On CM-triviality

筑波大学数学系 米田郁生 (Ikuo Yoneda)
Institute of Mathematics, University of Tsukuba

November 18, 2003

Abstract

Hrushovski's generic construction yields CM-trivial structures with weak elimination of imaginaries. Here, we would like to give questions on CM-trivality.

1 CM-triviality of generic structures.

In this section, we show weak elimination of imaginaries and CM-triviality of well-known stable generic structures.

Definition 1 We say that T is CM-trivial if

$$A_1 \underset{B}{\downarrow} A_2 \Rightarrow A_1 \underset{\operatorname{acl}^{eq}(A_1 A_2) \cap B}{\downarrow} A_2$$

for $A_1, A_2, B \subset \mathcal{M}^{eq}$ algebraically closed sets.

Fact 2 Let T be any theory of well-known stable generic structure.

Then we have;

1. (M: big model of T) For any $A, B \subset M$ algebraically closed sets,

$$A \underset{A \cap B}{\downarrow} B \Leftrightarrow AB = A \otimes_{A \cap B} B \leq \mathcal{M},$$

2. any type over algebraically closed sets in real sort is stationary.

Explanations

- 1. The language is $L = \{R_i(X_1 ... X_{n_i}) : i < \omega\}$, where $R_i(X_1 ... X_{n_i})$ is an n_i -ary predicate.
- 2. We assume that any predicate is closed under permutations and $R_i(a_1 \ldots a_{n_i}) \Rightarrow a_i \neq a_j (i \neq j \leq n_i)$.
- 3. We defined predimension on finite L-structures.

$$\delta(A) = |A| - \sum_{i < \omega} \alpha_i \cdot |R_i^A|$$

, where A is a finite L-structure, R_i^A is the set of tuples of A satisfying R_i (up to permutations) and $\alpha_0 > \alpha_1 > \ldots > \alpha_i (i < \omega)$ are fixed positive real numbers.

4. For finite L-structures A, B, we say A is closed in B (write $A \leq B$) if

$$\delta(XA) - \delta(A) \ge 0$$

for any $X \subseteq B$. "A is closed in B" means that there are only suitably many (depending on α) sequences intersecting A and $B \setminus A$, and satisfying some predicates.

For possibly infinite L-structures A, N, we say that A is closed in N (write $A \leq N$) if

$$A_0 \leq A_0 X$$

for any $A_0 \subset_{\omega} A, X \subset_{\omega} N \setminus A$.

There exists the smallest closed subset $cl_N(A)$ of N containing A.

In any well-known stable generic structure, $\operatorname{cl}_N(A) \subseteq \operatorname{acl}_N(A)$, in particular $\operatorname{acl}_N(A) \leq N$.

5. For L-structure A, B, C with $A \cap B \subseteq C$, we say that A and B are freely joined over C if there are no $i < \omega$ and $\bar{d} \in ABC$ such that $R_i(\bar{d})$, $\bar{d} \cap (A \setminus C) \neq \emptyset$ and $\bar{d} \cap (B \setminus C) \neq \emptyset$, and we write $ABC = A \otimes_C B$.

From now on, let T be as in Fact 2.

Proposition 3 T has weak elimination of imaginaries.

proof First we show the following claim.

Claim Let A, B, B_1, B_2 be algebraically closed. Suppose that $B_i \subseteq B$ and $A \downarrow_{B_i} B$ for i = 1, 2. Then $A \downarrow_{B_1 \cap B_2} B$.

The proof of this claim: Put $A_i = \operatorname{acl}(AB_i)$. Then $A_iB = A_i \otimes_{B_i} B \leq \mathcal{M}$ by Fact 2, for i = 1, 2. Intersecting the two sets yields $(A_1 \cap A_2)B = (A_1 \cap A_2) \otimes_{B_1 \cap B_2} B \leq \mathcal{M}$. Note that $A_1 \cap A_2$ and $B_1 \cap B_2$ are algebraically closed. So by Fact 2, $A_1 \cap A_2 \downarrow_{B_1 \cap B_2} B$; since $A \subseteq A_1 \cap A_2$ we get $A \downarrow_{B_1 \cap B_2} B$, as desired.

Now we show the weak elimination of imaginaries. Let $E(\bar{x}, \bar{y})$ be a definable equivalence relation over \emptyset , and consider $e = \bar{a}_E$, where \bar{a}_E is the *E*-class of \bar{a} . Take \bar{b}_1, \bar{b}_2 such that $\bar{a}, \bar{b}_1, \bar{b}_2$ are independent over e, and $\bar{a}_E = (\bar{b}_1)_E = (\bar{b}_2)_E$. As $e \in \operatorname{acl}^{eq}(\bar{b}_i)$ we have $\bar{a} \downarrow_{\bar{b}_i} \bar{b}_1 \bar{b}_2$, for i = 1, 2.

Put $B = \operatorname{acl}(b_1) \cap \operatorname{acl}(b_2)$, where the algebraic closure is taken in the real sort. Then $\bar{a} \downarrow_B \bar{b}_1 \bar{b}_2$ by claim. As $\operatorname{tp}(\bar{a}/B)$ is stationary and $e \in \operatorname{dcl}^{eq}(\bar{a}) \cap \operatorname{dcl}^{eq}(\bar{b}_1 \bar{b}_2)$, we get $e \in \operatorname{dcl}^{eq}(B)^*$. On the other hand, as $\bar{b}_1 \downarrow_e \bar{b}_2$, we have $B \subseteq \operatorname{acl}(e)$. By compactness we can find a finite tuple $\bar{b} \in B$ with $e \in \operatorname{dcl}^{eq}(\bar{b})$; clearly $\bar{b} \in \operatorname{acl}^{eq}(e)$, as desired.

Proposition 4 T is CM-trivial.

proof We use the following fundamental property.

- 1. If $ABC = A \otimes_C B$, $A \cap B \subseteq C' \subset C$, $A \setminus C = A \setminus C'$, $B \setminus C = B \setminus C'$, then $ABC' = A \otimes_{C'} B$.
- 2. If $ABC = A \otimes_C B, B' \subset B, B'C \leq BC$, then $AB'C = A \otimes_C B' \leq ABC = A \otimes_C B$.

^{*}If $\operatorname{tp}(a/A)$ is stationary and $e \in \operatorname{dcl}^{eq}(a)$, then $\operatorname{tp}(e/A)$ is also stationary: Suppose $e \equiv_A e', e \downarrow_A B$ and $e' \downarrow_A B$. We need to show $e \equiv_B e'$. By $e \in \operatorname{dcl}^{eq}(a)$ and compactness, there exists a definable function f such that f(a) = e. We may assume $a \downarrow_{Ae} B$, so we have $a \downarrow_A B$. Take a' with $ea \equiv_A e'a'$. Again we may assume $a' \downarrow_{Ae'} B$, so $a' \downarrow_A B$ follows. As $a \equiv_A a'$, $a \equiv_B a'$ follows. On the other hand e = f(a), e' = f(a'), we see $e \equiv_B e'$. If $\operatorname{tp}(a/A)$ is stationary, $a \downarrow_A B$ and $a \in \operatorname{dcl}^{eq}(B)$, then $a \in \operatorname{dcl}^{eq}(A)$: Note that $a \in \operatorname{acl}^{eq}(A)$. So, if $a' \equiv_A a$, then $a' \downarrow_A B$. By stationarity, we see $a \equiv_B a'$, so a = a' follows.

By weak elimination of imaginaries, we may work in \mathcal{M} not in \mathcal{M}^{eq} to show the CM-triviality. Put $D = \operatorname{acl}(A_1A_2)$, $\tilde{A}_i = \operatorname{acl}(A_iE)$. We need to show $A_1 \downarrow_E A_2 \Rightarrow A_1 \downarrow_{E\cap D} A_2$. By Fact 2 we see $\tilde{A}_1\tilde{A}_2 = \tilde{A}_1 \otimes_E \tilde{A}_2 \leq \mathcal{M}$. So, by $1 D = (\tilde{A}_1 \cap D) \otimes_{D\cap E} (\tilde{A}_2 \cap D) \leq \mathcal{M}$ (†). Put $A'_i = \operatorname{acl}(A_i(D \cap E)) \subset \tilde{A}_i$. As $A_1 \downarrow_E A_2$, we see $A'_1 \cap A'_2 = D \cap E$. By $D \cap E \leq A'_i \leq \tilde{A}_i \cap D$,(†) and 2,

$$A_1'A_2' = A_1' \otimes_{D \cap E} A_2' \leq (\tilde{A}_1 \cap D) \otimes_{D \cap E} (\tilde{A}_2 \cap D)D \leq \mathcal{M}.$$

By Fact 2 again, we see $A_1 \downarrow_{E \cap D} A_2$.

2 Questions

We say that a theory (or structure) is strictly CM-trivial if it is CM-trivial but not one-based.

Question 1 Every strictly CM-trivial stable structure we know has weak elimination of imaginaries. On the other hand, Evans had CM-trivial SU-rank 1 structure without weak elimination of imaginaries in [E].

Does strictly CM-trivial strongly minimal set has weak elimination of imaginaries?

(It is well-known that if D is a strongly minimal sets with infinite $acl(\emptyset)$, then D has weak elimination of imaginaries.)

Question 2 Is there strictly CM-trivial stable structure except stable generic structures?

Question 3 One-basedness coinsides with local modularity among strongly minamal sets. (This is not true among SU-rank 1 sets. See [V].)

Is there combinatorial geometric notion equivalent to CM-triviality among strongly minimal sets?

The following is a famous question.

Question 4 Evans showed supersimple \aleph_0 -categorical CM-trivial theory must have finite SU-rank in [EW].

Is there supersimple \aleph_0 -categorical theory with infinite SU-rank? Is there \aleph_0 -categorical simple non-CM-trivial theory?

References.

- [E] D. E. Evans, \aleph_0 -categorical structures with a predimension, Annals of Pure and Applied Logic, 116 (2002), 157-186.
- [EW]D. Evans and F. Wagner, Supersimple ω -categorical groups and theories, The Journal of Symbolic Logic, 65 (2000), 767-776.
- [V] E. Vassiliev, Generic pairs of SU-rank 1 structures, Annals of Pure and Applied Logic, 120 (2003), 103-149
- [VY] V. Verbovskiy and I. Yoneda, CM-triviality and relational structures, accepted by Annals of Pure and Applied Logic in February 2003.