The initial value problem for Schrödinger equations on the torus

HIROYUKI CHIHARA* 千原浩之(東北大理)
Mathematical Institute
Tohoku University
Sendai 980-8578, Japan
e-mail chihara@math.tohoku.ac.jp

This note is a summary of a paper [2]. We are concerned with the initial value problems for linear Schrödinger-type equations of the form

$$Lu \equiv \partial_t u - i\Delta u + \vec{b}(x) \cdot \nabla u + c(x)u = f(t, x) \quad \text{in} \quad \mathbb{R} \times \mathbb{T}^n, \tag{1}$$

$$u(0,x)=u_0(x) \quad \text{in} \quad \mathbb{T}^n, \tag{2}$$

and for semilinear Schrödinger equations of the form

$$\partial_t u - i\Delta u = F(u, \nabla u, \bar{u}, \nabla \bar{u}) \quad \text{in} \quad \mathbb{R} \times \mathbb{T}^n,$$
 (3)

$$u(0,x) = u_0(x) \qquad \text{in} \quad \mathbb{T}^n, \tag{4}$$

where u(t,x) is a complex valued unknown function of $(t,x)=(t,x_1,\ldots,x_n)\in\mathbb{R}\times\mathbb{T}^n$, $\mathbb{T}^n=\mathbb{R}^n/2\pi\mathbb{Z}^n$, $i=\sqrt{-1}$, $\partial_t=\partial/\partial t$, $\partial_j=\partial/\partial x_j$ $(j=1,\ldots,n)$, $\nabla=(\partial_1,\cdots,\partial_n)$, $\Delta=\nabla\cdot\nabla$, and $\vec{b}(x)=(b_1(x),\ldots,b_n(x))$, c(x), f(t,x) and $u_0(x)$ are given functions. Suppose that $b_1(x),\ldots,b_n(x)$ and c(x) are smooth functions on \mathbb{T}^n , and that $F(u,v,\bar{u},\bar{v})$ is a smooth function on \mathbb{R}^{2+2n} , and

$$F(u,v,ar{u},ar{v}) = O(|u|^2 + |v|^2)$$
 near $(u,v) = 0$.

In [7], Mizohata proved that, when $x \in \mathbb{R}^n$, if the initial value problem (1)-(2) is L^2 -well-posed, then it follows that

$$\sup_{(t,x,\omega)\in\mathbb{R}^{1+n}\times S^{n-1}}\left|\int_0^t \operatorname{Im}\vec{b}(x-\omega s)\cdot\omega ds\right|<+\infty,\tag{5}$$

where $\vec{b} \cdot \xi = b_1 \xi_1 + \dots + b_n \xi_n$. Moreover, he gave sufficient condition for L^2 -well-posedness which is slightly stronger than (5). In particular, (5) is also sufficient condition for L^2 -well-posedness when n = 1. Roughly speaking, (5) gives an upper bound of the strength of the real vector field $(\operatorname{Im} \vec{b}(x)) \cdot \nabla$. In other words, if $(\operatorname{Im} \vec{b}(x)) \cdot \nabla$ can be dominated by so-called local smoothing effect of $e^{it\Delta}$, then (5) must holds. After his results, many authors investigated the necessary and sufficient condition, and some weaker sufficient conditions were discovered. Unfortunately, however, the characterization of L^2 -well-posedness for (1)-(2) remains open except for one-dimensional case. Such linear theories were applied to solving (1)-(2) in case $x \in \mathbb{R}^n$. See, e.g., [3] for linear equations, [1], for nonlinear equations, and references therein.

^{*}Supported by JSPS Grant-in-Aid for Scientific Research #14740095.

On the other hand, the periodic case is completely different from the Euclidean case. The local smoothing effect of $e^{it\Delta}$ fails because the hamiltonian flow generated by the hamiltonian vector field $2\xi \cdot \nabla$ is completely trapped. See [4] for the relationship between the global behavior of the hamiltonian flow and the local smoothing effect.

The purpose of this note is to present the necessary and sufficient condition of L^2 -well-posedness of (1)-(2), and apply this condition to (3)-(4). To state a definition and our results, we here introduce notation. Let $s \in \mathbb{R}$. $H^s(\mathbb{T}^n)$ denotes the set of all distributions on \mathbb{T}^n satisfying

$$||u||_s^2 = \int_{\mathbb{T}^n} |(1-\Delta)^{s/2} u(x)|^2 dx < +\infty.$$

Set $L^2(\mathbb{T}^n) = H^0(\mathbb{T}^n)$, and $\|\cdot\| = \|\cdot\|_0$ for short. Let I be an interval in \mathbb{R} . $C(I; H^s(\mathbb{T}^n))$ denotes the set of all $H^s(\mathbb{T}^n)$ -valued continuous function on I. Similarly $L^1(I; H^s(\mathbb{T}^n))$ is the set of $H^s(\mathbb{T}^n)$ -valued integrable functions on I.

$$\begin{split} \frac{\partial}{\partial u} &= \frac{1}{2} \left(\frac{\partial}{\partial \operatorname{Re} u} - i \frac{\partial}{\partial \operatorname{Im} u} \right), \quad \frac{\partial}{\partial \bar{u}} = \frac{1}{2} \left(\frac{\partial}{\partial \operatorname{Re} u} + i \frac{\partial}{\partial \operatorname{Im} u} \right), \\ \frac{\partial}{\partial v_j} &= \frac{1}{2} \left(\frac{\partial}{\partial \operatorname{Re} v_j} - i \frac{\partial}{\partial \operatorname{Im} v_j} \right), \quad \frac{\partial}{\partial \bar{v}_j} = \frac{1}{2} \left(\frac{\partial}{\partial \operatorname{Re} v_j} + i \frac{\partial}{\partial \operatorname{Im} v_j} \right). \end{split}$$

We here give the definition of L^2 -well-posedness.

Definition 1. The initial-boundary value problem (1)-(2) is said to be L^2 -well-posed if for any $u_0 \in L^2(\mathbb{T}^n)$ and $f \in L^1_{loc}(\mathbb{R}; L^2(\mathbb{T}^n))$, (1)-(2) has a unique solution $u \in C(\mathbb{R}; L^2(\mathbb{T}^n))$.

It follows from Banach's closed graph theorem that the condition required in Definition 1 is equivalent to a seemingly stronger condition, that is, for any $u_0 \in L^2(\mathbb{T}^n)$ and for any $f \in L^1_{loc}(\mathbb{R}; L^2(\mathbb{T}^n))$, (1)-(2) has a unique solution $u \in C(\mathbb{R}; L^2(\mathbb{T}^n))$, and for any T > 0 there exists $C_T > 0$ such that

$$\|u(t)\| \le C_T \left(\|u_0\| + \left| \int_0^t \|f(s)\| ds \right| \right), \quad t \in [-T, T].$$
 (6)

Firstly, we present L^2 -well-posedness results for linear equations.

Theorem 2. The following conditions are mutually equivalent:

- 1. (1)-(2) is L^2 -well-posed.
- 2. For $x \in \mathbb{T}^n$ and $\alpha \in \mathbb{Z}^n$

$$\int_0^{2\pi} \operatorname{Im} \vec{b}(x - \alpha s) \cdot \alpha ds = 0. \tag{7}$$

3. There exists a scalar function $\phi(x) \in C^{\infty}(\mathbb{T}^n)$ such that $\nabla \phi(x) = \operatorname{Im} \vec{b}(x)$.

When n = 1, set $b(x) = b_1(x)$. The condition (7) is reduced to

$$\int_0^{2\pi} \operatorname{Im} b(x) dx = 0. \tag{8}$$

The condition (7) is the natural torus version of (5). More precisely, (7) is a special case of Ichinose's necessary condition of L^2 -well-posedness discovered in [5]. On the other hand, the condition 3 corresponds to Ichinose's sufficient condition of L^2 -well-posedness discovered in [6]. Theorem 2 makes us expect analogous results for nonlinear equations. In fact, we have local existence and local ill-posedness results as follows.

Theorem 3. Let s > n/2 + 2. Suppose that there exists a smooth real-valued function $\Phi(u, \bar{u})$ on \mathbb{R}^2 such that for any $u \in C^1(\mathbb{T}^n)$

$$\nabla \Phi(u, \bar{u}) = \operatorname{Im} \nabla_{v} F(u, \nabla u, \bar{u}, \nabla \bar{u}). \tag{9}$$

Then for any $u_0 \in H^s(\mathbb{T}^n)$, there exists T > 0 depending on $||u_0||_s$ such that (3)-(4) possesses a unique solution $u \in C([-T,T]; H^s(\mathbb{T}^n))$. Furthermore, Let $\{u_{0,k}\}$ be a sequence of initial data belonging to $H^s(\mathbb{T}^n)$, and let $\{u_k\}$ be a sequence of corresponding solutions. If

$$u_{0,k} \longrightarrow u_0$$
 in $H^s(\mathbb{T}^n)$ as $k \to \infty$,

then for any m < s

$$u_k \longrightarrow u \quad in \quad C([0,T]; H^m(\mathbb{T}^n)) \quad as \quad k \to \infty.$$
 (10)

Theorem 4. Suppose that there exists a holomorphic n-vector function

$$\vec{G}(u) = (G_1(u), \cdots, G_n(u)), \quad u \in \mathbb{C}$$

such that $G(u) \not\equiv 0$, and

$$F(u, \nabla u, \bar{u}, \nabla \bar{u}) = \nabla \cdot \vec{G}(u) \tag{11}$$

for any $u \in C^1(\mathbb{T}^n)$. Then (3)-(4) is not locally well-posed in the sense of Theorem 3.

It seems to be hard to show the continuous dependence of the solution on the initial data because the gain of derivative of $e^{it\Delta}$ fails when $x \in \mathbb{T}^n$. To prove Theorem 4, we construct a sequence of solutions which are real-analytic in x by using the idea of the abstract Cauchy-Kowalewski theorem. Hence it is essential that G(u) is holomorphic.

In what follows we give the sketch the proofs of Theorems 2 and 4. We omit the sketch of the proof of Theorem 3.

Proof of Theorem 2. To prove $1\Rightarrow 2$, we suppose that the condition 2 fails, and construct a sequence of approximate solutions $\{u_l(t,x)\}$ which break an energy inequality (6). Suppose that there exist $x_0 \in \mathbb{T}^n$ and $\alpha \in \mathbb{Z}^n \setminus \{0\}$ such that

$$\int_0^{2\pi} \operatorname{Im} \vec{b}(x_0 - \alpha s) \cdot \alpha ds \equiv 4\pi b_0 \neq 0.$$

Without loss of generality, we can assume that $b_0 > 0$. It follows that there exists a small positive constant δ such that

$$\int_0^{2\pi} \operatorname{Im} \vec{b}(x - s\alpha) \cdot \alpha ds \geqslant 2\pi b_0 \tag{12}$$

for any $x \in D$, which is defined by

$$D = \bigcup_{\substack{\beta \in \mathbb{Z}^n \\ a \in \mathbb{R}}} \{x \in \mathbb{R}^n \mid |x - x_0 - 2\pi\beta - \alpha a| \leqslant 2\delta\}.$$

Fix an arbitrary T > 0. We construct a sequence $\{u_l\}_{l=1,2,3,...}$ by

$$egin{aligned} u_l(t,x) &= \exp(i\phi_l(t,x))\psi(x), \ \phi_l(t,x) &= -l^2tlpha\cdotlpha + llpha\cdot x - rac{1}{2}\int_0^{2l(t-T)} ec{b}(x-lpha s)\cdotlpha ds, \end{aligned}$$

where the amplitude function ψ is a smooth function on \mathbb{T}^n and supported on $D/2\pi\mathbb{Z}^n$. It is easy to see that

$$||u_l(T)|| = 1$$
, $||u_l(0)|| = O(\exp(-lb_0T))$, $||Lu_l(t)|| = O(\exp(-lb_0(T-t)/2))$,

which means that the energy inequality fails for $\{u_l\}$.

Next we give the sketch of the proof $2\Rightarrow 3$ in case $n\geqslant 2$. Suppose (7). Since $\text{Im }\vec{b}\in (C(\mathbb{T}^n))^n$, $\text{Im }\vec{b}(x)$ is represented by a Fourier series

$$\operatorname{Im} \vec{b}(x) = \sum_{\beta \in \mathbf{Z}^n} \vec{b}_{\mathrm{I},\beta} e^{i\beta \cdot x}, \quad \vec{b}_{\mathrm{I},\beta} \in \mathbb{C}^n.$$
 (13)

The substitution of (13) into (7) gives

$$0 = \sum_{\beta \in \mathbb{Z}^n} \vec{b}_{I,\beta} \cdot \alpha e^{i\beta \cdot x} \int_0^{2\pi} e^{-i\alpha \cdot \beta s} ds = 2\pi \sum_{\beta \cdot \alpha = 0} \vec{b}_{I,\beta} \cdot \alpha e^{i\beta \cdot x}.$$
 (14)

Then it follows that $\vec{b}_{I,\beta} \cdot \alpha = 0$ for any $\alpha \in \mathbb{Z}^n$. Since the orthogonal complement of $\beta \neq 0$ is spanned by some $\alpha^1, \ldots, \alpha^{n-1} \in \mathbb{Z}^{\kappa}$, there exists $a_{\beta} \in \mathbb{C}$ such that $\vec{b}_{I,\beta} = a_{\beta}\beta$ for $\beta \neq 0$. On the other hand, (14) implies $\vec{b}_{I,0} = 0$ since $V_0 = \mathbb{R}^n$ is spanned by $e_1, \ldots, e_n \in \mathbb{Z}^n$. Then we have

$$\operatorname{Im} ec{b}(x) = \sum_{eta
eq 0} a_{eta} eta e^{ieta \cdot x}.$$

If we set

$$\phi(x) = -i \sum_{eta
eq 0} a_eta e^{ieta \cdot x},$$

then $\nabla \phi(x) = \operatorname{Im} \vec{b}(x)$.

It is easy to prove $3\Rightarrow 1$. Since $\exp(\pm\phi(x)/2)$ is a smooth function on \mathbb{T}^n , a mapping $u\mapsto v=\exp(-\phi(x)/2)u$ is automorphic on $L^2(\mathbb{T}^n)$. Multiplying Lu=f by $\exp(\phi(x)/2)$, we have

$$(\partial_t - i\Delta + \operatorname{Re}\vec{b}(x) \cdot \nabla + \tilde{c}(x))v = g(t, x), \tag{15}$$

where $\tilde{c}(x) \in C^{\infty}(\mathbb{T}^n)$ and $g(t,x) = \exp(-\phi(x)/2)f(t,x)$. It is easy to obtain forward and backward energy inequalities in t. The duality arguments proves that (1)-(2) is L^2 -well-posed.

Proof of Theorem 4. We will construct a sequence which fails to satisfy (19). It suffices to do it for one dimensional case since a one dimensional counter example is also an any dimensional counter example. Suppose that there exists a nonconstant holomorphic function G(u) in \mathbb{C} such that for $u \in C^1(\mathbb{T})$

$$F(u,
abla u, ar{u},
abla ar{u}) = rac{\partial}{\partial x} G(u) = G'(u) u_x.$$

Set g = G' for short. If u is a smooth solution to (3), then

$$\frac{d}{dt} \int_{\mathbb{T}} u(t,x) dx = \int_{\mathbb{T}} \partial_t u(t,x) dx$$

$$= \int_{\mathbb{T}} \frac{\partial}{\partial x} \{ u_x(t,x) + G(u(t,x)) \} dx$$

$$= 0. \tag{16}$$

We here express u by a Fourier series

$$u(t,x) = \sum_{l \in \mathbb{Z}} u_l(t) e^{ilx}.$$

Then (16) implies $u_0(t) \equiv u_0(0)$. Set $u_0(0) = z_0$ and $v(t,x) = u(t,x) - z_0$ for short. Since g(0) = 0 and $u_x = v_x$, there exists an appropriate complex constant z_0 such that

$$g(u)u_x = -(\mu + i\lambda)v_x + h(v)v_x,$$

where $\mu \in \mathbb{R}$, $\lambda > 0$, and h is holomorphic in \mathbb{C} . Then, v solves

$$v_t - iv_{xx} + (\mu + i\lambda)v_x = h(v)v_x.$$

In what follows, fix z_0 . Note that $u(t,x) \equiv z_0$ is a solution to (3)-(4).

Suppose that the conclusion of Theorem 3 holds. Consider the initial value problem of the form $v^{(m)}$ solves the initial value problem of the form

$$v_t^{(m)} - iv_{xx}^{(m)} + (\mu + i\lambda)v_x^{(m)} = h(v^{(m)})v_x^{(m)} \quad \text{in} \quad (0, T) \times \mathbb{T},$$
 (17)

$$v^{(m)}(0,x) = \frac{e^{imx}}{(1+m)^s}$$
 in \mathbb{T} , (18)

where s > 5/2, $m = 1, 2, 3, \ldots$ Since $\{v^{(m)}(0, x)\}$ is bounded in $H^s(\mathbb{T})$ and

$$v^{(m)}(0,x) \longrightarrow 0$$
 in $H^{\sigma}(\mathbb{T})$ as $m \to \infty$

for any $\sigma < s$, it follows from the hypothesis that

$$v^{(m)} \longrightarrow 0 \quad \text{in} \quad C([0,T]; H^{\sigma}(\mathbb{T})) \quad \text{as} \quad m \to \infty$$
 (19)

for any $\sigma < s$. We investigate a formal Fourier series solution to (17)-(18) of the form

$$w^{(m)}(t,x) = \sum_{l=1}^{\infty} w_l^{(m)}(t)e^{ilmx}.$$
 (20)

The substitution of (20) into (17)-(18) gives

$$\frac{d}{dt}w_{l}^{(m)}(t) + (il^{2}m^{2} + i\mu lm - \lambda lm)w_{l}^{(m)}(t)
= \sum_{p=1}^{\infty} h_{p} \sum_{\substack{l_{0} + \dots + l_{p} = l \\ l_{0}, \dots, l_{p} \ge 1}} il_{0}m \prod_{j=0}^{p} w_{l_{j}}^{(m)}(t), \tag{21}$$

$$w_l^{(m)}(0) = \begin{cases} (1+m)^{-s} & \text{if } l = 1\\ 0 & \text{otherwise} \end{cases}$$
 (22)

For l = 1, (21)-(22) is concretely solved by

$$w_1^{(m)}(t) = (1+m)^{-s} \exp(-i(m^2 + \mu m)t + \lambda mt). \tag{23}$$

For $l \ge 2$, we apply the idea of the abstract Cauchy-Kowalewski theorem to (21)-(22). We can show that there exists $T_m \in (0,T)$ such that the formal series (20) converges in $C([0,T_m);H^s(\mathbb{T}))$. Then it follows from the hypothesis that

$$v^{(m)} = w^{(m)}$$
 in $C([0, T_m); H^s(\mathbb{T}))$.

Finally we can find $\delta > 0$, $\alpha \in (0,1)$ and $t_m \in (0,T_m)$ such that

$$\sup_{t \in [0,T]} \|v^{(m)}(t)\|_{(1-\alpha)s} \ge \|v^{(m)}(t_m)\|_{(1-\alpha)s}
= \|w^{(m)}(t_m)\|_{(1-\alpha)s}
= \left(\sum_{l=1}^{\infty} (1+lm)^{2(1-\alpha)s} |w_l^{(m)}(t_m)|^2\right)^{1/2}
\ge (1+m)^{(1-\alpha)s} |w_1^{(m)}(t_m)|
= (1+m)^{-s\alpha} \exp(\lambda m t_m)
= \delta.$$

which contradicts (19). Here we omit the detail.

References

- [1] H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315 (1999), 529-567.
- [2] H. Chihara, The initial value problem for Schrödinger equations on the torus, Int. Math. Res. Not. 2002:15 (2002), 789–820.
- [3] S. Doi, Remarks on the Cauchy problem for Schrödinger-type equations, Comm. in Partial Differential Equations 21 (1996), 163-178.
- [4] S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J. 82 (1996), 679-706.
- [5] W. Ichinose, On L² well posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and Maslov theory, Duke Math. J. **56** (1988), 549–588.
- [6] W. Ichinose, A note on the Cauchy problem for Schrödinger type equations on the Riemannian manifold, Math. Japon. 35 (1990), 205-213.
- [7] S. Mizohata, "On the Cauchy Problem" Academic Press, 1985.