<table>
<thead>
<tr>
<th>Title</th>
<th>Parabolic isometries of CAT(0) spaces and CAT(0) dimensions (Perspectives of Hyperbolic Spaces II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujiwara, Koji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004年7月号1387号: 1-3</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25777</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Parabolic isometries of CAT(0) spaces
and CAT(0) dimensions

東北大学・理・数学. 藤原 耕二 (Koji Fujiwara)
Mathematical Institute
Tohoku University
fujiwara@math.tohoku.ac.jp

I gave a talk on the paper “Parabolic isometries of CAT(0) spaces and CAT(0) dimensions”, [FSY].

Let (X, d) be a geodesic space. Let $\Delta(a, b, c) \subset X$ be a geodesic triangle with three vertices, a, b, c, and three geodesics, $[a, b], [b, c], [c, a]$, joining them. A geodesic triangle, $\overline{\Delta}(\overline{a}, \overline{b}, \overline{c})$, in the Euclidean plane is called a comparison triangle if $d(a, b) = d(\overline{a}, \overline{b}), d(b, c) = d(\overline{b}, \overline{c}), d(c, a) = d(\overline{c}, \overline{a})$. Comparison triangles always exist. For a point, x, on one of the sides of Δ, say, $[a, b]$, a point $\bar{x} \in [\overline{a}, \overline{b}]$ is called the comparison point if $d(a, x) = d(\overline{a}, \bar{x})$. X is called a CAT(0) space if for any two points, x, y, on the sides of Δ, we have the following inequality for the comparison points \bar{x}, \bar{y} in $\overline{\Delta}$:

$$d(\bar{x}, \bar{y}) \leq d(x, y).$$

Let X be a metric space. The space is said proper if for any point $x \in X$ and $r > 0$, the closed metric ball centered at x, of radius r is compact. Suppose a group G is acting on X by isometries. The action is said proper if for any point $x \in X$ there exists a number $r > 0$ such that there are only a finite number of elements $g \in G$ with $d(x, gx) \leq r$.

A very informative reference on CAT(0) spaces is [BH]. Standard examples of CAT(0) spaces are simply-connected, complete, Riemannian manifolds of sectional curvature at most 0, and trees. Metric product of two CAT(0) spaces is CAT(0). It is an easy but important fact that any two points in a CAT(0) space is uniquely joined by a geodesic. There is
a notion of the ideal boundary, $X(\infty)$, which gives a compactification of a proper CAT(0) space, X. Any point $x \in X$ and any point $p \in X(\infty)$ is uniquely joined by a geodesic in a proper CAT(0) space.

Each isometry, g, of a complete CAT(0) space X is classified as elliptic, hyperbolic, or parabolic. It is elliptic if and only if g fixes a point in X; hyperbolic if and only if it is not elliptic and there exists a bi-infinite geodesic in X which is g-invariant; or else parabolic. Elliptic and hyperbolic ones are called semi-simple.

In this note, the dimension of a topological space means its covering dimension, which is sometimes called the topological dimension as well.

We state a key proposition from [FSY].

Proposition 1. Let n be a positive integer. Suppose \mathbb{Z}^n acts on a proper CAT(0) space, X, of dimension n by isometries, properly. Then each non-trivial element of \mathbb{Z}^n acts as a hyperbolic isometry. And there exists a Euclidean space of dimension n, \mathbb{E}^n, in X which is convex and invariant by the group action.

The proof is given in [FSY]. We argue by contradiction. If there is a parabolic isometry, then there is a point, p, in the ideal boundary of X which is fixed by the group action. Moreover, each horosphere, H, at p is invariant too. The dimension of H is at most $n - 1$. From this we can conclude that the cohomological dimension of the group is at most $n - 1$ as well, which is impossible because the cohomological dimension of \mathbb{Z}^n is n. Once we know the action is by semi-simple isometries, we can apply the flat torus theorem (cf. [BH]) and obtain an invariant subspace which is convex and isometric to the Euclidean space of dimension n. The nearest point projection from X to the Euclidean space gives a deformation retract, which is equivariant by the group action.

Note that \mathbb{Z}^2 acts on the hyperbolic space of dimension 3, \mathbb{H}^3, by isometries, properly such that any non-trivial element acts as a parabolic isometry. It fixes a point in the ideal boundary, and leaves each horosphere at the point invariant.

For integers n, m consider the group given by the following presentation.

$$BS(n, m) = < a, b | a^b a^{-1} = b^m > .$$

Those groups are called Baumslag-Solitar groups.
We are interested in $BS(1, m)$, which is solvable. There are several facts of interest from our viewpoint about this group (cf. [FSY]). Let $m \geq 2$.

- There is a finite simplicial complex of dimension 2 such that its fundamental group is $BS(1, m)$ and its universal cover is contractible. Therefore the cohomological dimension of the group is 2.

- $BS(1, m)$ acts on the hyperbolic plane, \mathbb{H}^2, by isometries, faithfully. But the action can not be proper.

- There exists a CAT(0) space of dimension 3 on which $BS(1, m)$ acts by isometries, properly.

It would be interesting to answer the following question.

Question. Let $m \geq 2$. Suppose $BS(1, m)$ acts on some CAT(0) space, X, by isometries, properly. Then $\dim X \geq 3$?

文献
