Strang-Fix Theory for Approximation Order in Weighted L^p -spaces

大阪大学・理学研究科 冨田 直人 (Naohito Tomita)
Department of Mathematics, Osaka University

We consider the Strang-Fix theory for approximation order in the weighted L^p -spaces. Let φ be an element of $C_c(\mathbb{R}^n)$. For a sequence c on \mathbb{Z}^n , the semi-discrete convolution product $\varphi *' c$ is the function defined by

$$\varphi *' c = \sum_{\nu \in \mathbb{Z}^n} \varphi(\cdot - \nu) c(\nu).$$

The collection $\Phi = \{\varphi_1, \dots, \varphi_N\}$ of $C_c(\mathbb{R}^n)$ is said to satisfy the Strang-Fix condition of order k if there exist finitely supported sequences b_j $(j = 1, \dots, N)$ such that the function $\varphi = \sum_{j=1}^N \varphi_j *' b_j$ satisfies

$$\hat{\varphi}(0) \neq 0$$

and

$$(\partial^{\alpha}\hat{\varphi})(2\pi\nu) = 0 \qquad (|\alpha| < k, \quad \nu \in \mathbb{Z}^n \setminus \{0\}),$$

where $\hat{\varphi}$ denotes the Fourier transform of φ . For a positive integer k, $L_k^p(\mathbb{R}^n)$ denotes the Sobolev space. For $f \in L_k^p(\mathbb{R}^n)$, we define semi-norms by

$$|f|_{k,p} = \sum_{|\alpha|=k} ||\partial^{\alpha} f||_{L^{p}(\mathbb{R}^{n})}.$$

For h > 0, σ_h is the scaling operator defined by

$$\sigma_h f(x) = f(hx) \qquad (x \in \mathbb{R}^n).$$

We say that $\Phi = \{\varphi_1, \dots, \varphi_N\}$ provides local L^p -approximation of order k if there exist constants C and r such that for each $f \in L_k^p(\mathbb{R}^n)$ there exist sequences c_j^h $(h > 0, j = 1, \dots, N)$ so that

(i)
$$||f - \sigma_{1/h}(\sum_{j=1}^{N} \varphi_j *' c_j^h)||_{L^p(\mathbb{R}^n)} \le Ch^k |f|_{k,p}$$
,

(ii)
$$c_i^h(\nu) = 0 \ (j = 1, \dots N)$$
 whenever $\operatorname{dist}(h\nu, \text{ supp } f) > r$.

Boor and Jia [1] proved that Φ satisfies the Strang-Fix condition of order k if and only if Φ provides local L^p -approximation of order k.

We give the definition of A_p in \mathbb{R}^n . A weight $w \geq 0$ is said to belong to A_p for 1 if

$$A_p(w) = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(x) dx \right) \left(\frac{1}{|Q|} \int_{Q} w(x)^{1-p'} dx \right)^{p-1} < \infty,$$

where Q is a cube in \mathbb{R}^n and p' is a conjugate exponent of p. $A_p(w)$ is called the A_p -constant of w. The class A_1 is defined by

$$A_1(w) = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(x) dx \right) \|w^{-1}\|_{L^{\infty}(Q, dx)} < \infty,$$

where $||w^{-1}||_{L^{\infty}(Q, dx)} = \operatorname{ess\ sup}_{x \in Q} w(x)^{-1}$. The class A_{∞} is the union of the classes of A_p , $1 \leq p < \infty$. These classes were introduced by Muckenhoupt in [3]. Let $1 \leq p \leq \infty$ and $w \in A_p$. Then the weighted L^p -space $L^p(w)$ consists of all measurable functions on \mathbb{R}^n such that

$$||f||_{L^p(w)} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\right)^{1/p} < \infty,$$

with the usual modifications when $p=\infty$. We define the weighted Sobolev spaces $L_k^p(w)$, where $1 \leq p \leq \infty$, w is an A_p -weight and k is a positive integer. A function f belongs to $L_k^p(w)$ if $f \in L^p(w)$ and the partial derivatives $\partial^{\alpha} f$, taken in the sense of distributions, belong to $L^p(w)$, whenever $0 \leq |\alpha| \leq k$. The norm in $L_k^p(w)$ is given by

$$||f|| = \sum_{|\alpha| \le k} ||\partial^{\alpha} f||_{L^{p}(w)}.$$

In the weighted case, we use the following notation

$$|f|_{k,p,w} = \sum_{|\alpha|=k} ||\partial^{\alpha} f||_{L^{p}(w)}.$$

and say that $\Phi = \{\varphi_1, \dots, \varphi_N\}$ provides local $L^p(w)$ -approximation of order k if there exist constants C and r such that for each $f \in L^p_k(w)$ there exist sequences c^h_j $(h > 0, j = 1, \dots, N)$ so that (ii) and the following condition (iii) are satisfied

(iii)
$$||f - \sigma_{1/h}(\sum_{j=1}^{N} \varphi_j *' c_j^h)||_{L^p(w)} \le Ch^k |f|_{k,p,w}.$$

Based on [2], using boundedness of the Hardy-Littlewood maximal operator on $L^p(w)$, we prove the following theorem.

Theorem. Let $\Phi = \{\varphi_1, \dots, \varphi_N\}$ be a finite collection of $C_c(\mathbb{R}^n)$. Then the following statements are equivalent.

- (i)' Φ satisfies the Strang-Fix condition of order k.
- (ii)' For all $p \in [1, \infty]$ and $w \in A_p$, Φ provides local $L^p(w)$ -approximation of order k.
- (iii)' For some $p \in [1, \infty]$ and $w \in A_p$, Φ provides local $L^p(w)$ -approximation of order k.

Lastly we introduce the main lemma to prove the above theorem.

Lemma. Let $1 \leq p < \infty$ and $w \in A_p$. Suppose that φ is a function on \mathbb{R}^n which is non-negative, radial, decreasing and integrable. Then there exists a constant C such that

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x + \alpha y)| \varphi(y) dy \right)^p w(x) dx \le C \int_{\mathbb{R}^n} |f(x)|^p w(x) dx$$

for all $f \in L^p(w)$ and $\alpha \in \mathbb{R}$.

N. Tomita proved the above lemma when 1 , using Calderón-Zygmund Operator. Then Professer E. Nakai provided the simple proof when <math>1 , using Hardy-Littlewood maximal operator. Then Professer K. Yabuta proved the case <math>p = 1.

References

- [1] C. De Boor and R. Q. Jia, Controlled Approximation and a characterization of the local approximation order, Proc. Amer. Math. Soc., 95, (1985), 547-553.
- [2] R. Q. Jia and J. Lei, Approximation by Multiinteger Translates of Functions Having Global Support, J. Approx. Theory, 72, (1993), 2-23.
- [3] B. Muckenhoupt, Weighted Norm Inequalities for the Hardy Maximal Function, Tran. Amer. Math. Soc., 165, (1972), 207-226.