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                                  Abstract

       The hydrodynamical reaction of an incommpressible, inviscid, aRd irrotational
   fiuid of gravitons emerging from massive particles gives the Newton's inverse-
   square force acting on the particles. Due to this mass Ioss, any self-gravitating
   systems disiRtegrate in a time scale of mass loss. The magnitude of the
   gravitational acceralation is the graviton velocity divided by the mass-loss time
   scale. The mass-loss time scale in the solar system must be much loRger than a
   Hubble time, so that the graviton has speeds greater than c.

1 Introduction

    B.P.Kenep (1960) in his book "HA Iww1OPOrE HEBEnOHOrO" presents a
hypothesis that gravitons isotropically emitted from a massive body cause gravity. If

only one body exists, the reactive force of emitted particles balances and the body

remains at rest. However if another body exists near it, the space between the two

bodies is filled with gravitons and the number of gravitons emitted there decreases

gradually, so that the reaction of gravitons emitted to outer regions attracts the two

bodies as shown in Figure 1.

    In this paper we will show that the hydrodynamical reaction of mass loss from
massive particles gives the Newton's inverse-square force acting on the particles.

2 BasicAssumptions

    The basic assumptions made in this paper are

    (1) Each particle is a source of gravitons, which are carrying away a part of mass

from it at a rate proportional to its present mass M:

                                dM                                 dt =-crM, (l)
or

                                M= Moe-at, (2)
where cr -i is the mass-loss time scale. Let be the density in the graviton flow p and

the source strength 4 tr m. Thefi, we have
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Fig. 1. Reactive force due to gravitons isotropically emitted from two bodies

      ( I< e ,n e P 1960).

                              crM == 4n pm. (3)
This "human" law of particle decay is essential to rule a self-gravitating system of

different masses in good order (mentioned below).

    (2) The graviton fiow is assumed to be incompressible, inviscid and irrotational.

The density in the fiow R is kept constant.

    (3) A graviton does not emit secondary particles, so that a graviton itself can not

be a cause of gravity.

    (4) The graviton velocity is much higher than the particle velocity, so that the

particle seems to move witk a constant velocity as seen on the graviton fiow.

3. Inverse-squarelaw

    As well-known(Lagally 1922; Yih 1969; Imai 1973), an isotropic source at rest in a

steady, incompressible, inviscid and irrotaional uniform flow gets a thrust in the

upstream direction. This can be explained by a simple argument:

    We consider an isotropic source of strength 4 rt m, moving with velocity v in the
uniform fiow of veiocity U and of density p . The emerging fiow from the seurce also

has the same density.

    Following Jeans(1928), the equation of motion for a body losing its mass
isotropically in the rest frame of the body is

                           d                                     dM                          -Eift (Mv)=dt v+ F, (4)
where F is the force exerted on the source. Equation (4) assures that, if F==O, the

velocity v does not change.

    The structure of the cometary fiow emerging from a source in a uniform fiow is

shown in Figure 2. The velocity of the uniform flow remains unchanged in the
upstream and downstream fiow since the velocity potential is given by



                        HYDRODYNAMICAL GRAVITY 487

                              Åë= U.x-V. (5)
In fact, by integrating the pressure force exerted ofi the cometary surface by the

surrouRding fluid, it can be shown that, in Figure 2, the inward momentum fiux into
the hatched region of the cometary fiow ( e k2sin ww imb==110e ) balances the

outward momentum flux from the blank region (see Appendix I and alse Batchelor
1967). The surrounding fiuid therefore exerts no force on the cometary flow and vice

versa.

    The downstream flow emerging from the source finally gains the momentum fiux

4rrpmU. This holds whether the source is moving or not. Hence, from the
momentum-conservation law, the rate of change iR the momentum of the source
becomes
                           d                           ift (Mv) =-4npmU.                                                                      (6)

Thus, using equations (1) and (3), we obtain the equation of motion for the source

                   dv                M"a7t =F =-4n pm (U-v) = - crM (U-v). (7)
The same rocket reaction produced by the sublimating gases of a comet nucleus causes

the non-gravitational force acting on the comet, as first pointed owt by Whipple
(1950).

    Following Imai(1973) and Yih(1969), the force acting upon a source of strength

4 rr m pt (t) moving with velocity v/! (t) at r :rxi (t) can be also calculated by integrating

the momentum fiux density tensor over a small spherical surface surrounding the

source.
    The equation of motion for the graviton fiuid in the translating frame moving with

the source mxx is given by

         oOt, (pv') = -gradP- og,, (pv'vk') + 94npm. (t) v'S (r-r. (t)), (8)

where v'==v-vfi(see Appendix II equation (B7)). In the following, the apostrophe(')

above the time in the translating frame are omitted except for the partial time
derivative.

    The momentum fiux density teRsor is given by

                            G,k= pv; v,' +P5,,. (9)
The total force acting on the source is equal to the integral of Gik taken over a

                                n
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Fig. 2. A semi-infinite cometary flow emerging from a source in a uniform fiow.
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      Fig. 3. A spherical surface surrounding the relevanÅí source.

spherical surface moving with the source mpt of radius e , Se (t)(see Figure 3).

                           jFi=:-ff GiknkdS. (lo)
                                  Se
where nk is the kth component of the outward normal to a surface element dS. The
velocty in the fiow for a distribution of moving sources mv(t) at r==rv(t)( v =1,..,N) is

determined from

              div y' == 4n Xmy (t)6(r-rv (t)) amd rot v' =O, (11)
                         v
(see Appendix II (B9)).

Accordingly, we can introduce the velocity potential Åë' defined by

                                                           '
                              y'=grad Åë'. (12)
The velocity potential satisfies the Poisson equation

                       AÅë' :X4z m, (t)i(r-r. (t)). (13)
                             v
The solution which tends to -yxi at infinity is given by

                              Åë' == di-v".x, (14)
where
                                     Mv (t)           •• Åë= rm Slr-r, (t)1' (15)
The velocity is given by

                              mv (t) (r-rv(t))                        v' == Z                                            -vu• (16)                             v lr-r.(t)I3
The force exerted on the moving source m"(t) with velocity yp(t) at r==rpt (t) by the

other sources is our aim. Puttingr-rpt (t)=:e(t), the summation is split into two

terms:
                                                             '
                          mv(t) (r-rv(t))                                         Mn(t)s(t)
                                                 -v,. (17)                   v' =;                                       +
                       vs" Ir-rv(t)I3                                           E(t)3

Taylor expansion about r== r,(t) yields
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                 v, ,,. u, + x Mv(t) (S(t) - 3E"v(t)) + m,(t) s(t)

                          vs" lr"(t)-rv(t)I3 E(t)3 ' (18)
where

                              U' (t) =:U(t)-v., (19)
                                  mv(t) (ra(t) - rv(t))                        U(t) ",{l, lr.(t) rm r,(t)l3 ' (20)
                                          '                                                                       '
                         e,,i(t)=:ww`a,',[ll-ill:i,Y,'l2ei(t). (2i)

The second term in the right haRd side of equation (18) becomes negligible compared to

the third term as e tends to zero. Thus, the velocity field near the source m"(t) with

rnoving with velocity vxi (t) is a combination of a uniform flow and the source fiow,

                                       m,(t) s(t)
                            V' :U'(t)+ e(t)3 ' (22)
Bernoulli's theorem in an incompressible, inviscid and irrotational fiow with sources

m,(t) at r =r.(t) (v == 1,...,N) leads to the same form, even when sources are present,

                                       OÅë' 1 ,,                          p = of (t) - p                                                                         (23)                                       6t, - '2" Pv

(see Appendix II equation (B17)). From equations (9), (22) and (23), using nk ==

e kl e, we have

          Giknk : Gik -gLt
                    E
               : p(U,' + -LM!tl3, i,ei) (U,' + tMLt2Is! !L,ek) -{IS'

                  + 6,k {of(t) - P 0oÅët,' - -ll- p ((U,' + tMLS21E :L,ei)2 + (U,, + -tM:tgsttk,e2)2

                  + (Ui + :M!sligtst,e3)2)} .{s,

              == pUi' Uk' -?'L + pm,(Ui' Ek + Uk' ei) -2t/ + pm,2 -gt/'

                  + (pf (t) - 6oÅët,' - i}pu,2)i, - p., u,, Eg,ei - pm,2 til/i,-

              =: pm, (Ui'e2 + Uk'eiek - Uk'ekei)/E4 + (terms with a single Ei or ek)

              =pm. Ui'/s2+ (terms withasingle ei or Ek). (24)

Here, we will make use of the formula f f eidS =O. From equations (10)
                                  SEand (24), we find the thrust acting on the source m,

                                  pm" Ui'                            F` :- e2 f,,f dS

                              =: -4n pm" Ui'

                              =-4rr pm.(Ui-v,i) (25)
                              ur incrM"(Ui-v"i). (26)
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Thus, we arrive at equation (7).

Putting equation (20) into equation (26) and ttsing equation (3), we find

                            cr2M.M, (r. - rp)
                    F=:-,9. 4zp Er,-r,l3+crM"V"' (27)
Putting the inverse of the mass-}oss time scale

                             cr == (4rrGp)S, (28)
we obtain the Newton's inverse-square law

                             GM"Mv (r" - rv)                     I':rm ,i;, Ir, rm r.E3 +crM"V"' (29)

4 Abinaryproblem

   As a simple illustration, we consider a binary of the primary star Mi with velocity

vi at r==ri and the secondary star M2 with velocity v2 at r== r2. Using equation (29),

we have the force exerted on Mi

                           GM,M,
                    F :- ]r,-r,l3 (1'i-1'2) +crMiVi' (30)
The first term is the gravitationai force exerted on a source at rest by the other source.

The second term is the mass-loss force acting on a moving source eveR when the fluid

ls at rest.

Thus, tke equation of motion for Mi is

                     dv,- GM,M,                  Mi dt -- lr,-r,l3 (ri-r2) +crMivi• (30
The equation of motion for M2 is

                      dv2 m GMiM2                   M2 dt - Ir,-r,l3 (r'Ml'2)+crM2V2' (32)
Equations (31) and (32) can be rewritteR as

                    dv,- GM,                     dt -- lr,-r,I3 (ri-r2)+aVi, (33)
                      dv, wu GM,                      dt -Ir,-r,l3 (ri-T2)+aV2• (34)
PuttiRg r=ri rm r2, v=vi rm v2 and M = Mi + M2 and subtracting equation (34) from

equation (33), we find

                          dv GM                          it ==- r, r+ crv• (35)
In polar coordinates, this equation leads to

                         'r' - rco2 : G,M,` + crf, (36)

                           ld                           7aTt (r2te) :crrtu, (37)
where w is the angular velocity.

From equation (37), we find the time evolution of specific angular momentum
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                              r2tu =loea', (38)
where Jo is the initial specific angular momentum. The tangential component of the

relative velocity of Mi and M2 rto brings about a tangential thrust. Its effects
increases the specific angular momentum exponentially in a time scale of mass loss.

   The radial motion can be solved approximately. From equations (36) and (38),

we ebtaiB

                    ? ,. ({';,2 ,2at pt Gill,[ie e-at)+cri. (3g)

We look for an approximate solution satisfying the iRitial conditions

                  r=r,, 'ti :I=o and GxM,,'O=g,,. (4o)

Such a solution is found to be

                        r=: ro+:'f-i ({} t3+Slii2L t`). (41)

Accordingly, the secondary M2 gradually leaves the circular orbit r--ro. As time goes

on, the solution tends to

                    rocea', r=crr and teocemat. (42)
Hence, the binary system will disintegrate gradually in a time scale of mass loss a -i.

The time variation of the total energy of the binary system can be readly deduced
from equatioRs (33) and (34) as

       8,t [s M,v,2 +SM2v22 - F,YtY,i]

        == ddMti ISvi2m r9imMit pm vi2] + ddMt2 kV22- r9-Mll, -V22] (43)

                                     tt        =exLi+aL2. (44)                                                      tt                                                     '                                                 'The last terms in the pareRtheses are lacking in Jeans'(1928) energy equation.
Equation (43) surely shows that the total eRergy increases all the time due to the

mass-loss force acting on a moving source, This is also a general conclusion that

holds for any self-gravitating system because the equation of motion (35) is quite

general in nature. The two terms of equation (44) are the Lagrangians of Mi and M2.

{t means that the principle of least action minimizes the increase in the total energy.

5 Discussions

   Recent investigations (Pierce et al. 1994; Freedman et al. 1994) sltow that

                  H -- 80km sec-iMpc-i = 2.6 10-i8 sec-i,
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                       H-' =: 3.9 10i7 sec == 1.2 1e'O y, (45)
                            3H2                        Pc "" szG "= 1.2 le-29gcm-3.

The total energy density of the relic radiation is e,=:4.2 10wwi3 erg cm-3 (Mather et

al. 199e; Gush et al. 1991), which corresponds to mass density •
                 '                           p,=4.7 10-3`gcmm3. (46)
The solar system keeps its stability for 4.5 109 y, one third of a Hubble time H-i.

Hence, the disintegration time scale should be much longer than a Hubble time.

Thus, we have

                           cr-i>>H-i :1.2 10iO y. (47)
That is,
                          cr <<H=2.6 10H'8 sec-i. (48)
From equations (28) and (45), we find that the density in the graviton fiow should

                              8, == 3.crg <<i. (4,)

Ifp :pr, we have

                            cr :2.o lO-20 sec-i, (50)

                              cr-i ft 1.6 10i2 y. (51)
From equation (C5) in Appendix hi , the velocity in the graviton flow u is related to

the gravitational acceleration a as u == al a .

The lower limit of gravitational accelerations in the Universe ao is equal to 2 iO-8 cm

secM2 (Milgrom 1983 and 1995; Ishizawa 1987). A new estimate in spiral galaxies is

2.4 10M9 cm sec-2 (Ishizawa 1995). If we adopt the above estimate of a (50), this

gives the velocity in the graviton fiow u

                               S- {l['S SS 4. (52)
The velocity of the graviton flow at the earth is

                         ue GMo '                         -}- =.,(1..), == 1•O le9• • (s3)
Therefore, the speed of the graviton flow is greater than c. This is the most serious

problem in this work, which is inconsistent with the classical relativistic field theory.

However the classical field theory also has some fatal defects:

       1. The classical fields do work but not tire. While our mass devotes
        hiinself to attract other masses.

       2. The light can not escape from a black hole but the gravitational field

        comes oozing out of it.

   The stagnation point of the earth for the sun r == rs is determined from the

            0Åë             ar == O(Imai 1973). This givescondition that
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                                                              '                               GMo Gme                                    ,= ,• (54)                             (IAu- r,)                                         rs
Thus, we have
                              r,fJ (xig)g Au

                                =1.7 10-3 Au (55)
                                =: 40 Re

                                == gr, .

The stagnation point is at two thirds of a distance to the moon.

                               Appendix I

    A combination of a source of strength 4 rr m and a uniform flow of velocity U is

described by the stream function

                       Ur=S Ur2 sin20+m(1 -cose) (Al)
(Imai 1973).

The surface of the cometary fiow is expres ?ed by the condition that IP' =2m, that is,

                            r" (Z)7 ,i. (le/2)• (M)

The diatance ef the stagnation point from the source a and the radius of the cometary

tail b are

                       a:mo amd b== 2s/mo. (A3)
The velocity potential is given by equation (5) '

                              Åë== u.x-IZIg. (A4)
The velocity components are

                              mcose msine                     Vx=U+ r2' Vy= r2' (A5)
                                                  .l.                     v= U(1+2sin2(e/2) -3sin4(e2))2. (A6)

Theanglebetweenthevel ?,c.ity6V=9ji,;.dLheldi,r,/.,C:.1'i:le?ilig)it.,he,e,PeO,SitiVeX-aXiS6iSgiVe?Ab7Y)

and
                   sin6= [,tae,2.i ,]'y [,f/f'st.:g,{]ll},]S• (As)

The x-component of the normal to the surface of the cometary flow is

                               nx :-sin g. (A9)
From Bernoulli's theorem, we have
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                     p:p.. (t) -Sp (v2- U2) (AIO)
                      == p. (t) -tp U2 (2 sin2(e/2) -3sin`(ei2)). (All)

The surface element dS is

                     ds = 2n rsine ds

                                            i                        = 2rr rsinO(dr2 + r2de2)2

                        ::n,.m,?bn,,e, [if,3,;ln,}(ilii2)]Sde. (Ai2)

The pressure force exerted on the cometary surface by the surrounding fiuid is, using

equations (A2), (A8), (A9), (All) and (A12),

- fpn.ds = 4n uM f {p.. - tpU2[2sin2(e/2)-3sin`(e12)]}

                 Å~sin(e/2)cos(e/2)de-p.nb2= A4zZ!-Zlgi!s--f4LZ!-Sgi!! =o. (Ai3)

Thus, the total pressure force exerted on the cometary fiow by the surrounding fluid
vanishes. It is found from equations (A6) and (AIO) that, for e -:;}r2sinwwiV3,l== 110e ,

vSU andplp. and, for OO ut e <2sin-i VE, , they are the opposites. The
contribution of e k1100 to the pressure integral cancels out that of OO $ 0 <1100

exactly.

                               Appendix II

    The equation of motion of a source m, is derived from equations (1), (3) and (6)

as

                      8/ (M,v,) = -dtt2i7AilfLv, pt= 1,...,N, (Bl)

                                    'or

                    M, tfdVt = :dt:i;LilfL (v-v,), pa =: 1,...,N, (B2)

where v is the velocity of the graviton fiuid and

                        "dt2i2LLge == -4zpm, == -aM,. (B3)

    Under the law of particle decay (B3), the orbits of particles in a cluster are

independent of their masses. This is similar to the human law in our soceity, under

which heavy and light, rich and poor, old and young, man and woman, able and
unable equally have right and responsibility. Such a law would rule the system in

good order.

   The equation of continuity and the equation of motion for the graviton fluid are

given in the presence of sources with variable strength mv(t) and velocity vv(t) at r=

rv(t) ( y =1,...,N). To find the pressure about the source m,(t) moving with a
constant velocity v" (see Assumption (4)), we choose the translating frame fixed in the

source. Following Goldstein (1960), the velocity and acceralation in the translatiRg
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frame can be related to those in the rest frame fixed to the space as

                  r' = r-vat,
                  t' =: t
                  v' == v-v",
                                                                  (B4)

                   60 O
                  -brt = ot' - Vpt or,,

                   00
                  0r 0r"
and

                  DDV,--DD\i. (Bs)
The derivative DvlDt denotes the rate of change of the velocity of a given fiuid
particle as it moves about in space(Landau and Lifshitz 1966). Relative motion of

frames does not affect any scalar property of a point mass, The equation of
continuity does not change in the translating frame:

                   25                   ot, + divpv' :{l 4npmv(t)6(r-r,(t)). (B6)

The equation of motion in the translating frame is, using eqnations (B4) and (B6),

         a9, (pv') :-gradp rm og,, (pv'vk')+"i 4npm,(t)v'a(r-r,(t)). (B7)

The last term presents the momentum flux of the fluid supplied to the graviton flow by

a distant source mv moving with velocity vv(t) at r =r,(t). The velocity of the supplied

fiuid is taken equal to v' :v- v" by considering equation (Bl), For the relevant

source, we must use v'=:v-vpt=O because the mean velocity at the isotropic source is

equal to vg.

    Using equation (B6) and the formu}a (v.grad)v==grad(v212)-vxrot v, the equation

of motion (B7) can be rewritteR as

                      0oVtl -- -lli gradprm grad(Sv'2). (Bs)

Thus, the equation of motion of the graviton fiow remains unchanged even in the
presence of sources because the final velocity of graviton fluid fiowing out from a

source coincides with that of the nearby fiow. We consider an incompressible,
inviscid and irrotational fiuid. From equation (B6), the equation of continuity leads

to

               div v' =X4nm.(t)5(r-rp(t)) and rot v' == O. (B9)
                      v
The velocity potential Åë' defined by

                             v'=grad Åë' (BIO)
satisfies the Poisson's equation

                       AÅë' == .E74n m,(t)5(r-r.(t)). (Bll)
                             v
Thus, we find
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                              di'=Åë-vu.x, (B12)

                            di=-{ir ,l:i\(,t()t)• '(B13)

Putting equation (B12) into equation (BIO), we have

                              mv(t) (r-rv(t))
                        v' :Åí                                            -v,. (B14)putting equation (Bio) into eq.,ti8n (grsi, r.' (et)fli3.d

                        grad(0aÅët,' +Sv'2+g) =: O. (Bls)

Thus, we find Bernoulli's theorem

                          6oÅët;+iv'2+{I == f(t'). (Bi6)

The pressure in the graviton flow is given by

                                     adi' 1 ,2                        P== Pf(t') -P ot, -?Pv . (B17)
Using equations (B4) and (B12), the pressure in the rest frame fixed to the space is

                     P = Pf(t) -P 0oÅët -Spv2+Spv,2,

                                  0Åë i2                        :PA(t) -P at rmvpv• (B18)
where pA(t) is the pressure at infinity where the velocity potential Åë and the velocity v

vanish.

                              Appendix M

    Bateman's variational principle uses the pressure as the Lagrangian density
(Bateman 1929 and 1944; Seliger and Whitham 1968). This is of particular important

for potential fiows.

    Let us start with a combination of the Lagrangian for a system of particles and the

pressure integral.

        I = f fx. [t M,r,(t)2+ -!dl:i2LgfL Åë] 6(r-r,(t)) dvdt+ f fpdVdt. (cl)

where the velocity potential di giveR by equation (B13) is split to the pt th term and

the other terms as

                      Åë = -,i. I,-Zlf(t)E m -ii,; f;:kes-F-lil,(t)E•

                        == dii (lrntrv[) +di2 (Ir-rlll). (c2)

The pressure is given by equation (B18)

                       P=: PA (t) -p 0o`i? -ilt p(VÅë)2. (C3)

Putting equation (C3) into equation (Cl), we have
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                  I= f f7 [SM, di,2 + Md:i;Ltge Åë] 6(y-r,)dvdt

                     + .ff [PA -p 0odit -ep(VÅë)2] dVdt. (C4)

If dM/dt = -crM and if the gravitational potential is defined by

                                 Åë=aep, (C5)
this action integral coincides with Landau and Lifshits' (1979) total action integral for

the field plus masses except for the pA term and O Åë1et term. The action with the

pA term of the cosmological constant is adopted in the study of the gravitational

channel by Ishizawa(1987).

    We consider the variations S r"(t) and a ep . The boundary conditions are

        (l) ti r,(t :Å} oo) =: O.

        (2) 6Åë(t== koo) :O.
        (3) (V Åë)n :O or6di ==eon the boundary surface. (C6)

        (4) The velocity potential is finite on the boundary.

The variation of the action integral (C4) with respect to r,(t) gives

            6I = f f"i7 [Mpt f"6 f" + -'d'if2`illL {dO,, (dii(lrmrvI) S(rrmr,))

                 + oO,, (di2(Irrm rpt1) 6(rrm r"))} 6r,] dYdt (c7)

                                                  'The dii term becomes gradÅëi by use of the formula ff(x) a '(x)dx = - ff'(x) 6 (x)dx

iffis finite at the boundary.

                            0The Åë2 term vanishes because ox, IÅë2(lr-r,1)S (r-r,)] is a odd function of

x-x" etc. Thus, we have

         6I = f X,M. r,6 (r-rpt) Sr,lt;'ee.dV

                       d•                                 -.d,,,.M              rmffX" ['EiTt (Mgra) dt                                       grad dii] 6 (r-r,) 5r,dVdt. (C8)
Hence, we have

                         8t (M.f.) =: -!d:t2tLge grad ep!. (cg)

This is the same as equation (Bl). Using eqnations (1) and (C5), this leads to the

equation of motion for the source m"

                          "diifVt -- - grad Åëi + crv,, (CIO).

where

                                ipi =: crÅë,. (Cll).
    The variation with respect to Åë is

                 6I : - f pSÅë]t:ee.dV- f fp (V di).5didSdt
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+ff )]l'
"-(r6

M,d
dti+ÅëA[p 5 didVdt. (C12)

Thus, we have

Using eqnations (1)

                    dM,
        pA di = -'i7 dt                        6 (r-r,).

, (28) and (C5), we obtain the Poisson's equation,

         AÅë =: Z 4nGM,6(r rm r,).
               "

(C13)

(C14)
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