TWISTED FIRST HOMOLOGY GROUP OF THE AUTOMORPHISM GROUP OF A FREE GROUP

東京大学大学院数理科学研究科 佐藤隆夫 (Такао Satoh) ¹ Graduate school of Mathematical Sciences, University of Tokyo

Abstract: The automorphism group $\operatorname{Aut} F_n$ and the outer automorphism group $\operatorname{Out} F_n$ of a free group F_n of rank n act on the abelianized group H of F_n and the dual group H^* of H. The twisted first homology groups of $\operatorname{Aut} F_n$ and $\operatorname{Out} F_n$ with coefficients in H and H^* are calculated.

Keywords: automorphism group of a free group, mapping class group, Magnus representation

1. Introduction

Let F_n be a free group of rank n and $\operatorname{Aut} F_n$ the automorphism group of F_n . There are remarkable results of the homology groups of $\operatorname{Aut} F_n$ with trivial coefficients. For example, Gersten [2] showed $H_2(\operatorname{Aut} F_n, \mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}$ for $n \geq 5$ and Hatcher and Vogtmann [3] showed $H_i(\operatorname{Aut} F_n, \mathbf{Q}) = 0$ for $n \geq 1$ and $1 \leq i \leq 6$, except for $H_4(\operatorname{Aut} F_4, \mathbf{Q}) = \mathbf{Q}$. However, there are very few computations of twisted homology groups of $\operatorname{Aut} F_n$.

Fix a free basis Y of F_n . Since the abelianized group H of F_n is isomorphic to \mathbf{Z}^n , abelianization induces a homomorphism φ : Aut $F_n \to \operatorname{Aut} H = GL(n, \mathbf{Z})$. The map φ induces the action of Aut F_n on H, and hence the dual group $H^* = \operatorname{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$ of H. We denote by Out F_n the outer automorphism group of F_n . Since φ induces a natural map $\bar{\varphi}$: Out $F_n \to GL(n, \mathbf{Z})$, Out F_n also acts on H and H^* . In this paper, we calculate the twisted first homology groups of Aut F_n and Out F_n with coefficients in H and H^* . Let det: $GL(n, \mathbf{Z}) \longrightarrow \{\pm 1\}$ be the determinant map. The groups $\operatorname{Aut}^+F_n = \ker(\det \circ \varphi)$ and $\operatorname{Out}^+F_n = \ker(\det \circ \bar{\varphi})$ are called the special automorphism group and the special outer automorphism group of F_n respectively. The following theorem is our main result.

¹E-mail addres: takao@ms.u-tokyo.ac.jp

Theorem 1. For $n \geq 2$, we have:

(1) If
$$\Gamma_n = \operatorname{Aut} F_n$$
 or $\operatorname{Aut}^+ F_n$,

$$H_1(\Gamma_n, H) = egin{cases} 0 & ext{if } n \geq 4, \ \mathbf{Z}/2\mathbf{Z} & ext{if } n = 3, \ \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & ext{if } n = 2 ext{ and } \Gamma_2 = ext{Aut } F_2, \ \mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & ext{if } n = 2 ext{ and } \Gamma_2 = ext{Aut}^+ F_2, \ \mathbf{H}_1(\Gamma_n, H^*) = egin{cases} \mathbf{Z} & ext{if } n \geq 4, \ \mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & ext{if } n = 2, 3. \end{cases}$$

(2) If
$$\Omega_n = \operatorname{Out} F_n$$
 or $\operatorname{Out}^+ F_n$,

$$H_1(\Omega_n, H) = egin{cases} 0 & ext{if } n \geq 4, \ \mathbf{Z}/2\mathbf{Z} & ext{if } n = 2, 3, \end{cases}$$
 $H_1(\Omega_n, H^*) = egin{cases} \mathbf{Z}/(n-1)\mathbf{Z} & ext{if } n \geq 4, \ \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & ext{if } n = 3, \ \mathbf{Z}/2\mathbf{Z} & ext{if } n = 2. \end{cases}$

In Section 2, we introduce Gersten's finite presentation for Aut^+F_n . We simplify his presentation using Titze transformations. We use it to calculate the first cohomology group of Aut^+F_n .

In Section 5, we give some consequences of our results. We show that the generator of $H^1(\operatorname{Aut}^+F_n, H) = \mathbb{Z}$ is induced by the Magnus representation of Aut^+F_n . This shows that the natural map $M_{g,1} \hookrightarrow \operatorname{Aut}^+F_{2g}$ induces an isomorphism $H^1(\operatorname{Aut}^+F_{2g}, H) \to H^1(M_{g,1}, H)$ where $M_{g,1}$ is the mapping class group of a surface of genus g with one boundary component.

2. A PRESENTATION FOR THE SPECIAL AUTOMORPHISM GROUP OF A FREE GROUP

In this section, we introduce Gersten's finite presentation for Aut^+F_n . Let $Y=\{y_1,\ldots,y_n\}$ be a free basis of F_n and let $Y^{\pm 1}=\{y\mid y\text{ or }y^{-1}\in Y\}$. For any $a,\ b\in Y^{\pm 1}$ with $a\neq b^{\pm 1}$, difine the Nielsen automorphism E_{ab} by the rule $a\mapsto ab,\ c\mapsto c$ if $c\in Y^{\pm 1}\setminus\{a^{\pm 1}\}$ and let $w_{ab}=E_{ba}E_{a^{-1}b}E_{b^{-1}a^{-1}}$. The map w_{ab} induces a permutation σ of $Y^{\pm 1}$ $a\mapsto b^{-1},\ b\mapsto a$, called the monomial map determined by w_{ab} . Gersten [2] showed that Aut^+F_n has a following presentation.

Theorem 2.1 (Gersten [2]). For $n \geq 3$, a presentation for Aut^+F_n is given by the generators E_{ab} and relations:

(R1):
$$E_{ab}^{-1} = E_{ab^{-1}}$$
,

(R2):
$$[E_{ab}, E_{cd}] = 1$$
, $a \neq c, d^{\pm 1}$, $b \neq c^{\pm 1}$, (R3): $[E_{ab}, E_{bc}] = E_{ac}$, $a \neq c^{\pm 1}$, (R4): $w_{ab} = w_{a^{-1}b^{-1}}$ (R5): $w_{ab}^{4} = 1$.

Here [,] denotes the commutator bracket: $[x, y] = xyx^{-1}y^{-1}$.

Remark 2.1. Gersten [2] also showed that if n = 2, the group Aut^+F_2 has a presentation which is given by the generators E_{ab} subject to the relations (R1) – (R3), (R5) and

$$(R4)': w_{ab}^{-1} E_{cd} w_{ab} = E_{\sigma(c)\sigma(d)},$$

where σ is the monomial map determined by w_{ab} .

Using Titze transformations, we have the following presentaton for Aut^+F_n for $n\geq 3$.

Theorem 2.2. For $n \geq 3$, a presentation for Aut^+F_n is given by the generators $E_{y_iy_j}$ and $E_{y_i^{-1}y_j}$ subject to the relations:

```
 \begin{aligned} &(\mathbf{R2-1})\colon [E_{y_iy_j},E_{y_i^{-1}y_j}] = 1,\\ &(\mathbf{R2-2})\colon [E_{y_iy_j},E_{y_ky_j}] = 1,\\ &(\mathbf{R2-3})\colon [E_{y_i^{-1}y_j},E_{y_ky_j}] = 1,\\ &(\mathbf{R2-4})\colon [E_{y_i^{-1}y_j},E_{y_k^{-1}y_j}] = 1,\\ &(\mathbf{R2-5})\colon [E_{y_iy_j},E_{y_i^{-1}y_k}] = 1,\\ &(\mathbf{R2-6})\colon [E_{y_iy_j},E_{y_ky_l}] = 1,\\ &(\mathbf{R2-6})\colon [E_{y_iy_j},E_{y_ky_l}] = 1,\\ &(\mathbf{R2-7})\colon [E_{y_i^{-1}y_j},E_{y_ky_l}] = 1,\\ &(\mathbf{R2-8})\colon [E_{y_i^{-1}y_j},E_{y_k^{-1}y_l}] = 1,\\ &(\mathbf{R3-1})\colon [E_{y_iy_k},E_{y_ky_j}] = E_{y_iy_j},\\ &(\mathbf{R3-2})\colon [E_{y_iy_k^{-1}},E_{y_k^{-1}y_j}] = E_{y_iy_j},\\ &(\mathbf{R3-3})\colon [E_{y_i^{-1}y_k},E_{y_ky_j}] = E_{y_i^{-1}y_j},\\ &(\mathbf{R3-4})\colon [E_{y_i^{-1}y_k^{-1}},E_{y_k^{-1}y_j}] = E_{y_i^{-1}y_j},\\ &(\mathbf{R4-1})\colon w_{y_iy_j} = w_{y_i^{-1}y_j^{-1}},\\ &(\mathbf{R5-1})\colon w_{y_iy_j}^{4} = 1, \end{aligned}
```

where $E_{y_iy_i^{-1}}$ is understood to be $E_{y_iy_i^{-1}}$.

3. The automorphism group of a free group

Until Section 4, we assume $n \geq 3$. For any integer $q \geq 2$, let $A_q = H \otimes_{\mathbf{Z}}(\mathbf{Z}/q\mathbf{Z})$ and $A_q^* = H^* \otimes_{\mathbf{Z}}(\mathbf{Z}/q\mathbf{Z})$. Let M = H, H^* , A_q or A_q^* . Using the presentation for $\operatorname{Aut}^+ F_n$ obtained by Theorem 2.2, we can calculate the twisted first cohomology groups of $\operatorname{Aut}^+ F_n$ as follows:

Proposition 3.1. Let $q \ge 2$ and $e \ge 1$ be positive integers. For $n \ge 3$, we have

$$H^1(\operatorname{Aut}^+F_n, H) = \mathbf{Z},$$
 if $(q, 2) = 1,$ $H^1(\operatorname{Aut}^+F_n, A_q) = \begin{cases} \mathbf{Z}/q\mathbf{Z} & \text{if } (q, 2) = 1, \\ \mathbf{Z}/q\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & \text{if } n = 3 \text{ and } q = 2^e. \end{cases}$

Proposition 3.2. Let $q \ge 2$ and $e \ge 1$ be positive integers. For $n \ge 3$, we have

$$H^{1}(\operatorname{Aut}^{+}F_{n}, H^{*}) = 0,$$
 $H^{1}(\operatorname{Aut}^{+}F_{n}, A_{q}^{*}) = \begin{cases} 0 & \text{if } (q, 2) = 1, \\ \mathbf{Z}/2\mathbf{Z} & \text{if } n = 3 \text{ and } q = 2^{e}. \end{cases}$

Observing the spectral sequence of the group extension

$$1 \to \operatorname{Aut}^+ F_n \to \operatorname{Aut} F_n \to \{\pm 1\} \to 1$$
,

we see that $H^1(\operatorname{Aut} F_n, M) \simeq H^1(\operatorname{Aut}^+ F_n, M)$ For $M = H, H^*, A_q$ or A_q^* . Then, using the universal coefficient theorem, we obtain the twisted first homology groups of $\operatorname{Aut} F_n$.

4. The outer automorphism group of a free group

Let $Inn F_n$ be the group of inner automorphisms of F_n . Observing the spectral sequence of the group extension

$$1 \to \operatorname{Inn} F_n \to \operatorname{Aut}^+ F_n \to \operatorname{Out}^+ F_n \to 1$$
,

we calculate the twisted first cohomology groups of Out^+F_n as follows:

Proposition 4.1. Let $q \geq 2$ and $e \geq 1$ be positive integers. For $n \geq 3$, we have

$$H^{1}(\operatorname{Out}^{+}F_{n}, H) = 0, \ H^{1}(\operatorname{Out}^{+}F_{n}, H^{*}) = 0.$$

Proposition 4.2. Let $q \ge 2$ and $e \ge 1$ be positive integers. For $n \ge 3$, we have

(1) If
$$n = 3$$
,

$$H^1(\mathrm{Out}^+F_3,A_q) = egin{cases} 0 & ext{if } (q,2) = 1, \ \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} & ext{if } q = 2^e, \end{cases}$$
 $H^1(\mathrm{Out}^+F_3,A_q^*) = egin{cases} 0 & ext{if } (q,2) = 1, \ \mathbf{Z}/2\mathbf{Z} & ext{if } q = 2^e. \end{cases}$

(2) If
$$n \ge 4$$
,

$$H^1(\mathrm{Out}^+F_n,A_q)=egin{cases} 0 & ext{if } (q,n-1)=1,\ \mathbf{Z}/q\mathbf{Z} & ext{if } q\mid (n-1),\ \mathbf{Z}/(n-1)\mathbf{Z} & ext{if } (n-1)\mid q, \end{cases}$$
 $H^1(\mathrm{Out}^+F_n,A_q^*)=0.$

Then, using the universal coefficient theorem, we obtain the twisted first homology groups of Out^+F_n . Furthermore, observing the spectral sequence of the group extension

$$1 \to \operatorname{Out}^+ F_n \to \operatorname{Out} F_n \to \{\pm 1\} \to 1,$$

we see that $H^1(\text{Out }F_n, M) \simeq H^1(\text{Out}^+F_n, M)$ For $M = H, H^*, A_q$ or A_q^* . Then, using the universal coefficient theorem, we obtain the twisted first homology groups of $\text{Out }F_n$.

5. Some consequences

we show that the generator of $H^1(\operatorname{Aut}^+F_n, H) = \mathbf{Z}$ is induced by the Magnus representation of Aut^+F_n . For any generator y_j $(1 \leq j \leq n)$ of F_n , let

$$\frac{\partial}{\partial y_j}: \mathbf{Z}[F_n] \longrightarrow \mathbf{Z}[F_n]$$

be the Fox free derivatives. (See [1].) Let $\bar{}: \mathbf{Z}[F_n] \to \mathbf{Z}[F_n]$ be the antiautomorphism induced from the map $F_n \ni y \mapsto y^{-1} \in F_n$. Then the Magnus representation $r: \operatorname{Aut}^+ F_n \longrightarrow GL(n, \mathbf{Z}[F_n])$ of $\operatorname{Aut}^+ F_n$ is defined to be

$$r(\sigma) = \left(\frac{\overline{\partial \sigma(y_j)}}{\partial y_i}\right)_{(i,j)}$$
.

Let $\sigma_* : \mathbf{Z}[F_n] \to \mathbf{Z}[F_n]$ be the automorphism of $\mathbf{Z}[F_n]$ induced from σ . The map r satisfies

(1)
$$r(\sigma\tau) = r(\sigma) \cdot r(\tau)^{\sigma}.$$

Here $r(\tau)^{\sigma}$ denotes the matrix obtained from $r(\tau)$ by applying σ_* on each entry. (See [5].) Let $a': GL(n, \mathbf{Z}[F_n]) \to GL(n, \mathbf{Z}[H])$ be the homomorphism induced from the abelianizer $a: F_n \to H$ and det: $GL(n, \mathbf{Z}[H]) \to \mathbf{Z}[H]$ the determinant homomorphism. Then we put

$$f_M = \det \circ a' \circ r : \operatorname{Aut}^+ F_n \longrightarrow \mathbf{Z}[H].$$

Observing our results obtained in Section 3, we have

Lemma 5.1. The map f_M is a crossed homomorphism from Aut^+F_n to H and generates $H^1(\operatorname{Aut}^+F_n, H)$.

Remark 5.1. We should remark that the same argument does not hold in the case $H^1(\operatorname{Aut} F_n, H)$. In this case, the image of the crossed homomorphism $f_M : \operatorname{Aut} F_n \to \mathbf{Z}[H]$ is not included in H.

Morita [4] calculated $H^1(M_{g,1}, H_1(\Sigma_{g,1}, \mathbf{Z})) = \mathbf{Z}$ and show that the generator of $H^1(M_{g,1}, H_1(\Sigma_{g,1}, \mathbf{Z}))$ is also given by the Magnus representation of $M_{g,1}$. (See [5].) Hence we have

Corollary 5.1. The natural map $M_{g,1} \hookrightarrow \operatorname{Aut}^+F_{2g}$ induces an isomorphism

res:
$$H^1(\operatorname{Aut}^+F_{2q}, H) \to H^1(M_{q,1}, H_1(\Sigma_{q,1}, \mathbf{Z})).$$

6. ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to Professors Nariya Kawazumi and Shigeyuki Morita for several discussions and warm encouragements.

REFERENCES

- [1] J.S. Birman; Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82 (1974).
- [2] S.M. Gersten; A presentation for the special automorphism group of a free group, J. Pure and Applied Algebra 33 (1984), 269-279.
- [3] A. Hatcher and K. Vogtmann; Rational homology of $Aut(F_n)$, Math. Res. Lett. 5 (1998), 759-780.
- [4] S. Morita; Families of Jacobian manifolds and characteristic classes of surface bundles I, Ann. Inst. Fourier 39 (1989), 777-810.
- [5] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. Journal 70 (1993), 699-726.
- [6] T. Satoh; Twisted first homology group of the automorphism group of a free group, master's thesis, University of Tokyo, (2004).

Takao Satoh
Graduate School of
Mathematical Sciences,
The University of Tokyo,
3-8-1 Komaba, Meguro-ku,
Tokyo, 153-8914, Japan
E-email: takao@ms.u-tokyo.ac.jp