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Abstract

The hydrodynamical reaction of an incommpressible, inviscid, and irrotational
fluid of gravitons emerging from massive particles gives the Newton’s inverse-
square force acting on the particles. Due to this mass loss, any self-gravitating
systems disintegrate in a time scale of mass loss. The magnitude of the
gravitational acceralation is the graviton velocity divided by the mass-loss time
scale. The mass-loss time scale in the solar system must be much longer than a
Hubble time, so that the graviton has speeds greater than c.

1 Introduction

B.P.Kenep (1960) in his book “HA TTOPOTE HEBEILOHOT O” presents a
hypothesis that gravitons isotropically emitted from a massive body cause gravity. If
only one body exists, the reactive force of emitted particles balances and the body
remains at rest. However if another body exists near it, the space between the two
bodies is filled with gravitons and the number of gravitons emitted there decreases
gradually, so that the reaction of gravitons emitted to outer regions attracts the two
bodies as shown in Figure 1.

In this paper we will show that the hydrodynamical reaction of mass loss from
massive particles gives the Newton’s inverse-square force acting on the particles.

2 Basic Assumptions

The basic assumptions made in this paper are
(1) Each particle is a source of gravitons, which are carrying away a part of mass
from it at a rate proportional to its present mass M:
daM
T —aM, )
or
M= Me™*, )

where « ' is the mass-loss time scale. Let be the density in the graviton flow p and
the source strength 4 x m. Then, we have
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Fig. 1. Reactive force due to gravitons isotropically emitted from two bodies
(Kenep 1960).

oM = 47 pm. 3)

This “human” law of particle decay is essential to rule a self-gravitating system of
different masses in good order (mentioned below).

(2) The graviton flow is assumed to be incompressible, inviscid and irrotational.
The density in the flow » is kept constant.

(3) A graviton does not emit secondary particles, so that a graviton itself can not
be a cause of gravity.

(4) The graviton velocity is much higher than the particle velocity, so that the
particle seems to move with a constant velocity as seen on the graviton flow. '

3. Inverse-square law

As well-known(Lagally 1922; Yih 1969; Imai 1973), an isotropic source at rest in a
steady, incompressible, inviscid and irrotaional uniform flow gets a thrust in the
upstream direction. This can be explained by a simple argument:

We consider an isotropic source of strength 4 = m, moving with velocity v in the
uniform flow of velocity U and of density p. The emerging flow from the source also
has the same density.

Following Jeans(1928), the equation of motion for a body losing its mass
isotropically in the rest frame of the body is

daM

d
"&?(MV)=FV+F' 4

where F is the force exerted on the source. Equation (4) assures that, if F=0, the
velocity v does not change.

The structure of the cometary flow emerging from a source in a uniform flow is
shown in Figure 2. The velocity of the uniform flow remains unchanged in the
upstream and downstream flow since the velocity potential is given by
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_ _m
O=U.x~"% (5)

In fact, by integrating the pressure force exerted on the cometary surface by the
surrounding fluid, it can be shown that, in Figure 2, the inward momentum flux into
the hatched region of the cometary flow ( § = 2sin ~ '+/2/3 =110° ) balances the
outward momentum flux from the blank region (see Appendix I and also Batchelor
1967). The surrounding fluid therefore exerts no force on the cometary flow and vice
versa.

The downstream flow emerging from the source finally gains the momentum flux
47 pmU. This holds whether the source is moving or not. Hence, from the
momentum-conservation law, the rate of change in the momentum of the source

becomes
4 (v) = — 4z pmv. ©6)
Thus, using equations (1) and (3), we obtain the equation of motion for the source
M =F = —4zom(U—v) = — aM (U-V). )

The same rocket reaction produced by the sublimating gases of a comet nucleus causes
the non-gravitational force acting on the comet, as first pointed owt by Whipple
(1950).

Following Imai(1973) and Yih(1969), the force acting upon a source of strength
4 = m «(t) moving with velocity v« (f) at r=r . (¢) can be also calculated by integrating
the momentum flux density tensor over a small spherical surface surrounding the
source.

The equation of motion for the graviton fluid in the translating frame moving with
the source m . is given by

‘aat_’ (ov) = — gradp—gg;, (Vo) + Z4r omy (8 V6 (r—ry (), ®)

where v'=v—v.(see Appendix II equation (B7)). In the following, the apostrophe(’)
above the time in the translating frame are omitted except for the partial time
derivative.

The momentum flux density tensor is given by

Gik = ‘OU;‘,Uk, -+ p5ik. (9)

The total force acting on the source is equal to the integral of Gy taken over a
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Fig. 2. A semi-infinite cometary flow emerging from a source in a uniform flow.
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Y
m

Fig. 3. A spherical surface surrounding the relevant source.

spherical surface moving with the source m . of radius ¢, S (t)(see Figure 3).
Fi=—[] GwudS. (10)
Se

where ny is the kth component of the outward normal to a surface element dS. The
velocty in the flow for a distribution of moving sources my(f) at r=r,()( ¥ =1,..,N) is
determined from

divv =4rndm, (t) 0 ¢—1, (¥)) amd rotv =0, (11)

(see Appendix II (B9)).
Accordingly, we can introduce the velocity potential @’ defined by

v = grad @’ (12)

The velocity potential satisfies the Poisson equation

AP =X dxm, (1) 6 @d—r, (1)). (13)
The solution which tends to —vu a’i[ infinity is given by
¢ = d—v,x, (14)
where
0= IR 3
The velocity is given by
vV = ZZ@.&M —v,. (16)

v |I"—l‘,,(t)t3
The force exerted on the moving source m ~ (¢) with velocity v »(f) at r=r « (t) by the
other sources is our aim. Putting r —r « (f) = &(f), the summation is split into two
terms:
, m() @—1,{) | m(t)e@®)

= -+ . 17
V=2 T a0k A7 ERAC (17)

Taylor expansion about r=r,(f) yields
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my(8) (e(#) — 3euw(?)) + mu(t) e(f)

VEURE T RO —n0F N7EE (18)
where
U®B=U00 —v, (19)

vEuR 11'1:(“ - rv(t)la '

. _— 2
cun) = SR —IEL ¢ 1) @)

The second term in the right hand side of equation (18) becomes negligible compared to
the third term as ¢ tends to zero. Thus, the velocity field near the source m « (f) with
moving with velocity v.(f) is a combination of a uniform flow and the source flow,
my () e(t)

e(t)?

Bernoulli’s theorem in an incompressible, inviscid and irrotational flow with sources

v=Ux + (22)

m. () at r=r, (f) (¥ =1,...,N) leads to the same form, even when sources are present,
o 1,
=of(t) =05 — 500" (23)

(see Appendix II equation (B17)). From equations (9), (22) and (23), using nyx =
€/ €, we have

Gy = Gnk
= My & y o M By Ex
—p(Ui + B (U + P &

+ u lof () — p%% ~ Lot + Maliy i (g + Pty

+ (Uy + Tty &
& [

= U U+ om, (U7 e+ Uy ) &+ pm2 &
€ . .

_ 09 _ 28 ) ExEi 2 &i
+ [pf(t) aF D} pU ] oy, Uy o pm,, 965

= pom, (U7e* + Ulegey — Uy skei)/s“ + (terms with a single &; or &)

= om, U/ /e* + (terms with a single & or &,). (24)

Here, we will make use of the formula [ [ €;dS=0. From equations (10)
and (24), we find the thrust acting on the ‘source My

= —omt ff ds

i

—47r om, U/

ll

—47 om, (U — vy) (25)

i

—aM,(Ui—vu). (26)
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Thus, we arrive at equation (7).
Putting equation (20) into equation (26) and using equation (3), we find
O.’ZM,,M,, (T — 1)

F=-2 + aM,v,. 27
veu 47rp [l‘u - l‘u]3 s ( )
Putting the inverse of the mass-loss time scale
a= (4zGp)?, (28)
we obtain the Newton’s inverse-square law
GM,M,(x,—r,
F=— Z—”% + aM,yv,. (29)
VU 'ru - ru[

4 A binary problem

As a simple illustration, we consider a binary of the primary star M; with velocity
v; at r=r; and the secondary star M, with velocity v, at r=r,. Using equation (29),
we have the force exerted on M,

GM, M,
Il'l - 1'2|3
The first term is the gravitational force exerted on a source at rest by the other source.
The second term is the mass-loss force acting on a moving source even when the fluid
1s at rest.

F=- (1’1 - 1‘2) + aMlvl‘ (30)

Thus, the equation of motion for M, is

d GM\ M.
Mg = - M (€1 — 1) + aMv,. (31)
The equation of motion for M5 is
MM,
M, = H (1 — 1) + aMyvs. (32)
Equations (31) and (32) can be rewritten as
d GM.
—dv—tl = II.__‘;Z.F (r1 - rg) + av, (33)
1 2
e o _GMy () + o, (34)

dt lry — rof?

Putting r=r;—x;, v=vi—vy and M = M, + M, and subtracting equation (34) from
equation (33), we find

dv _  GM

at = s ¥ + av. (35)

In polar coordinates, this equation leads to
r—er—Gﬁ/I‘-l-af, (36)
%% (rfu) = arw, 37

where w is the angular velocity.
From equation (37), we find the time evolution of specific angular momentum
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r'w = Je*, (38)

where Jo is the initial specific angular momentum. The tangential component of the
relative velocity of My and M, rw brings about a tangential thrust. Its effects
increases the specific angular momentum exponentially in a time scale of mass loss.

The radial motion can be solved approximately. From equations (36) and (38),
we obtain

. 2 .
r = <—j}; g2t — ——G%IO e‘“‘) +ar. (39)
We look for an approximate solution satisfying the initial conditions
o . 2
r=wv, v =7 =0 and %=l°—. (40)
72 73
Such a solution is found to be
. ] 02 04 ot
Y= 7’0+;’0—3<"‘2‘t3 +“4—t4>. (41)

Accordingly, the secondary M, gradually leaves the circular orbit r=ry. As time goes
on, the solution tends to

yoce®, r =ar and wxe ™, (42)
Hence, the binary system will disintegrate gradually in a time scale of mass loss « ~'.
The time variation of the total energy of the binary system can be readly deduced

from equations (33) and (34) as

4 21 2 GMM,

dr [2 M* + 3 Mav, lrl_l‘zl]

- _C_I.M_l 1,2 GMz a2 M?. 1,2 GMI — .2

- dt [2 U1 ) S ha V) U ] + dt [202 ri—r; V2 ] (43)
= a’L1 + O.'Lz. (44)

The last terms in the parentheses are lacking in Jeans’(1928) energy equation.
Equation (43) surely shows that the total energy increases all the time due to the
mass-loss force acting on a moving source. This is also a general conclusion that
holds for any self-gravitating system because the equation of motion (35) is quite
general in nature. The two terms of equation (44) are the Lagrangians of M; and M.
it means that the principle of least action minimizes the increase in the total energy.

5 Discussions
Recent investigations (Pierce et al. 1994; Freedman et al. 1994) show that

H = 80km sec™‘Mpc™ = 2.6 107 sec™,
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H1=3910"sec=1.210%y, (49)

2
0 = —-—ng =1210% gcm™.

The total energy density of the relic radiation is ¢, =4.2 107" erg cm > (Mather et
al. 1990; Gush et al. 1991), which corresponds to mass density

o0r=4.710"* gcm™3, (46)

The solar system keeps its stability for 4.5 10° y, one third of a Hubble time H '
Hence, the disintegration time scale should be much longer than a Hubble time.
Thus, we have

a'>H =1.2100y. (47

That is, a<H=2.6107" sec™. (48)

From equations (28) and (45), we find that the density in the graviton flow should
satisfy

o _ 2 <
oc “3mz T “49)
If o = p;, we have
a=2.0 107 sec™, (50)
a”'=1.6 10%y. (51)

From equation (C5) in Appendix [, the velocity in the graviton flow u is related to
the gravitational acceleration a asu = a/ 2.
The lower limit of gravitational accelerations in the Universe aq is equal to 2 10 % cm
sec”? (Milgrom 1983 and 1995; Ishizawa 1987). A new estimate in spiral galaxies is
2.4 107° cm sec” 2 (Ishizawa 1995). If we adopt the above estimate of @ (50), this
gives the velocity in the graviton flow u
U _a
- _6?% = 4. (52)
The velocity of the graviton flow at the earth is
ue _  GMoe
¢ ac (1avu)?
Therefore, the speed of the graviton flow is greater than ¢. This is the most serious
problem in this work, which is inconsistent with the classical relativistic field theory.
However the classical field theory also has some fatal defects:
1. The classical fields do work but not tire. While our mass devotes
himself to attract other masses.
2. The light can not escape from a black hole but the gravitational field
comes oozing out of it.
The stagnation point of the earth for the sun r = r, is determined from the

= 1.0 10°. - (53)

condition that %(g = 0 (Imai 1973). This gives
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GMo Gme
= ) 54
(1AU—7'5)2 7'sz ( )
Thus, we have
~ (m.ez)'i‘
"=\ AU
=1.71034avU (55)
= 40 Re
= %7’) .

The stagnation point is at two thirds of a distance to the moon.

Appendix I

A combination of a source of strength 4 = m and a uniform flow of velocity U is
described by the stream function

¥ =4 Ur?sin®0 + m(1 — cosf) (A1)

(Imai 1973).
The surface of the cometary flow is expressed by the condition that ¥=2m, that is,
1
_ (m)\2 1
r= (%) swm (A2)
The diatance of the stagnation point from the source a and the radius of the cometary
tail b are

a=+m/U amd b= 2/m/U. (A3)
The velocity potential is given by equation (5)
o=Ux~—"" (A4)
The velocity components are
s=U+ m—‘;%sﬁ 2y =ﬂf—j—’ﬁ, (A5)
v = U1 + 2sin*(6/2) —3sin*(6/2))2. (A6)

The angle between the velocity v and the direction of the positive x-axis ¢ is given by

- .
¢ — vy _ __sin’(6/2) sinf ’ A7
an § Ux 1+ sin®(6/2) cosf (A7)
and
. tan’£ \z_ [_4sin®(0/2) 1%

= = . A8
sin & [1+tan2 5] [1+35in2(0/2)] (A8)

The x-component of the normal to the surface of the cometary flow is
fy = —sin &. (A9)

From Bernoulli’s theorem, we have
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P =pa(t) = 30(*—U? (A10)
= p.(t) —30U?(2sin?(6/2) —3sin* (6/2)). (A11)
The surface element dS is
ds = 27 #sinf ds

= 97 7sind (dr® + #2d6%)?

27 msing_ [1+3sin®(6/2) |
= . 1
Usin?(6/2) [ 4sin%(6/2) ] do (A12)
The pressure force exerted on the cometary surface by the surrounding fluid is, using
equations (A2), (A8), (A9), (Al1l) and (A12),
— [pmdS =T [ (p — 3 oU*[2sin®(6/2) — 3sin* (0/2)]}

X sin(6/2) cos (6/2)d0—purb? = HE0P= — ATz o (A13)

Thus, the total pressure force exerted on the cometary flow by the surrounding fluid
vanishes. It is found from equations (A6) and (A10) that, for 8 gZSinﬂ@ =110° ,
v=Uand p=p,, and, for 0° < 6 <2in~ ]@, they are the opposites. The
contribution of § =110° to the pressure integral cancels out that of 0° =< 4 <110°
exactly.

Appendix IT

The equation of motion of a source m, is derived from equations (1), (3) and (6)

as
&gy =By, y=1,..N, (B1)
or
M8 =My, =1, (B2)
where v is the velocity of the graviton fluid and
%ﬁ = —4nx om, = —aM,. (B3)

Under the law of particle decay (B3), the orbits of particles in a cluster are
independent of their masses. This is similar to the human law in our soceity, under
which heavy and light, rich and poor, old and young, man and woman, able and
unable equally have right and responsibility. Such a law would rule the system in
good order.

The equation of continuity and the equation of motion for the graviton fluid are
given in the presence of sources with variable strength m,(f) and velocity v,(f) at r=
(@) (v =1,.,N). To find the pressure about the source my,(f) moving with a
constant velocity v, (see Assumption (4)), we choose the translating frame fixed in the
source. Following Goldstein (1960), the velocity and acceralation in the trapslating
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frame can be related to those in the rest frame fixed to the space as

¥ = r—v,l,
=1t
V= vy, (B4)
o _0 0
ot or “Br:
0 _ 0
or or”’
and
Dv _ Dv
Dt = D (B3)

The derivative Dv/Dt denotes the rate of change of the velocity of a given fluid
particle as it moves about in space(Landau and Lifshitz 1966). Relative motion of
frames does not affect any scalar property of a point mass. The equation of
continuity does not change in the translating frame:
20+ divev’ = 3 dmpm, (05 x—r.(0)). (B6)
v
The equation of motion in the translating frame is, using eqnations (B4) and (B6),

2. (ov) = —gradp — 5%; (ov'0) 3 4mom, ()Y 3 rr,(D). (B7)

The last term presents the momentum flux of the fluid supplied to the graviton flow by
a distant source m, moving with velocity v.(f) at r=r,(f). The velocity of the supplied
fluid is taken equal to v’ = v — v, by considering equation (B1). For the relevant
source, we must use v’=v—v,=0 because the mean velocity at the isotropic source is
equal to v,.
Using equation (B6) and the formula (v.grad)v=grad(v*/2) —vxrot v, the equation
of motion (B7) can be rewritten as
%—:,— = -—% grad p—grad(3v"?). (B8)
Thus, the equation of motion of the graviton flow remains unchanged even in the
presence of sources because the final velocity of graviton fluid flowing out from a
source coincides with that of the nearby flow. We consider an incompressible,
inviscid and irrotational fluid. From equation (B6), the equation of continuity leads

to

divv = 2 dam,(£)d(x—r.(t)) and rotv =0. (B9)
The velocity potential @’ de;ined by
v’ = grad @’ (B10)
satisfies the Poisson’s equation
AP = %’475 my(£)0(r—r,(1)). (B11)

Thus, we find
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O = P—v,x, (B12)
where
—_— my (2)
o= %‘m (B13)

Putting equation (B12) into equation (B10), we have
vr — 2 mv(t) (r_rv(t)) —

| A R (B14)
Putting equation (B10) into equation (BS8), we find
grad (28 + 32 + %) =0. (B15)
Thus, we find Bernoulli’s theorem
% + Ly + % =f@). (B16)
The pressure in the graviton flow is given by
p=of ) —p% — 30" (B17)

Using equations (B4) and (B12), the pressure in the rest frame fixed to the space is
o9
p=0f) — oG — 700" T zov

= palt) = 055 — b 00", (B19)

where p 4 (¢) is the pressure at infinity where the velocity potential @ and the velocity v
vanish.

Appendix III

Bateman’s variational principle uses the pressure as the Lagrangian density
(Bateman 1929 and 1944; Seliger and Whitham 1968). This is of particular important
for potential flows.

Let us start with a combination of the Lagrangian for a system of particles and the
pressure integral.

I=J 13, Mr@®?+ %“— @l 6 (x—r,(t)) dVdt+ [ [pdVadt. (Ch
where the velocity potential @ given by equation (B13) is split to the xth term and
the other terms as

-5 my — My )
veu Ir'—ru(t)! 11'_1'”(1‘){

¢ =

@ (Ir—nl) + @, (r—r.. (C2)
The pressure is given by equation (B18)
0P
p=pa) 057 —z0(V O™ (C3)

Putting equation (C3) into equation (C1), we have
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I= [ [Z0M, 7,2 +i4"'lq>] S@—r)dVdr
§/3

+ [ J [pa —p%—%p(\?’@)z] dvdt. (C4)
If dM/dt= —aM and if the gravitational potential is defined by
¢ =ad, , (C5)

this action integral coincides with Landau and Lifshits’ (1979) total action integral for
the field plus masses except for the p, term and & ®/0¢ term. The action with the
p a term of the cosmological constant is adopted in the study of the gravitational
channel by Ishizawa(1987).

We consider the variations ¢ r,{t) and 6§ ®. The boundary conditions are

Q) dr(t==%00) = 0.

2) 6 P(t==F00) = 0.

3) (V@)n =0 or d &= 0 on the boundary surface.
(4) The velocity potential is finite on the boundary.

(C6)

The variation of the action integral (C4) with respect to r,(z) gives

SI= f [ZMx, 0%, + —‘—%‘% {a—%— (@, (r—n)) r—r,))

+ 5% (@yr—r.) 6—r,))} dr.] dVds )
The @, term becomes grad®; by use of the formula [ f(x) & ’(x)dx=— [ f’(x) & (x)dx
if fis finite at the boundary.
The @, term vanishes because aa [ | r—r, | )& (r—r,)] is a odd function of
x—x, etc. Thus, we have
81= [ Z,M,v,0 (r—r,) or)i=2.dV
dM,
-/ Iz, [dt M,r,) — a =% grad @] § (r—r,) Jr,dVdt. (C8)
Hence, we have
Myr) = grad g (C9)
dt W =gp grad O

This is the same as equation (B1). Using eqnations (1) and (CS), this leads to the
equation of motion for the source 7,

d;t = — grad §; + av,, (C10).

where
¢1 = a@l. (Cll)
The variation with respect to @ is

0I= — [ p00lizdV — [ [ o (V ®),00dSdt
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+/Jlpdo+2 dé‘f” 8 (c—r,)] 6 ddVdt. (C12)
u
Thus, we have
0AD = -3 dgf” J (r—ry). (C13)
u
Using eqnations (1), (28) and (C5), we obtain the Poisson’s equation.
Ap = 24nGM, 0 — 1,). (C14)
u°
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