On CM-triviality

Ikuo Yoneda
Institute of Mathematics, University of Tsukuba
November 18, 2003

Abstract
Hrushovski's generic construction yields CM-trivial structures with weak elimination of imaginaries. Here, we would like to give questions on CM-triviality.

1 CM-triviality of generic structures.

In this section, we show weak elimination of imaginaries and CM-triviality of well-known stable generic structures.

Definition 1 We say that T is CM-trivial if

$$A_1 \downarrow_B A_2 \Rightarrow A_1 \downarrow_{acl^e(A_1 A_2) \cap B} A_2$$

for $A_1, A_2, B \subset M^{eq}$ algebraically closed sets.

Fact 2 Let T be any theory of well-known stable generic structure. Then we have;

1. (M: big model of T) For any $A, B \subset M$ algebraically closed sets,

$$A \downarrow_{A \cap B} B \Leftrightarrow AB = A \otimes_{A \cap B} B \leq M,$$

2. any type over algebraically closed sets in real sort is stationary.
Explanations

1. The language is $L = \{R_i(X_1 \ldots X_{n_i}) : i < \omega\}$, where $R_i(X_1 \ldots X_{n_i})$ is an n_i-ary predicate.

2. We assume that any predicate is closed under permutations and $R_i(a_1 \ldots a_{n_i}) \Rightarrow a_i \neq a_j (i \neq j \leq n_i)$.

3. We defined predimension on finite L-structures.

$$\delta(A) = |A| - \sum_{i<\omega} \alpha_i \cdot |R_i^A|$$

4. For finite L-structures A, B, we say A is closed in B (write $A \leq B$) if

$$\delta(XA) - \delta(A) \geq 0$$

for any $X \subseteq B$. "A is closed in B" means that there are only suitably many (depending on α) sequences intersecting A and $B \setminus A$, and satisfying some predicates.

For possibly infinite L-structures A, N, we say that A is closed in N (write $A \leq N$) if

$$A_0 \leq A_0 X$$

for any $A_0 \subset_{\omega} A, X \subset_{\omega} N \setminus A$.

There exists the smallest closed subset $\text{cl}_N(A)$ of N containing A.

In any well-known stable generic structure, $\text{cl}_N(A) \subseteq \text{acl}_N(A)$, in particular $\text{acl}_N(A) \leq N$.

5. For L-structure A, B, C with $A \cap B \subseteq C$, we say that A and B are freely joined over C if there are no $i < \omega$ and $\bar{d} \in ABC$ such that $R_i(\bar{d})$, $\bar{d} \cap (A \setminus C) \neq \emptyset$ and $\bar{d} \cap (B \setminus C) \neq \emptyset$, and we write $ABC = A \otimes_C B$.

From now on, let T be as in Fact 2.
Proposition 3 \(T \) has weak elimination of imaginaries.

proof First we show the following claim.
Claim Let \(A, B, B_1, B_2 \) be algebraically closed. Suppose that \(B_i \subseteq B \) and \(A \downarrow B_i \) for \(i = 1, 2 \). Then \(A \downarrow B_1 \cap B_2 \).

The proof of this claim: Put \(A_i = \text{acl}(AB_i) \). Then \(A_i B = A_i \otimes_{B_i} B \leq \mathcal{M} \) by Fact 2, for \(i = 1, 2 \). Intersecting the two sets yields \((A_1 \cap A_2) \otimes_{B_1 \cap B_2} B \leq \mathcal{M} \). Note that \(A_1 \cap A_2 \) and \(B_1 \cap B_2 \) are algebraically closed. So by Fact 2, \(A_1 \cap A_2 \downarrow B_1 \cap B_2 \); since \(A \subseteq A_1 \cap A_2 \) we get \(A \downarrow B_1 \cap B_2 \), as desired.

Now we show the weak elimination of imaginaries. Let \(E(x, y) \) be a definable equivalence relation over \(\emptyset \), and consider \(e = \overline{a}_E \), where \(\overline{a}_E \) is the \(E \)-class of \(a \).

Take \(\overline{b}_1, \overline{b}_2 \) such that \(\overline{a}, \overline{b}_1, \overline{b}_2 \) are independent over \(e \), and \(\overline{a}_E = (\overline{b}_1)_E = (\overline{b}_2)_E \). As \(e \in \text{acl}^{eq}(\overline{b}_i) \) we have \(\overline{a} \downarrow_{\overline{b}_i} \overline{b}_1 \overline{b}_2 \), for \(i = 1, 2 \).

Put \(B = \text{acl}(b_1) \cap \text{acl}(b_2) \), where the algebraic closure is taken in the real sort. Then \(\overline{a} \downarrow_{E} \overline{b}_1 \overline{b}_2 \) by claim. As \(\text{tp}(\overline{a}/B) \) is stationary and \(e \in \text{dcl}^{eq}(a) \cap \text{dcl}^{eq}(\overline{b}_1 \overline{b}_2) \), we get \(e \in \text{dcl}^{eq}(B)^* \). On the other hand, as \(\overline{b}_1 \downarrow_e \overline{b}_2 \), we have \(B \subseteq \text{acl}(e) \).

By compactness we can find a finite tuple \(\overline{b} \in B \) with \(e \in \text{dcl}^{eq}(\overline{b}) \); clearly \(\overline{b} \in \text{acl}^{eq}(e) \), as desired.

Proposition 4 \(T \) is CM-trivial.

proof We use the following fundamental property.

1. If \(ABC = A \otimes_C B, A \cap B \subseteq C' \subset C, A \setminus C = A \setminus C', B \setminus C = B \setminus C' \), then \(ABC' = A \otimes_{C'} B \).

2. If \(ABC = A \otimes_C B, B' \subset B, B'C \leq BC, \) then \(AB'C = A \otimes_C B' \leq ABC = A \otimes_C B \).

*If \(\text{tp}(a/A) \) is stationary and \(e \in \text{dcl}^{eq}(a) \), then \(\text{tp}(e/A) \) is also stationary: Suppose \(e \equiv_A e', e \downarrow_A B \) and \(e' \downarrow_A B \). We need to show \(e \equiv_B e' \). By \(e \in \text{dcl}^{eq}(a) \) and compactness, there exists a definable function \(f \) such that \(f(a) = e \). We may assume \(a \downarrow_{Ae} B \), so we have \(a \downarrow_A B \). Take \(a' \) with \(ea \equiv_A e'a' \). Again we may assume \(a' \downarrow_{Ae'} B \), so \(a' \downarrow_A B \) follows. As \(a \equiv_A a', a \equiv_B a' \) follows. On the other hand \(e = f(a), e' = f(a') \), we see \(e \equiv_B e' \).

If \(\text{tp}(a/A) \) is stationary, \(a \downarrow_A B \) and \(a \in \text{dcl}^{eq}(B) \), then \(a \in \text{dcl}^{eq}(A) \): Note that \(a \in \text{acl}^{eq}(A) \). So, if \(a' \equiv_A a, \) then \(a' \downarrow_A B \). By stationarity, we see \(a \equiv_B a' \), so \(a = a' \) follows.
By weak elimination of imaginaries, we may work in \mathcal{M} not in \mathcal{M}^eq to show the CM-triviality. Put $D = acl(A_1A_2), \tilde{A}_i = acl(A_iE)$. We need to show $A_1 \downarrow E A_2 \Rightarrow A_1 \downarrow_{E \cap D} A_2$. By Fact 2 we see $\tilde{A}_1\tilde{A}_2 = \tilde{A}_1 \otimes_E \tilde{A}_2 \leq \mathcal{M}$. So, by 1

$$D = (\tilde{A}_1 \cap D) \otimes_{D \cap E} (\tilde{A}_2 \cap D) \leq \mathcal{M} \quad (\dagger).$$

Put $A'_i = acl(A_i(D \cap E)) \subset \tilde{A}_i$. As $A_1 \downarrow_E A_2$, we see $A'_1 \cap A'_2 = D \cap E$. By $D \cap E \leq A'_i \leq \tilde{A}_i \cap D,(\dagger)$ and 2,

$$A'_1A'_2 = A'_1 \otimes_{D \cap E} A'_2 \leq (\tilde{A}_1 \cap D) \otimes_{D \cap E} (\tilde{A}_2 \cap D) D \leq \mathcal{M}.$$

By Fact 2 again, we see $A_1 \downarrow_{E \cap D} A_2$.

2 Questions

We say that a theory (or structure) is strictly CM-trivial if it is CM-trivial but not one-based.

Question 1 Every strictly CM-trivial stable structure we know has weak elimination of imaginaries. On the other hand, Evans had CM-trivial SU-rank 1 structure without weak elimination of imaginaries in [E].

Does strictly CM-trivial strongly minimal set has weak elimination of imaginaries?

(It is well-known that if D is a strongly minimal sets with infinite $acl(\emptyset)$, then D has weak elimination of imaginaries.)

Question 2 Is there strictly CM-trivial stable structure except stable generic structures?

Question 3 One-basedness coincides with local modularity among strongly minimal sets. (This is not true among SU-rank 1 sets. See [V].)

Is there combinatorial geometric notion equivalent to CM-triviality among strongly minimal sets?

The following is a famous question.

Question 4 Evans showed supersimple \aleph_0-categorical CM-trivial theory must have finite SU-rank in [EW].

Is there supersimple \aleph_0-categorical theory with infinite SU-rank? Is there \aleph_0-categorical simple non-CM-trivial theory?
References.