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The initial value problem for Schrodinger equations on the torus
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This note is & summary of a paper [2]. We are concerned with the initial value problems
for linear Schrodinger-type equations of the form

Lu = B — iAu + b(z) - Vu+ c(z)u = f(t,z) in RxT" (1)
u(0,z) =ug(z) in T", (2)
and for semilinear Schrédinger equations of the form
Owu — iAu = F(u,Vu,u, Vi) in RxT", (3)
(0, z) = uo(x) in T, (4)

where u(t, z) is a complex valued unknown function of (¢,z) = (t,z1,...,%.) € R x T",
T = R*/2nZ*, i = /—1, 6, = 8/8t, 8; = 8/0z; (j = 1,...,m), V = (b1,-* ,0n),
A =V-V, and b(z) = (b1(),...,b.(x)), c(z), f(t, ) and ue(z) are given functions.
Suppose that bi(z),...,b.(z) and c(z) are smooth functions on T”, and that F'(u,v,4,?)
is a smooth function on R?*2" and

F(u,v,%,9) = O(|ul®* + |v|*) near (u,v)=0.
In [7], Mizohata proved that, when z € R", if the initial value problem (1)-(2) is
L2?-well-posed, then it follows that
sup
(tyz,w)ERIFnx Sn—1

t
/ Imb(z — ws) - wds| < +o0, (5)
0

where b- € = b1+ - - +b,&,. Moreover, he gave sufficient condition for L2-well-posedness
which is slightly stronger than (5). In particular, (5) is also sufficient condition for L?-
well-posedness when n = 1. Roughly speaking, (5) gives an upper bound of the strength of
the real vector field (Imb(z)) - V. In other words, if (Im b(:c)) -V can be dominated by so-
called local smoothing effect of e*2, then (5) must holds. After his results, many authors
investigated the necessary and sufficient condition, and some weaker sufficient conditions
were discovered. Unfortunately, however, the characterization of L2-well-posedness for
(1)-(2) remains open except for one-dimensional case. Such linear theories were applied
to solving (1)-(2) in case z € R™. See, e.g., [3] for linear equations, [1], for nonlinear
equations, and references therein.
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On the other hand, the periodic case is completely different from the Euclidean case.
The local smoothing effect of 2 fails because the hamiltonian flow generated by the
hamiltonian vector field 2 - V is completely trapped. See [4] for the relationship between
the global behavior of the hamiltonian flow and the local smoothing effect.

The purpose of this note is to present the necessary and sufficient condition of L2-well-
posedness of (1)-(2), and apply this condition to (3)-(4). To state a definition and our
results, we here introduce notation. Let s € R. H*(T") denotes the set of all distributions
on T" satisfying

2 = /Tﬂ (1= A)?u(z) 2z < +oo.

Set L*(T") = H°(T"), and ||-|| = ||-||o for short. Let I be an interval in R. C(I; H*(T"))
denotes the set of all H*(T")-valued continuous function on I. Similarly L(I; H*(T")) is
the set of H*(T™)-valued integrable functions on I.
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We here give the definition of L2-well-posedness.

Definition 1. The initial-boundary value problem (1)-(2) is said to be L2-well-posed if
for any uo€L*(T") and feL} (R; L*(T™)), (1)-(2) has a unique solution u€C(R; L%(T")).

It follows from Banach’s closed graph theorem that the condition required in Defini-
tion 1 is equivalent to a seemingly stronger condition, that is, for any uo€L?(T™) and for
any feLi, (R; L*(T")), (1)-(2) has a unique solution u€C(R; L%(T")), and for any T > 0
there exists Cp > 0 such that

t
Jis)ds

Firstly, we present L2-well-posedness results for linear equations.

wm<@@mu

),wkﬂﬂ (6)

Theorem 2. The following conditions are mutually equivalent:
1. (1)-(2) 4s L2-well-posed.
2. ForzeT anda € Z*

27 . .
Imb(z — as) - ads = 0. (7

8. There ezists a scalar function ¢(z)eC®(T") such that Vé(z) = Imb(z).
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When n = 1, set b(z) = bi(z). The condition (7) is reduced to

27
Im b(z)dz = 0. . (8)
0

The condition (7) is the natural torus version of (5). More precisely, (7) is a special
case of Ichinose’s necessary condition of L2-well-posedness discovered in [5]. On the other
hand, the condition 3 corresponds to Ichinose’s sufficient condition of L2-well-posedness
discovered in [6]. Theorem 2 makes us expect analogous results for nonlinear equations.
In fact, we have local existence and local ill-posedness results as follows.

Theorem 3. Let s > n/2 + 2. Suppose that there ezists a smooth real-valued function
®(u, @) on R? such that for any ueC(T")
V&(u, %) = ImV,F(u, Vu, @, Va). (9)

Then for any ue€H*(T™), there exists T > 0 depending on |luo||, such that (3)-(4) pos-
sesses a unique solution ueC([—-T, T); H*(T")). Furthermore, Let {uox} be a sequence of
initial data belonging to H*(T™), and let {ur} be a sequence of corresponding solutions. If

uop — o n H*(T") as k— oo,
then for anym < s
u —u in C([0,T); H™(T")) as k— oo. | (10)
Theorem 4. Suppose that there exists a holomorphic n-vector function
G(u) = (G1(u),+- ,Gn(u)), u€eC
such that G(u) # 0, and
F(u, Vu, %, Vi) = V - G(u) (11)
for any ueC*(T™). Then (3)-(4) is not locally well-posed in the sense of Theorem 3.

It seems to be hard to show the continuous dependence of the solution on the initial
data because the gain of derivative of e*® fails when z € T". To prove Theorem 4, we
construct a sequence of solutions which are real-analytic in z by using the idea of the
abstract Cauchy-Kowalewski theorem. Hence it is essential that G(u) is holomorphic.

In what follows we give the sketch the proofs of Theorems 2 and 4. We omit the sketch
of the proof of Theorem 3.

Proof of Theorem 2. To prove 1=>2, we suppose that the condition 2 fails, and construct
a sequence of approximate solutions {u;(t, z)} which break an energy inequality (6). Sup-
pose that there exist 7o € T" and o € Z™ \ {0} such that

21

Im b(zo — as) - ads = 4mwbo # 0.

0
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Without loss of generality, we can assume that by > 0. It follows that there exists a small
positive constant § such that

27
Imb(z — sc) - ads > 2mbo (12)
0

for any z € D, which is defined by

D= U{a:E]R"I |z — zo — 278 — aa| < 26}.
%

Fix an arbitrary T > 0. We construct a sequence {u;}1=123,.. by
w(t, z) = exp(idu(t, )y (z),
2(t-T)
du(t,z) = ~Pta-a+la- -z - 5/ b(z — as) - ads,
0

where the amplitude function 1 is a smooth function on T" and supported on D/2wZ".
It is easy to see that

lu(@) =1, ()| = Oexp(~iboT)), | Lw(t)l| = Oexp(—ibo(T - t)/2)),

which means that the energy inequality fails for {u;}.
Next we give the sketch of the proof 2=>3 in case n > 2. Suppose (7). Since Imb €
(c(T™))", Im b(a:) is represented by a Fourier series

Imb(z) = Y brpe®=, biseCm (13)
pez»

The substitution of (13) into (7) gives

2n
0= bis - aeP” / e *Pds = 2rr Z big - e, (14)
Bezn 0 B-a=0

Then it follows that 31,3 -a = 0 for any o € Z". Since the orthogonal complement of B#0
is spanned by some o?,...,a™! € Z*, there exists ag € C such that b = agp for B # 0.
On the other hand, (14) implies bm 0 since Vo = R” is spanned by ey,...,e, € Z".

Then we have
Imb(z) = Z agBe®.

If we set

$(2) = —i ) _ age®*,

B#0
then V¢(z) = Im b(z).
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It is easy to prove 3=>1. Since exp(+¢(x)/2) is a smooth function on T", a mapping
u — v = exp(—¢(z) /2)u is automorphic on L?(T"). Multiplying Lu = f by exp(¢(z)/2),
we have

(8; — iA + Reb(z) - V + &x))v = g(t, z), (15)

where &(z)€C>®(T") and g(t,z) = exp(—¢(z)/2)f(¢,z). It is easy to obtain forward and
backward energy inequalities in ¢. The duality arguments proves that (1)-(2) is L?-well-
posed. O

Proof of Theorem 4. We will construct a sequence which fails to satisfy (19). It suffices
to do it for one dimensional case since a one dimensional counter example is also an
any dimensional counter example. Suppose that there exists a nonconstant holomorphic
function G(u) in C such that for ueC*(T)

F(u,Vu,u,Va) = Ba_a:G(u) = G'(u)us.

Set g = @' for short. If u is a smooth solution to (3), then
4 /u(t, z)dr = /atu(t, z)dz
dt Jy T

_ / —aé—)—{uz(t,a:) + G(u(t, z))}dz
T O
= 0. (16)

We here express u by a Fourier series

u(t,z) = Zul(t)e‘h.

leZ

Then (16) implies uo(t)=uo(0). Set uo(0) = 20 and v(¢,z) = u(t, x) — zo for short. Since
g(0) = 0 and u, = v,, there exists an appropriate complex constant 2o such that

g(wus = —(p + iA\)v; + h(v)v,
where € R, A > 0, and h is holomorphic in C. Then, v solves
Vg — Waz + (B + 1A)vz = h(V)s.

In what follows, fix zo. Note that u(t, z) = z is a solution to (3)-(4).
Suppose that the conclusion of Theorem 3 holds. Consider the initial value problem
of the form v(™ solves the initial value problem of the form

o™ — il + (4 iAo = h(p™)f™ in (0,T) x T, (17)
2(0, ) = — in T, (18)

(L+m)*



78

where s > 5/2, m = 1,2,3,.... Since {v™(0,z)} is bounded in H*(T) and
v™(0,z) — 0 in H°(T) as m — oo

for any o < s, it follows from the hypothesis that

v™ 0 in C([0,T]; H’(T)) & m — oo (19)
for any o < s. We investigate a formal Fourier series solution to (17)-(18) of the form
w™(t,z) = Y wf™ (t)e?™. (20)
1=1

The substitution of (20) into (17)-(18) gives

%wl(m) (t) + (ilzmz 4 z'y,lm - Alm)wl(m) (t)

— f: hy Y ilem fI wi™(t), (21)

p=1 ot tlp=l

loyeydp>1
(m) 0) = (1 + m)“’ if l =1 29
“ 0 {0 otherwise (22)

For | =1, (21)-(22) is concretely solved by
wi™(t) = (1 + m)~* exp(—i(m? + pm)t + Amt). (23)

For | > 2, we apply the idea of the abstract Cauchy-Kowalewski theorem to (21)-(22).
We can show that there exists T, € (0,T) such that the formal series (20) converges in
C([0,T.,); H*(T)). Then it follows from the hypothesis that

v =w™ in C([0, Tm); H*(T)).
Finally we can find 6 > 0, a € (0,1) and t,, € (0,T,) such that
sup ”v(m)(t)”(l—a)a 2 ”v(m)(tm)"(l—a)s
te[0,T]

= [[w"™ (tm) | 1-ps

o 1/2
— (2(1 + lm)2(1—a)a|wl(m) (tm)|2)

=1
> (1+m) = |w{™ (tm)|
= (1 4+ m)** exp(Amitm)
pammeng 6’

which contradicts (19). Here we omit the detail. O



80

References

[1] H. Chihara, Gain of regularity for semilinear Schridinger equations, Math. Ann. 315
(1999), 529-567.

[2] H. Chihara, The initial value problem for Schridinger equations on the torus, Int.
Math. Res. Not. 2002:15 (2002), 789-820.

[3] S. Doi, Remarks on the Cauchy problem for Schridinger-lype equations, Comm. in
Partial Differential Equations 21 (1996), 163-178.

[4] S. Doi, Smoothing effects of Schrddinger evolution groups on Riemannian manifolds,
Duke Math. J. 82 (1996), 679-706.

[5] W. Ichinose, On L? well posedness of the Cauchy problem for Schridinger type equa-
tions on the Riemannian manifold and Maslov theory, Duke Math. J. 56 (1988),
549-588.

[6] W. Ichinose, A note on the Cauchy problem for Schridinger type equations on the
Riemannian manifold, Math. Japon. 35 (1990), 205-213.

[7] S. Mizohata, “On the Cauchy Problem” Academic Press, 1985.



