MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES B, Vol. XXV, No. 2 Geology and Mineralogy, Article 1, 1958

The Crystal Structure of Linarite, $PbCu(SO_4)(OH)_2$

By

Takaharu ARAKI

Geological and Mineralogical Institute, University of Kyoto (Received July 21, 1958)

Abstract

The lattice constants of the crystal of linarite from Kisamori are a=9.67, b=5.64, $c=4.68\text{\AA}$ and $\beta=102^{\circ}40'$. Its space group is $P2_1/m$, and there are two molecules per unit cell.

Intensity data were obtained through the oscillation photographing, and the structure was determined by means of the two-dimensional Patterson, Fourier and difference syntheses.

Introduction

There are many secondary minerals whose crystal structures were not yet analysed. For example, a number of sulfates containing iron or copper are of the case.

On linarite from Red Gill, Cumberland, England, only an X-ray study has been reported by L. G. BERRY (1951) giving the lattice constants, space group and the structure formula.

Linarite, a basic sulfate of lead and copper, $PbCu(SO_4)(OH)_2$, occurs widespreadly in small amount as a secondary mineral in oxidized zones of the copper and lead deposits.

Recently the writer has examined the results of BERRY and determined further the structure of the mineral.

Experimental

Specimens from Kisamori mine, Akita prefecture, Japan were used in this investigation. They are prismatic and elongated along b-axis. The unit cell dimensions were obtained measuring the distances between the layer lines on rotation photographs taken with $CuK\alpha$ radiation. The result is:

 $a = 9.67 \pm 0.02$ Å, $b = 5.64 \pm 0.01$ Å, $c = 4.68 \pm 0.01$ Å, $\beta = 102^{\circ}40' \pm 15'$ (goniometric)

Density was measured pycnometrically and 5.34 was obtained. Therefore, there are two chemical units in the unit cell. The space group is $P2_1/m$, 0k0 reflexions being present only when k = 2n and the mineral having holohedral symmetry morphologically. These results are in good agreement with those previously reported.

The intensity data were obtained, using multiple film technique, by oscillation photographs taken with $CuK\alpha$ radiation and each of the intensities was estimated visually with the aid of a graded intensity scale. The usual corrections for Lorentz and polarization factors were applied and the set of numbers thus obtained were converted to the absolute scale applying the Wilson's method to each of the intervals divided for $\sin \theta/\lambda$, but the corrections for the absorption and temperature factors were neglected. These numerical values thus derived were assumed to be the observed structure factors.

The structure determination

In the space group $P2_1/m$, equivalent positions are

4(f)	$\pm x, y, z; \bar{x}, 1/2 + y, \bar{z} $	2(e)	$\pm x, 1/4, z $
2(d)	1/2, 0, 1/2; 1/2, 1/2, 1/2.	2(c)	0, 0, 1/2; 0, 1/2, 1/2
2(b)	1/2, 0, 0; 1/2, 1/2, 0.	2(a)	0, 0, 0; 0, 1/2, 0.

In the Patterson maps it is considered that prominent peaks represent Pb-Pband Pb-Cu vectors and less prominent are Pb-S, Cu-Cu and Pb-O vectors. Provided that Pb and Cu atoms occupy the positions of 2(e) respectively, a Pb-Pb vector must appear at 2x, 1/2, 2z and Pb-Cu vectors at y=0 and y=1/2. But if Cu atoms occupy a set of centers and Pb atoms the positions of 2(e), Pb-Cu vectors must appear at y=1/4.

At the first step of the determination of atomic parameters, two-dimensional Patterson syntheses were carried out using observed $F^2(hk0)$, $F^2(0kl)$ and $F^2(h0l)$ terms respectively.

In the Patterson maps which are shown in Fig. 1, there are prominent peaks of different height, i.e. the heighest at y=1/2 and the second at y=1/4. Comparing the peak height of these vectors with that of the origin one and also considering the weights of the vectors, it was inferred that the heighest peak at y=1/2 represents a Pb-Pb vector and the second at y=1/4 a Pb-Cu vector. Therefore the approximate atomic parameters of Pb atoms were easily obtained as x=0.160, y=1/4, z=0.170, from the Patterson maps projected on the (001) and (100) planes, and taking its coordinates of equivalent positions into account.

Further, it was found that the Pb-Cu vector at y=1/4 locates just at 1/2-x, 1/4, 1/2-z, where x and z are the approximate parameters of Pb atoms. Consequently it was deduced that Cu atoms are situated at the centers, 2(d). In the Patterson map projected on the (010) plane there appeared only a prominent peak which could be regarded to be an overlap of the Pb-Pb and Pb-Cu vectors. This fact will confirm the deduction above mentioned. Therefore, the space group of linarite was also determined to be $P2_1/m$ from the interpretation of the Patterson maps. The other interatomic vectors could, however, hardly be recognized due to the background in the Patterson maps.

70

Fig. 1. The Patterson maps projected on the (001), (100) and (010) planes respectively. Contours at an arbitrary unit.

From the parameters for the heavy atoms above obtained the signs of F_0 's whose values were relatively large were easily found taking the contribution of the heavy atoms to the structure factors into account.

At the outset, the electron densities on the (001) and (010) planes were evaluated by means of the two-dimensional Fourier syntheses with F_0 's whose signs could be determined, and the maxima in the electron density maps which represent the positions of Pb atoms were found at the positions close to the approximate positions obtained through the foregoing Patterson syntheses, whereas Cu atoms just at the centers. Furthermore, the maxima which are regarded to be the positions of S atoms were found, but the Fourier syntheses failed to resolve the positions of O atoms and OH groups.

The coordinates of O atoms and OH groups were then assumed keeping the heavy atoms and S atoms in their positions above mentioned respectively and twodimensional Fourier summations were carried out using F_c 's at the intervals of 1/60

Fig. 2. Fourier map projected on the (001) plane. Contours at $10eA^{-2}$. Zero contours dotted. The positions of O atoms and OH groups are indicated by crosses.

of the cell edges with the aid of Beevers and Lipson strips. The summations were repeated several times, giving necessary corrections for the atomic coordinates. For scattering factors Viervoll and Ögrim's values were applyed except for Pb atom, for which values in Internationale Tabellen were used, and the contribution of H atoms to the structure factors was neglected.

In Fig. 2 and 3 are shown the electron density projected on the (001) and (010) planes respectively, obtained in the final summations.

In order to refine the coordinates of the lighter atoms excluding the effect of diffraction ripples, difference syntheses were carried out, using the differences between F_0 's and F(Pb, Cu)'s, where F(Pb, Cu)'s are the calculated structure factors to which only Pb and Cu atoms contribute. After repeating this summations, giving necessary corrections for the coordinates, the maxima in the electron density maps satisfactorily

Fig. 3. Fourier map projected on the (010) plane. Contours at $10eA^{-2}$. Zero contours dotted. The positions of S and O atoms and OH groups are indicated by crosses.

coincided with the coordinates of S and O atoms and OH groups chosen. In Fig. 4 and 5 are shown the electron density projected on the (001) and (010) planes obtained in the final difference summations, respectively.

The coordinates of atoms found in the final syntheses are given in Table 1.

Fig. 4. The final difference synthesis projected on the (001) plane. Contours at $4eA^{-2}$. Zero contours dotted. The positions of *Pb* and *Cu* atoms are marked by cross and solid circles respectively.

Atom	Number of atoms in a unit cell	x/a	y/b	z/c
Pb	2	0.157	0.250	0.168
Cu	2	0.500	0.000	0.500
S	2	0.830	0.250	0.998
O(1)	2	0.944	0.250	0.774
$O_{(2)}$	2	0.654	0.250	0.834
O(3)	4	0.846	0.060	0.248
$OH_{(1)}$. 2	0.352	0.250	0.699
$OH_{(2)}$	2	0.455	0.250	0.248

Table 1. Coordinates of atoms.

The Crystal Structure of Linarite, $PbCu(SO_4)(OH)_2$

Fig. 5. The final difference synthesis projected on the (010) plane. Contours at $4 \,\mathrm{eA^{-2}}$. Zero contours dotted. The positions of *Pb* and *Cu* atoms are marked by cross and solid circle respectively.

In Table 2 are summarized the observed and calculated structure factors, the calculated values being calculated with atomic coordinates finally obtained and the observed values being adjusted by multiplying factors which minimumize the reliability factors.

The reliability factors are 0.195, 0.200 and 0.286 for *hk*0, 0*kl* and *h0l* reflexions respectively, unobserved reflexions being contained in calculations.

Structure description

In Fig. 6 is illustrated the structure of linarite.

The structure are composed of the framework of $Cu(OH)_2$ and $Pb(SO_4)$ chains which are stretched along the *b*-axis, Cu atoms are situated at the center of a space

hkl	F_0	F _c	hkl	F_0	F_{c}
100 200 300 400 500	46 28 213 70 25	45 - 18 - 214 - 83 - 4	640 650 660 710 720	96 23 54 53 121	$134 \\ 36 \\ -75 \\ -47 \\ -100$
600 700 800 900 10,00	203 85 20 129 81	$182 \\ 58 \\ 12 \\ -124 \\ -76$	730 740 750 810 820	27 54 37 103 79	47 43 - 34 - 79 47
11,00 12,00 020 040 060	24 94 129 170 72	-24 95 -143 190 -100	830 840 850 910 920	86 14 65 49 95	84 8 62 51 55
110 120 130 140 150	78 78 83 32 67	94 110 99 27 60	930 940 10,10 10,20 10,30	48 100 29 106 26	56 - 103 26 117 - 27
160 170 210 220 230	74 48 94 69 79	78 60 90 93 100	10,40 11,10 11,20 001 002	57 81 31 51 52	70 68 25 54 57
240 250 260 270 310	75 62 44 23	-12 - 62 - 64 - 63 - 24	003 004 005 011 012	138 19 46 95 94	-137 17 37 -69 -104
320 330 340 350 360	69 107 21 63	73 26 -142 -16 73	013 014 015 021 022	102 88 123 130	-19 82 79 -135 100
410 420 430 440 450	97 84 65 33 50	91 131 88 53 57	023 024 025 031 032	79 83 96 90 112	63 58 82 89 94
460 510 520 530 540	69 111 58 64	96 99 68 102 1	033 034 035 041 042	90 68 19	2 78 65 25
550 560 610 620 630	65 51 54 82 24	68 47 52 83 52	043 044 051 052 053	110 14 83 61	$-113 \\ 3 \\ -56 \\ -76 \\ -16$

Table 2. Observed and calculated structure factors.

-					
hkl	F_0	F _c	hkl	F_0	Fc
054 061 062 063 071	57 55 62 38 45	69 83 72 51 60	103 103 203 203 303	43 63 20 109	$ \begin{array}{r} -30 \\ -12 \\ -6 \\ 5 \\ 124 \end{array} $
101 10ī 201 20ī 301	49 158 140 28 99	$11 \\ 202 \\ -180 \\ 4 \\ -70$	303 403 403 503 503 503	63 52 25	123 37 31 37 - 5
301 401 401 501 501	32 32 145 147 29	-5 -27 -167 129 -7	603 603 703 703 803	90 64 36 46 	$ \begin{array}{r} -98 \\ -115 \\ -38 \\ -47 \\ -31 \end{array} $
601 601 701 701 801	68 25 	$64 \\ 3 \\ 20 \\ 144 \\ -112$	803 903 903 10,03 11,03	31 105 73 64 48	-23 76 95 54 40
801 901 901 10,01 10,01	44 61 26 22 95	$ \begin{array}{r} 32 \\ -62 \\ 12 \\ -32 \\ -102 \end{array} $	$ 104 \\ 104 \\ 204 \\ 204 \\ 304 $	$162 \\ 126 \\ 24 \\ 44$	$38 \\ -125 \\ 111 \\ -28 \\ 11$
$11,01\\11,0\bar{1}\\12,0\bar{1}\\102\\10\bar{2}$	78 51 42 154 90	91 44 24 177 33	304 404 404 504 504 504	127 125 46	$ \begin{array}{r} -33 \\ -4 \\ 105 \\ -103 \\ 58 \\ 58 \end{array} $
202 202 302 302 402	73 120 28 48 127	-36 147 -12 38 144	604 604 704 704 804	46 93 42	$ \begin{array}{r} -19 \\ 27 \\ 3 \\ -98 \\ -58 \\ \end{array} $
402 502 502 602 602 602	48 105 47	$27 \\ 62 \\ -149 \\ 10 \\ -45$	904 10,04 105 105 205	83 103 10	53 71 127 - 8 25
702 702 802 802 902	119 20 57 89 11	-115 - 14 - 49 106 - 38	205 305 305 405 405	104 46 36 90 20	-121 - 25 - 47 - 105 - 5
902 10,02 10,02 11,02 12,02	55 105 — 93 51	$51 \\ 106 \\ 51 \\ - 88 \\ - 41$	505 605 705 805	97 51 38 77	131 57 25 110

Table 2. (Continued)

Fig. 6. The structure of linarite projected on the (010) plane.

Table	3.	Interatomic	distances.
-------	----	-------------	------------

Atom Atom	Distance (Å)	Atom Atom	Distance (Å)	Atom Atom	Distance (Å)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.68 \\ 1.71 \\ 1.57 \\ 2.20 \\ 1.82 \\ 2.37 \\ 2.45 \\ 3.02 \\ 2.60 \\ 3.22 \\ 3.39 $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 2.77\\ 2.82\\ 3.19\\ 3.36\\ 2.88\\ 2.60\\ 2.81\\ 2.14\\ 2.66\\ 2.70\\ 3.55\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.11\\ 3.79\\ 3.42\\ 3.75\\ 2.85\\ 3.58\\ 3.01\\ 2.64\\ 2.52\\ 2.54\\ 3.36\end{array}$

These values imply the errors of $\pm 0.03 \text{\AA}$ resulted from the termination effect.

surrounded by four OH groups which are coordinated in a plane, whereas Pb atoms are situated at the positions close to two SO_4 groups in a space surrounded by five SO_4 and two OH groups.

The interatomic distances are tabulated in Table 3.

Acknowledgment

The writer wishes to express his sincere thanks to Dr. T. ITO and Dr. T. UEDA, who gave him valuable advices throughout this work.

References

BERRY, L. G.: Am. Min., 36, 511 (1951).

PALACHE, C., BERMAN, H. and FRONDEL, C.: Dana's system of mineralogy, 7th ed., II, 553 (1951).

ITO, T. and SAKURAI, K.: Wada's minerals of Japan, 3rd ed., 334 (1947).