Title
FATOU AND LITTLEWOOD THEOREMS FOR POISSON INTEGRALS WITH RESPECT TO NON-INTEGRABLE KERNELS (Harmonic Analysis and Nonlinear Partial Differential Equations)

Author(s)
Aikawa, Hiroaki

Citation
数理解析研究所講究録 (2004), 1389: 1-11

Issue Date
2004-07

URL
http://hdl.handle.net/2433/25813

Right

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
FATOU AND LITTLEWOOD THEOREMS FOR POISSON INTEGRALS WITH RESPECT TO NON-INTEGRABLE KERNELS

相川 弘明 (HIROAKI AIKAWA)
島根大学 総合理工学部

1. Fatou Theorem and Littlewood Theorem

In 1906 Fatou [5] proved the following:

Theorem (Fatou Theorem). Let f be a bounded analytic function on the unit disk $U = \{|z| < 1\}$ in \mathbb{C}. Then f has non-tangential limit at a.e. $e^{i\theta} \in \partial U$.

![Figure 1. Fatou Theorem.](image1)

![Figure 2. Littlewood Theorem.](image2)

In 1927 Littlewood [9, 10] proved the sharpness of non-tangential approach.

Theorem (Littlewood Theorem). Let $\gamma \subset U$ be a tangential curve at 1 and let γ_θ be the rotation. Then there exists a bounded analytic function f on U such that the limit of f along γ_θ does not exists for a.e. $e^{i\theta} \in \partial U$.

There are many generalizations of Fatou theorem as follows:

- Hardy space H^p
- Harmonic functions
- Local Fatou theorem
• Square root of the Poisson kernel. Sjögren (1983) [18, 19, 20]
• Harmonic functions on trees
• Symmetric spaces

On the other hand, there are rather few works for Littlewood theorem:
• Zygmund (1949) [21]. (Blaschke product/Real Analysis)
• Lohwater-Piranian (1957) [11]. (Blaschke product. Everywhere divergence)
• Hakim-Sibony (1983) [6]. (Invariant harmonic functions)
• Aikawa (1990) [1, 2]. (Everywhere divergence)
• Salvatori-Vignati (1997) [17]. (Homogeneous tree).
• Di Biase (1998) [4]. (General tree)
• Hirata (2003) [7]. (Invariant harmonic functions in the unit ball of \(\mathbb{C}^n \))

In this note, we would like to observe that Fatou Theorem and Littlewood Theorem should go hand in hand.

2. FATOU AND LITTLEWOOD THEOREMS FOR HARMONIC FUNCTIONS ON \(\mathbb{R}^{n+1}_+ \)

Let \(\Psi(x) = (1 + |x|^2)^{-(n+1)/2} \) for \(x \in \mathbb{R}^n \) and put \(\Psi_t(x) = \frac{1}{t^n} \Psi(\frac{x}{t}) \) for \(t > 0 \).

Then \(\Psi_t * f(x) \) and \(\Psi_t * 1 = c_n \) and

\[
\frac{\Psi_t * f(x)}{\Psi_t * 1} = \frac{1}{c_n} \int_{\mathbb{R}^n} \frac{t f(y) dy}{(|x-y|^2 + t^2)^{(n+1)/2}}
\]

is the Poisson integral \(Pf(x,t) \) for the half space \(\mathbb{R}^{n+1}_+ = \{(x,t) : x \in \mathbb{R}^n, t > 0 \} \). By \(A \) we denote a positive constant whose value may change from occurrence to the next. If two positive functions \(f \) and \(g \) satisfy \(f \leq A g \) for some \(A \geq 1 \), then we write \(f \preceq g \). If \(f \preceq g \) and \(g \preceq f \), then we write \(f \sim g \). Let \(h(t) \) be a positive function for \(t > 0 \). Define the approach region

\[
\mathcal{A}_h(\xi) = \{(x,t) : |x-\xi| < h(t) \} \quad \text{for} \quad \xi \in \mathbb{R}^n.
\]

If \(h(t) \sim t \), then \(\mathcal{A}_h(\xi) \) gives a nontangential approach to \(\xi \). We say that a function \(u \) in \(\mathbb{R}^{n+1}_+ \) has a nontangential limit at \(\xi \) if the limit of \(u \) along \(\mathcal{A}_h(\xi) \) exists for every nontangential approach \(\mathcal{A}_h(\xi) \).

Theorem A (Fatou Theorem). Let \(1 \leq p \leq \infty \). If \(f \in L^p(\mathbb{R}^n) \), then \(Pf(x,t) \) has nontangential limit \(f(\xi) \) at a.e. \(\xi \in \mathbb{R}^n \).
Theorem B (Littlewood Theorem). If \(\limsup_{t \to 0} h(t)/t = \infty \), then there exists \(f \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \) such that
\[
\lim_{t \to 0} (x, t) \notin d_h(\xi) \lim_{t \to 0} Pf(x, t)
\]
fails to exist at every \(\xi \in \mathbb{R}^n \).

If \(\gamma \) is a tangential curve in \(\mathbb{R}_{+}^{n+1} \) ending at \(\partial \mathbb{R}_{+}^{n+1} \), then there exists \(f \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \) such that
\[
\lim_{t \to 0} (x, t) \notin \gamma + \xi \lim_{t \to 0} Pf(x, t)
\]
fails to exist at every \(\xi \in \mathbb{R}^n \).

The above theorems suggest that the higher integrability of the boundary function \(f \) does not improve the admissible tangency.

3. Non-integrable Kernel

Sjörgen [18, 19, 20] gave extensions of the Fatou theorem for fractional Poisson integrals. Let
\[
P(z, \xi) = \frac{1}{2\pi} \frac{1 - |z|^2}{|z - \xi|^2}
\]
be the Poisson kernel for the unit disk \(U \). Then the classical Poisson integral
\[
Pf(z) = \int_{\partial U} P(z, e^{i\theta}) f(e^{i\theta}) d\theta
\]
is, of course, harmonic, i.e., \(\Delta Pf = 0 \).

Consider the fractional integral, or the \(\lambda \)-Poisson integral
\[
u = P_\lambda f(z) = \int_{\partial U} P(z, e^{i\theta})^{\lambda+1/2} f(e^{i\theta}) d\theta.
\]
Then, with the invariant or hyperbolic Laplacian
\[\Delta = \frac{1}{4}(1 - |z|^2)^2 \Delta, \]
u enjoys \[\Delta u = (\lambda^2 - \frac{1}{4})u. \] Sjögren studied the boundary behavior of the normalization
\[P_\lambda f(z) = \frac{P_\lambda f(z)}{P_\lambda 1(z)}. \]
If \(\lambda > 0 \), then the Fatou theorem holds for \(P_\lambda f \) almost verbatim.

Theorem C. If \(f \in L^1(\partial U) \), then \(P_\lambda f(z) \) has nontangential limit \(f(e^{i\theta}) \) at a.e. \(e^{i\theta} \in \partial U \).

If \(\lambda = 0 \), then suddenly tangential limits appear (Sjögren [18, 19, 20] and Rönning [14, 15, 16]).

Theorem D. Suppose \(f \in L^p(\partial U) \) with \(1 \leq p \leq \infty \). Then \(P_0 f(z) \) has limit \(f(e^{i\theta}) \) along \(\mathcal{A}_h(e^{i\theta}) \) at a.e. \(e^{i\theta} \in \partial U \), where
\[
h(t) \leq \begin{cases}
 t(\log 1/t)^p & \text{if } 1 \leq p < \infty, \\
 t^{1-\epsilon} & \text{for all } \epsilon > 0 \text{ if } p = \infty.
\end{cases}
\]

How should we understand the tangential nature? It seems that the tangential nature is caused by the non-integrability of the kernel.

\[
P(z, \zeta)^{1/2} = \sqrt{\frac{1}{2\pi} \frac{1 - |z|^2}{|z - \zeta|^2}} \sim \frac{1}{|z - \zeta|}.
\]

Let us observe this phenomenon with the half space version due to Brundin [3] and Mizuta-Shimomura [12]. Define \((P_0 f)(x, t) \) by
\[
\int_{\mathbb{R}^n} \left[\frac{t}{c_n(|x - y|^2 + t^2)^{(n+1)/2}} \right]^{n/(n+1)} f(y) dy.
\]
Then \((P_0 1)(x, t) \equiv \infty \) (non-integrable). Fix a bounded open set \(\Omega \subset \mathbb{R}^n \) and regard \((P_0 \chi_\Omega)(x, t) \) as a substitute of \((P_0 1)(x, t) \). Let us study the normalization \((P_0 f)(x, t)/(P_0 \chi_\Omega)(x, t) \).

Theorem E. Let \(1 \leq p \leq \infty \). Suppose, for small \(t > 0 \),
\[
(3.1) \quad h(t) \leq t(\log 1/t)^{p/n} \quad \text{if } 1 \leq p < \infty,
\]
\[
(3.2) \quad h(t) \leq t^{1-\epsilon} \text{ for all } \epsilon > 0 \text{ if } p = \infty.
\]
If $f \in L^p(\mathbb{R}^n)$, then
\[
\lim_{t \to 0} \frac{(P_0 f)(x, t)}{(P_0 \chi_\Omega)(x, t)} = f(\xi) \quad \text{for a.e. } \xi \in \Omega.
\]

Observe that
- For the critical power $n/(n + 1)$, certain tangential limits exist.
- Possible tangency depends on the Lebesgue exponent p for which $f \in L^p(\mathbb{R}^n)$.

The tangential nature in Theorem E is caused by the non-integrability of the kernel. Let $\Phi(x) = \Psi(x)^{n/(n+1)} = (1 + |x|^2)^{-n/2}$. Then
\[
\frac{(P_0 f)(x, t)}{(P_0 \chi_\Omega)(x, t)} = \frac{\Phi_t * f(x)}{\Phi_t * \chi_\Omega(x)}.
\]

Observe that $\Phi \notin L^1(\mathbb{R}^n)$; $\Phi \in L^p(\mathbb{R}^n)$ for $1 < p \leq \infty$; and $\Phi_t * \chi_\Omega(x) \sim \log 1/t$ as $t \to 0$ for $x \in \Omega$. This is a sharp contrast between Ψ and Φ.

From now on we need not the explicit form $(1 + |x|^2)^{-n/2}$. Instead we suppose
- $\Phi(x) > 0$ is a doubling function of $|x|$.
- $\Phi \notin L^1(\mathbb{R}^n)$, $\Phi \in L^p(\mathbb{R}^n)$ for $1 < p \leq \infty$.

Let
\[
\varphi(r) = \int_{|x|<r} \Phi(x) dx.
\]
Then $\varphi(r) \uparrow \infty$ is doubling. Assume
\[
(3.3) \quad \lim_{r \to \infty} \frac{\varphi(2r)}{\varphi(r)} = 1.
\]

This condition looks technical; but it turns out to be crucial as observed in Proposition 1 below. Fix a bounded open set $\Omega \subset \mathbb{R}^n$. Study the boundary behavior of the normalization
\[
(\mathcal{P}_0 f)(x, t) = \frac{\Phi_t * f(x)}{\Phi_t * \chi_\Omega(x)}.
\]

Proposition 1. Condition (3.3) holds if and only if
\[
\lim_{t \to 0} (\mathcal{P}_0 f)(x, t) = f(x) \quad \text{for } x \in \Omega
\]

for all $f \in C_0(\mathbb{R}^n)$.

With (3.3) we obtain the following Fatou theorem for $(\mathcal{P}_0 f)(x, t)$.
Theorem 1. Let $1 \leq p \leq \infty$. Suppose, for small $t > 0$,

(3.4) \[h(t) \lesssim t \varphi(1/t)^{p/n} \quad \text{if } 1 \leq p < \infty, \]
(3.5) \[\lim_{t \to 0} \frac{\varphi(h(t)/t)}{\varphi(1/t)} = 0 \quad \text{if } p = \infty. \]

If $f \in L^p(\mathbb{R}^n)$, then

\[\lim_{(x,t)\to d} (\mathcal{P}_0 f)(x, t) = f(\xi) \quad \text{for a.e. } \xi \in \Omega. \]

Remark 1. Theorem 1 extends Theorem E.

- (3.4) \Rightarrow (3.5).
- If $\Phi(x) = (1 + |x|^2)^{-n/2}$, then
 (i) $\varphi(r) \sim \log r$ for large $r > 0$;
 (ii) (3.1) \iff (3.4), (3.2) \iff (3.5).

What is a Littlewood type theorem? The cases $1 \leq p < \infty$ and $p = \infty$ are different.

Theorem 2. Let $1 \leq p < \infty$. If (3.4) does not hold, i.e.,

(3.6) \[\lim_{t \to 0} \sup_{(x,t)\in\Omega(\xi)} \frac{h(t)}{t \varphi(1/t)^{p/n}} = \infty. \]

then there exists $f \in L^p(\Omega)$ such that for all $\xi \in \Omega$,

\[-\infty = \liminf_{t \to 0} (\mathcal{P}_0 f)(x, t) < \limsup_{t \to 0} (\mathcal{P}_0 f)(x, t) = \infty. \]

Theorem 3. If (3.5) does not hold, i.e.,

(3.7) \[\lim_{t \to 0} \sup_{(x,t)\in\Omega(\xi)} \frac{\varphi(h(t)/t)}{\varphi(1/t)} > 0. \]

then there exists $f \in L^\infty(\Omega)$ such that for all $\xi \in \Omega$,

\[\liminf_{t \to 0} (\mathcal{P}_0 f)(x, t) < \limsup_{t \to 0} (\mathcal{P}_0 f)(x, t). \]

Let us close this section with the proof of Proposition 1. Let $B(x, r)$ be the open ball with center at x, radius r and $\delta_\Omega(x) = \text{dist}(x, \partial\Omega)$. By $\text{diam} \Omega$ we denote the diameter of Ω.
Proof of Proposition 1. For simplicity we assume that \(\Omega \) is a bounded Lipschitz domain. For all \(x \in \Omega \), there exists a cone \(\Gamma(x) \subset \Omega \) with vertex at \(x \) and fixed aperture \(\alpha \) and radius \(r_0 \). Change of variable gives

\[
A \varphi \left(\frac{r_0}{t} \right) \leq \Phi_t * \chi_\Omega(x) \leq \varphi \left(\frac{\text{diam } \Omega}{t} \right),
\]

where \(A > 0 \) depends only on the aperture \(\alpha \). Since \(\varphi \) is doubling, it follows that

\[
\Phi_t * \chi_\Omega(x) \sim \varphi \left(\frac{1}{t} \right) \quad \text{for } x \in \Omega.
\]

Let \(x \in \Omega \) and let \(0 < \varepsilon < \delta_\Omega(x) \). Then (3.8) and the doubling of \(\varphi \) gives

\[
\frac{\varphi(\delta_\Omega(x)/t) - \varphi(\varepsilon/t)}{\varphi(\varepsilon/t)} \leq (\mathcal{P}_0 \chi_\Omega \mathbb{B}(x,t))(x, t) \leq \frac{\varphi(\text{diam } \Omega/t) - \varphi(\varepsilon/t)}{\varphi(\varepsilon/t)}.
\]

Hence \(\lim_{t \to 0} (\mathcal{P}_0 \chi_{\Omega \setminus B(x,t)}) (x, t) = 0 \) if and only if (3.3) holds. Proposition 1 follows from this. \(\square \)

4. Ingredients of Proof of Theorem 1

We state some estimates needed for the proof of Theorem 1. The complete proof will be given elsewhere. First we estimate the influence of the local part of \(f \). If \(p = \infty \), this is stated as follows.

Lemma 1. Suppose \(h \) satisfies (3.5). Then

\[
\lim_{(x,t) \to (\xi,0)} (\mathcal{P}_0 \chi_{B(x,4h(t))})(x, t) = 0 \quad \text{for } \xi \in \Omega.
\]

If \(1 \leq p < \infty \), then the Lebesgue point argument gives an estimate at almost every boundary point.

Lemma 2. Let \(1 \leq p < \infty \) and \(f \in L^p(\mathbb{R}^n) \). Suppose \(h \) satisfies (3.4). Then for a.e. \(\xi \in \Omega,

\[
\lim_{t \to 0} (\mathcal{P}_0 [\chi_{B(x,4h(t))}f])(x, t) = 0.
\]

On the other hand the influence of the global part is controlled by maximal functions. Define the truncated maximal function by

\[
M_t f(x) = \sup_{r > t} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy
\]
with \(t \geq 0 \). \(M f(x) = M_0 f(x) \) is the classical Hardy-Littlewood maximal function. Define another maximal function \(\mathcal{M}_h f(\xi) \) by

\[
\sup_{(x,t) \in \mathcal{A}_h(\xi)} \left| \frac{1}{\Phi_t * \chi_\Omega(x)} \int_{|x-y| \geq 4h(t)} \Phi_t(x-y) f(y) dy \right|
\]

associated with the approach region \(\mathcal{A}_h(\xi) \).

Lemma 3. There is \(A \) such that

\(\mathcal{M}_h f(\xi) \leq A M f(\xi) \) for \(\xi \in \Omega \)

for arbitrary \(h(t) > 0 \).

Lemma 4. Let \(f \in L^p(\Omega) \) with \(1 \leq p < \infty \). Then

\[
\lim_{t \to 0} \| (\mathcal{P}_0 f)(\cdot, t) - f \|_p = 0.
\]

As a result, for a.e. \(x \in \Omega \), some subsequence \(\{(\mathcal{P}_0 f)(x, t_j)\}_j \) converges to \(f(x) \).

5. **Outline of Proof of Theorem 2**

Let us prove Theorem 2 with the aid of the following two lemmas, whose proof will be given elsewhere.

Lemma 5 (Lower Estimate). We find \(0 < \exists A_0 < 1 \) such that

\[
(\mathcal{P}_0 \chi_{B(x, r)})(x, t) \geq A_0 \frac{\varphi(r/t)}{\varphi(1/t)}
\]

for \(x \in \Omega, t > 0, r > 0 \) small.

Lemma 6 (Upper Estimate). If \(f \in L^1(\Omega) \), then

\[
| (\mathcal{P}_0 f)(x, t) | \leq M_f(x) \text{ for } x \in \Omega.
\]

Proof of Theorem 2. By (3.6) we find \(t_j \downarrow 0 \) such that

\[
\frac{t_j \varphi(1/t_j)^{p/n}}{h(t_j)} \to 0.
\]

Let \(\{x_j^\prime\} \) be lattice points \((h(t_j)/\sqrt{n})\mathbb{Z}^n\). Observe \(x_j^\prime \) are vertices of cubes of side length \(h(t_j)/\sqrt{n} \). Hence we have \(x_j^\prime \in B(\xi, h(t_j)) \).

If \(\xi \in \Omega \), then

\[
(x_j^\prime, t_j) \in \mathcal{A}_h(\xi) \text{ with } x_j^\prime \in \Omega,
\]

provided \(j \) is sufficiently large.
Put vertical line segments connecting $(x_j^v, 0)$ and (x_j^v, t_j). We obtain a bed of thorns. We observe that $\mathcal{A}_h(\xi)$ cannot touch Ω without being pierced by some thorn. Now we construct f_j such that $(\mathcal{P}_0 f_j)(x, t)$ is large on each "thorn". Put

$$f_j = \varphi\left(\frac{1}{t_j}\right)\chi_{D_j} \quad \text{with } D_j = \bigcup_{v} B(x_j^v, t_j) \cap \Omega.$$

Extract subsequence, find $c_j \uparrow \infty$ and let

$$f = \sum_{j=1}^{\infty} (-1)^j c_j f_j \in L^p(\mathbb{R}^n).$$

If j is even and $j \to \infty$, then

$$(\mathcal{P}_0 f)(x_j^v, t_j) \to \infty;$$

if j is odd and $j \to \infty$, then

$$(\mathcal{P}_0 f)(x_j^v, t_j) \to -\infty.$$

Since $\mathcal{A}_h(\xi)$ cannot touch Ω without being pierced by some thorn, we obtain

$$-\infty = \liminf_{t \to 0} (\mathcal{P}_0 f)(x, t) < \limsup_{t \to 0} (\mathcal{P}_0 f)(x, t) = \infty.$$

\hfill \square

6. Oscillating limits along curves

If $p = \infty$, then a result stronger than Theorem 3 can be obtained. Let γ be a curve in \mathbb{R}^{n+1}_+ ending at the boundary. Let $\gamma[a]$ be the connected component of $\gamma \cap \{(x, t) : 0 \leq t \leq a\}$ containing the end point of γ.
Theorem 4. Assume $\varphi(2r)/\varphi(r)$ is nonincreasing of r. Suppose γ is more tangential than (3.5), i.e.,

\begin{equation}
\lim_{t \to 0} \sup_{r} \frac{\varphi(\mathrm{diam}(\gamma(t))/t)}{\varphi(1/t)} > 0.
\end{equation}

Then there exists $f \in L^\infty(\Omega)$ such that for every $\xi \in \Omega$,

\[
\lim_{t \to 0} \inf_{(x,t) \in \gamma + \xi} (\operatorname{REJECT}_0 f)(x,t) < \lim_{t \to 0} \sup_{(x,t) \in \gamma + \xi} (\operatorname{REJECT}_0 f)(x,t).
\]

The proof of this theorem will be given elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE 690-8504, JAPAN
E-mail address: haikawa@math.shimane-u.ac.jp