — 1) | L&y — o) (fx)g (fz)2 ‘

2
HEDPE Y Iy cop-e, e -2(C A AT
=0

173 261l ! ’ 7 Y 7 gt 7 N N2
><§ 3 (Ll — 8y =206, —1) 2206, = 1) | L' &y — £5) (Gu) (G=)"

= [3 (LT B
i (WI)L\/; (?) U(L'LLY;L2) Y0 Y I g tyrt—150-t, ey, -1 (C A A)
Z £;=0£,=0

X(Lly — 0y~ 285 +1120,—1|Lty —by) (L0, — 0, —20, +1120, —1|L' &, — &)

X fae, Go—tr - (6.91b)
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