The equivariant determinant of elliptic operators and the group action (Perspectives of Hyperbolic Spaces II)

Author(s)
Tsuboi, Kenji

Citation
數理解析研究所講究錄 《数理科学講究録》

Issue Date
2004-07

URL
http://hdl.handle.net/2433/25796

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
The equivariant determinant of elliptic operators and the group action.

(Kenji Tsuboi, Tokyo University of Marine Science and Technology)

1. Equivariant determinant of elliptic operators

Let $M = M^{2m}$ be a $2m$-dimensional closed connected oriented Riemannian manifold and G a finite group acting on M. The G-action is assumed to be orientation-preserving, isometric and effective. Let $D : \Gamma(E) \to \Gamma(F)$ be a G-equivariant elliptic operator where E, F are complex G-vector bundles. Then $\ker D$ and $\text{coker} D$ are finite dimensional G-modules.

Equivariant determinant of D is defined by

$$G \ni g \mapsto \det(D, g) = \frac{\det(g|\ker D)}{\det(g|\text{coker} D)} \in S^1 \subset \mathbb{C}^*$$

and $\det_D := \det(D, \cdot) : G \to S^1$ is a group homomorphism.

Then an additive group homomorphism $I_D : G \to \mathbb{R}/\mathbb{Z}$ is defined by

$$I_D(g) := \frac{1}{2\pi \sqrt{-1}} \log \det(D, g) \pmod{\mathbb{Z}}.$$

This additive group homomorphism has the following properties:

$$I_D(gh) = I_D(hg) = I_D(g) + I_D(h), \quad I_D([G, G]) = 0, \quad I_D(1) = 0.$$
Next proposition is proved by using the linear algebra (see [2]).

Proposition If $g^p = 1$ ($p \geq 2$), we have

$$I_D(g) \equiv \frac{p-1}{2p} \text{Ind}(D) - \frac{1}{p} \sum_{k=1}^{p-1} \frac{1}{1 - \xi_p^{-k}} \text{Ind}(D, g^k) \quad (\text{mod } \mathbb{Z})$$

where $\xi_p = e^{2\pi \sqrt{-1}/p}$ is the primitive p-th root of unity,

$$\text{Ind}(D, g^k) = \text{Tr}(g^k \mid \ker D) - \text{Tr}(g^k \mid \cok D) \in \mathbb{C}$$

is the equivariant index of D evaluated at g^k and

$$\text{Ind}(D) = \text{Ind}(D, 1) = \dim \ker D - \dim \cok D \in \mathbb{Z}$$

is the numerical index of D.

2. **Cyclic action on Riemann surfaces and its rotation angles**

 Let Σ^σ be the compact Riemann surface of genus σ ($\sigma \geq 2$). Assume that a finite group G acts on Σ^σ as a biholomorphic automorphism with respect to some complex structure of Σ^σ.

 Let $g \in G$ be any element of order p and set $\mathbb{Z}_p = \langle g \rangle$. Then $\pi : \Sigma^\sigma \rightarrow \Sigma^\sigma / \mathbb{Z}_p$ is a branched covering with b branch points $y_1, \cdots, y_b \in \Sigma^\sigma / \mathbb{Z}_p$ of order (n_1, \cdots, n_b), where $\pi^{-1}(y_i) = \{q_i, g \cdot q_i, \cdots, g^{r_i-1} \cdot q_i\}$ consists of $r_i := p/n_i$ points.

 For $1 \leq i \leq b$, assume that $g^{r_i} \mid T_{\pi^{-1}(y_i)}\Sigma^\sigma = \xi^{t_i}_{n_i} = \xi^r_{p}$ where $1 \leq t_i \leq n_i - 1$ and t_i is prime to n_i.

 Problem 1 Can we determine the rotation angles $r_1 t_1, \cdots, r_b t_b$ by using the equivariant determinant?

 Let D_ℓ be the $\otimes^\ell T\Sigma^\sigma$-valued Dirac operator on Σ^σ defined by the complex structure of Σ^σ. Then using the Atiyah-Singer index formula, we can show the next formula (see [2]).

 Formula Set

 $$\Phi_i := zt_i(n_i - 1)(7n_i - 11) + 6 \sum_{j=\left\lfloor \frac{t_i + 1}{n_i} \right\rfloor + 1}^{\left\lfloor \frac{t_i + n_i + 1}{zt_i} \right\rfloor} f_{n_i} \left(\left\lfloor \frac{tn_i - 1}{zt_i} \right\rfloor - \ell - 1 \right)$$
where \(f_{n_{i}}(x) = x^{2} - (n_{i} - 2)x - (n_{i} - 1)^{2} \) and \([\]\) is the Gauss's symbol. Then for any integers \(\ell, z \), \(12p \, I_{D_{\ell}}(g^{z}) \) is an integer and we have

\[
12p \, I_{D_{\ell}}(g^{z}) \equiv 6(p - 1)(1 - \sigma)(2\ell + 1) + \sum_{i=1}^{b} r_{i} \Phi_{i} \pmod{12p}.
\]

Remark Assume that \(\mu \nu \) is prime to \(p \). Then since \(p \, I_{D_{\ell}}(g) = 0 \),

\[
\mu \, I_{D_{\ell}}(g^{\nu}) = \mu \nu \, I_{D_{\ell}}(g) = 0 \iff I_{D_{\ell}}(g) = 0.
\]

Example 1 (Dihedral group) Assume that \(p \) is odd. Let

\[
G = D(p) = \langle g, h \mid g^{p} = h^{2} = 1, g^{-1}h^{-1}gh = g^{-2} \rangle
\]

be the dihedral group. Then since \(g^{-2} \in [G, G] \), it follows that

\[
I_{D_{\ell}}(g^{-2}) = -2I_{D_{\ell}}(g) = 0 \quad (\forall \ell \in \mathbb{N}) \iff I_{D_{\ell}}(g) = 0 \quad (\forall \ell \in \mathbb{N}).
\]

Example 2 (Symmetric group) Assume that \(p \) is odd. Let \(\tau_{1} = (1, 2), \tau_{2} = (1, 3), \ldots, \tau_{p-1} = (1, p) \) be the transpositions of \(p \) letters and \(S(p) \) the symmetric group of the \(p \) letters. Let \(g \in S(p) \) be an element of order \(p \) defined by \(g = \tau_{1}\tau_{2}\cdots\tau_{p-1} = (p, p - 1, \cdots, 2, 1) \).

Then we have

\[
0 = I_{D_{\ell}}(1) = I_{D_{\ell}}((g\tau_{p-1}\cdots\tau_{2}\tau_{1})^{2})
\]

\[
= I_{D_{\ell}}(g^{2}) + I_{D_{\ell}}(\tau_{p-1}^{2}) + \cdots + I_{D_{\ell}}(\tau_{1}^{2}) = 2I_{D_{\ell}}(g)
\]

\[
\iff I_{D_{\ell}}(g) = 0 \quad (\forall \ell \in \mathbb{N}).
\]

Problem 2 Can we determine the rotation angles \(r_{1}t_{1}, \ldots, r_{b}t_{b} \) of \(g \) under the condition that \(I_{D_{\ell}}(g) = 0 \) for any integers \(\ell \)?

Assume that the order \(p \) of \(g \) is an odd prime number hereafter.

(Hence we have \(n_{i} = p, \; r_{i} = 1 \) for \(1 \leq i \leq b \).

Then the we have the following formula.

Formula (Riemann-Hurwitz equation)

\[
\sigma = p(\tau - 1) + \frac{b(p - 1)}{2} + 1 \iff \tau = \frac{1}{p} \left(\sigma - \frac{b(p - 1)}{2} - 1 \right) + 1
\]

where \(\tau \) is the genus of \(\Sigma^{\sigma}/\mathbb{Z}_{p} \).
Let $F := \{q_1, \ldots, q_b\} \subset \Sigma^\sigma$ be the fixed point set of the \mathbb{Z}_p-action and $\pi : \Sigma^\sigma \longrightarrow \Sigma^\tau = \Sigma^\sigma / \mathbb{Z}_p$ the branched covering with branch points $\pi(q_1), \ldots, \pi(q_b)$ of order (p, \ldots, p).

Assume that $g|T_{q_i}\Sigma^\sigma = \xi_p^{t_i} \ (1 \leq t_i \leq p - 1) \text{ for } 1 \leq i \leq b$.

Set $\Sigma_0^\sigma := \Sigma^\sigma - F$ and $\Sigma_0^\tau := \Sigma_0^\sigma / \mathbb{Z}_p$, then we have the next exact sequence:

$$\pi_1(\Sigma_0^\sigma) \longrightarrow$$
$$\pi_1(\Sigma_0^\tau) = \langle a_1, b_1, \ldots, a_\tau, b_\tau, x_1, \ldots, x_b \mid \prod_{k=1}^\tau [a_k, b_k]x_1 \cdots x_b = 1 \rangle$$
$$\partial \longrightarrow \mathbb{Z}_p \longrightarrow 0$$

where x_i is represented by a loop around the branch point $\pi(q_i)$.

Let \overline{t}_i denotes the mod.p inverse of $t_i \ (1 \leq i \leq b)$. Then since

$$\prod_{k=1}^\tau [a_k, b_k]x_1 \cdots x_b = 1, \ \partial([a_k, b_k]) = 0, \ \partial(x_i) = \overline{t}_i \in \mathbb{Z}_p,$$

it follows that

$$\sum_i \partial(x_i) = 0 \in \mathbb{Z}_p \iff \sum_{i=1}^b \overline{t}_i \equiv 0 \pmod{p} \cdots (1)$$

Conversely, if $b \geq 2$, σ, τ satisfy the Riemann-Hurwitz equation and the equality (1) holds, then there exists a \mathbb{Z}_p-action on Σ^σ with b-fixed points such that the genus of $\Sigma^\sigma / \mathbb{Z}_p$ is τ and that the rotation angles are t_1, \ldots, t_b (see [1]).

By definition, rotation angles (t_1, \ldots, t_b) are equivalent to the rotation angles (t'_1, \ldots, t'_b) if there exists an integer s such that $t'_i = st_i \ (\forall i)$ or (t'_1, \ldots, t'_b) is a permutation of (t_1, \ldots, t_b).

In the following tables, the equivalence class of rotation angles of g is simply called "rotation angles", the rotation angles of g such that $\sum_{i=1}^b t_i \equiv 0 \pmod{p}$ is called "possible rotation angles" and the rotation angles of g such that $I_D_\ell(g) = 0 \ (\forall \ell \in \mathbb{N})$ is called "admissible rotation angles".
\(p = 5 \)

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(b)</th>
<th>Possible rotation angles</th>
<th>Admissible rotation angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>((1,1,2))</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>((1,1,1,3)) ((1,1,4,4)) ((1,2,3,4))</td>
<td>((1,1,4,4)) ((1,2,3,4))</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>((1,4))</td>
<td>((1,4))</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>((1,1,1,1,1)) ((1,1,1,2,4)) ((1,1,2,2,3))</td>
<td>((1,1,1,1,1))</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>((1,1,2))</td>
<td>none</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>((1,1,1,1,2,2)) ((1,1,1,1,3,4)) ((1,1,1,2,3,3)) ((1,1,1,4,4,4)) ((1,1,2,3,4,4))</td>
<td>((1,1,1,4,4,4)) ((1,1,2,3,4,4))</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>((1,1,1,3)) ((1,1,4,4)) ((1,2,3,4))</td>
<td>((1,1,4,4)) ((1,2,3,4))</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>((1,1,1,1,1,1,4)) ((1,1,1,1,1,2,3)) ((1,1,1,1,2,4,4)) ((1,1,1,1,3,3,3)) ((1,1,1,2,2,3,4)) ((1,1,1,3,3,4,4))</td>
<td>((1,1,1,1,1,1,4)) ((1,1,1,1,1,2,3))</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>((1,1,1,1,1)) ((1,1,1,2,4)) ((1,1,2,2,3))</td>
<td>((1,1,1,1,1))</td>
</tr>
</tbody>
</table>
$p = 7$

<table>
<thead>
<tr>
<th>σ</th>
<th>b</th>
<th>Possible rotation angles</th>
<th>Admissible rotation angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(1, 1, 3) ((1, 2, 4))</td>
<td>(1, 2, 4)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>(1, 1, 1, 2) ((1, 1, 4, 5)) ((1, 1, 6, 6)) ((1, 2, 5, 6))</td>
<td>(1, 1, 6, 6) ((1, 2, 5, 6))</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>(1, 6)</td>
<td>(1, 6)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>(free action)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>(1, 1, 1, 1, 5) ((1, 1, 1, 3, 6)) ((1, 1, 1, 4, 4)) ((1, 1, 2, 3, 5)) ((1, 1, 2, 4, 6)) ((1, 1, 3, 3, 4))</td>
<td>(1, 1, 2, 4, 6)</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>(1, 1, 3) ((1, 2, 4))</td>
<td>(1, 2, 4)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
3. Higher dimensional case

Let M be a $2m$-dimensional almost complex manifold with \mathbb{Z}_p-action and q_i ($1 \leq i \leq b$) the fixed points of the generator g of \mathbb{Z}_p. Then for $1 \leq i \leq b$, the tangent space $T_{q_i}M$ is decomposed into

$$T_{q_i}M = \bigoplus_{j=1}^{m} V_{i,j} \quad (\dim_{\mathbb{C}} V_{i,j} = 1, \quad g|V_{i,j} = \xi_{p}^{t_{i,j}}).$$

We call $\{t_{1,1}, \cdots, t_{1,m}\}, \cdots, \{t_{b,1}, \cdots, t_{b,m}\}$ the rotation angles of g.

Example 3 Let $D(5) = \langle g, h | g^5 = h^2 = 1, g^{-1}h^{-1}gh = g^{-2} \rangle$ be the dihedral group. Then since Σ^5 can be embedded symmetrically
into \mathbb{R}^3 with respect to the π-rotation around x-axis and $2\pi/5$-rotation around z-axis, $D(5)$ can act on Σ^5 and g acts on Σ^5 with 2-fixed points of the rotation angles $(1,4), (2,3)$. Hence the diagonal action of $D(5)$ on $\Sigma^5 \times \Sigma^5$ gives an action of g on $\Sigma^5 \times \Sigma^5$ with 4-fixed points of the rotation angles

$$(1,4) \times (1,4) = (\{1,1\}, \{1,4\}, \{1,4\}, \{4,4\}) ,$$

$$(1,4) \times (2,3) = (\{1,2\}, \{1,3\}, \{2,4\}, \{3,4\})$$

and we have $I_D(g) = 0 \in \mathbb{Z}_5$ for any $D(5)$-equivariant elliptic operator D because $-2I_D(g) = I_D(g^{-2}) = I_D(g^{-1}h^{-1}gh) = 0$.

Now assume that $\mathbb{Z}_5 = \langle g \rangle$ acts on $\Sigma^5 \times \Sigma^5$ and that the action preserves some almost complex structure of $\Sigma^5 \times \Sigma^5$. Let L be the complex \mathbb{Z}_5-line bundle defined by

$$L = (\bigwedge^2 \mathcal{T}^\mathbb{C} (\Sigma^5 \times \Sigma^5))^\ell$$

and D_ℓ the L-valued Dirac operator on $\Sigma^5 \times \Sigma^5$.

Problem 3 Can we determine the rotation angles of g under the condition that g has 4-fixed points and $I_{D_\ell}(g) = 0 \in \mathbb{Z}_5$ for any integers ℓ?

Let $(\{s_1, t_1\}, \{s_2, t_2\}, \{s_3, t_3\}, \{s_4, t_4\})$ be the rotation angles of g. Then using the Atiyah-Singer index formula, we can prove the next equality.

$$I_{D_\ell}(g) = \frac{32}{5} (2\ell + 1)^2 - \frac{1}{5} \sum_{i=1}^{4} \sum_{k=1}^{4} \xi_5^{-k(s_i + t_i)} \frac{\xi_5^{k\ell(s_i + t_i)}}{(1 - \xi_5^{-k})(1 - \xi_5^{-ks_i})(1 - \xi_5^{-kt_i})}$$

Equivalence of rotation angles is defined as follows:

$$(\{1,2\}, \{1,2\}, \{2,3\}, \{3,4\}) \equiv (\{3,4\}, \{2,1\}, \{3,2\}, \{1,2\})$$

$$\equiv (\{2,4\}, \{2,4\}, \{4,1\}, \{1,3\}) \equiv (\{3,1\}, \{3,1\}, \{1,4\}, \{4,2\}) \equiv \cdots$$

Then we can obtain the following result.
Result. The (equivalence class of) rotation angles do not satisfy the condition $I_{D_{l}}(g) = 0$ ($\forall \ell$) unless
\[
(\{1, 1\}, \{1, 4\}, \{1, 4\}, \{4, 4\}) , \quad (\{1, 1\}, \{2, 3\}, \{1, 4\}, \{4, 4\}) ,
(\{1, 1\}, \{2, 3\}, \{2, 3\}, \{4, 4\}) , \quad (\{1, 2\}, \{1, 2\}, \{3, 4\}, \{3, 4\}) ,
(\{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\})
\]
(see Example 3).

Remark. Let N be the number of the equivalence classes of rotation angles. Then we have
\[
N \geq \frac{4^8}{2^4 \times 4! \times 4} = \frac{128}{3} \implies N \geq 43
\]

References