Gap Number of Groups

Hiroshi Tanaka
Graduate School of Natural Science and Technology,
Okayama University

Finite gap number is introduced by J. C. Lennox and J. E. Roseblade in [LR]. We study groups of the small gap number.

1 ladder index

Let \(T \) be complete theory in an \(L, \phi(x, y) \) \(L \)-formula (\(x, y \) are free variables).

Definition 1 An \(n \)-ladder for \(\phi \) is a sequence \((a_0, \ldots, a_{n-1}; b_0, \ldots, b_{n-1})\) of tuples in some model \(M \) of \(T \), such that

\[
\forall i, j < n, M \models \phi(a_i, b_j) \iff i \leq j.
\]

We say that \(\phi \) is stable formula if there exists \(n \) such that no \(n \)-ladder for \(\phi \) exists; otherwise it is unstable. The least such \(n \) is the ladder index of \(\phi \).

Theorem 2 The theory \(T \) is unstable if and only if there exists an unstable formula in \(L \) for \(T \).

Henceforth we consider the ladder index for the commutativity formula "\(xy = yx \)". The ladder index of a group \(G \) for the commutativity formula is denoted by \(\ell(G) \).
2 gap number

Let G be a group.

Definition 3 A group G has a finite gap number if for any subgroups $H_0, H_1, \ldots, H_n, \ldots$ of G, among the sequence

$$C_G(H_0) \leq C_G(H_1) \leq \cdots \leq C_G(H_n) \leq \cdots$$

there exist at most m many strict inclusions. The most such m is the gap number of G, and denoted by $g(G)$.

Lemma 4 Let $g(G) = n$. Suppose that the sequence

$$C_G(H_0) > C_G(H_1) > \cdots > C_G(H_n)$$

gives gap number n. Then there exists $a_i (0 \leq i \leq n)$ in G such that $C_G(H_i) = C_G(\{a_0, a_1, \ldots, a_i\})$ for each i. In particular we may do $a_0 = 1$. Henceforth we abbreviate as $C_G(\{a_0, a_1, \ldots, a_i\}) = (a_0, a_1, \ldots, a_i)$.

By Lemma 4, we can prove the following:

Theorem 5 [ITT] $\ell(G) = g(G) + 2$.

Lemma 6 Let $A, B \subset G$ with $A \subset B$. Then $(A) \supset (B)$.

Lemma 7 Let $A \subset G$. Then $((A)) = (A)$.

By the above lemma, the following holds:

Lemma 8 Let $g(G) = n$. Suppose $(a_0, \ldots, a_n; b_0, \ldots, b_n)$ is $(n+1)$-ladder. Then

$$((a_0)) = (b_n, \ldots, b_1, b_0);$$
$$((a_0, a_1)) = (b_n, \ldots, b_1);$$
$$\vdots$$
$$((a_0, \ldots, a_n)) = (b_n).$$

Lemma 9 Let $g(G) = n$. Suppose that the sequence

$$G > (a_1) > \cdots > (a_1, a_2, \ldots, a_n)$$

gives gap number n. Then $(a_1, a_2, \ldots, a_{n-1})$ is abelian.
3 Groups of gap number up to four

From now on we do not consider the ladder index but the gap number.

Theorem 10 [ITT] $g(G) = 0$ if and only if G is abelian.

Theorem 11 [ITT] There exist no groups G of $g(G) = 1$.

(proof) Let $g(G) \geq 1$. Then there exists $a \in G$ such that $G > (a)$. Since $(a) \neq G$, there exists $b \notin (a)$. Therefore, we have $G > (a) > (a, b)$. Thus $g(G) \geq 2$.

Theorem 12 [ITT] $g(G) = 2$ if and only if G is not abelian, and for any $a, b \in G \setminus Z(G)$, if $(a) \neq (b)$ then $(a, b) = Z(G)$.

Example 13 $g(S_3) = g(D_n) = 2$ (D_n is a dihedral group).

Example 14 $g(SL(2, F)) = 2$ (F is a field).

Theorem 15 [ITT] There exist no groups G of $g(G) = 3$.

(proof) Let $g(G) \geq 3$. Then there exist $a_1, a_2 \in G$ such that $G > (a_1) > (a_1, a_2) > Z(G)$.

Case 1: $a_1a_2 = a_2a_1$.

Since $(a_1) \neq (a_2)$, we may assume $(a_1) \setminus (a_2) \neq \emptyset$. Let $b \in (a_1) \setminus (a_2)$. As $a_1 \notin G$, there exists a $c \in G \setminus (a_1)$. Therefore, we have $G > (a_1) > (a_1, a_2) > (a_1, a_2, b) > (a_1, a_2, b, c)$.

Thus $g(G) \geq 4$.

Case 2: $a_1a_2 \neq a_2a_1$.

There exists a $d \in (a_1, a_2) \setminus Z(G)$. Since $d \notin Z(G)$, we can find $e \notin G \setminus (d)$.

Then we have $G > (d) > (d, a_1) > (d, a_1, a_2) > (d, a_1, a_2, e)$.

Thus $g(G) \geq 4$.

Example 16 $g(S_4) = g(S_5) = 4$.
4 Groups of gap number five

In this section, we investigate whether a group G of gap number 5 exists or not.

Let $g(G) = 5$ and let $(1, a_1, \ldots, a_5; b_0, \ldots, b_4, 1)$ be 6-ladder.

Case 1: $a_1a_2 = a_2a_1$, $a_1a_3 = a_3a_1$ and $a_2a_3 = a_3a_2$.

Then we have

$$G > (a_1) > (a_1, a_2) > (a_1, a_2, a_3) > (a_1, a_2, a_3, b_2) > (a_1, a_2, a_3, b_2, b_1) > Z(G).$$

Thus, $g(G) \geq 6$.

Case 2: $a_1a_2 = a_2a_1$, $a_1a_3 = a_3a_1$, $a_2a_3 = a_3a_2$ and $a_1a_4 \neq a_4a_1$.

Then we have

$$G > (b_4) > (b_4, a_1) > (b_4, a_1, a_2) > (b_4, a_1, a_2, a_3) > (b_4, a_1, a_2, a_3, a_4) > Z(G).$$

Thus, $g(G) \geq 6$.

Case 3: $a_1a_2 = a_2a_1$, $a_1a_3 = a_3a_1$, $a_2a_3 = a_3a_2$ and $a_1a_4 = a_4a_1$.

Then we have

$$G > (a_1) > (a_1, b_3) > (a_1, b_3, a_2) > (a_1, b_3, a_2, a_3) > (a_1, b_3, a_2, a_3, a_4) > Z(G).$$

Thus, $g(G) \geq 6$.

Case 4: $a_1a_2 = a_2a_1$, $a_1a_3 \neq a_3a_1$ and $a_2a_3 = a_3a_2$.

Then we have

$$G > (a_2) > (a_2, a_1) > (a_2, a_1, a_3) > (a_2, a_1, a_3, a_4) > Z(G).$$

Moreover $a_2a_1 = a_1a_2$, $a_2a_3 = a_3a_2$ and $a_1a_3 \neq a_3a_1$. By case 2, 3, $g(G) \geq 6$.

Case 5: $a_1a_2 = a_2a_1$ and $a_1a_3 \neq a_3a_1$.

Then we have

$$G > (b_4) > (b_4, b_3) > (b_4, b_3, a_1) > (b_4, b_3, a_1, b_1) > Z(G).$$

Moreover $b_4a_1 = a_1b_4$ and $b_3a_1 = a_1b_3$. By case 1, 4, $g(G) \geq 6$.

Therefore, by case 1 through 5, we hold $a_1a_2 \neq a_2a_1$.

Case 6: $a_1a_2 \neq a_2a_1$ and $a_1a_3 = a_3a_1$.

Then we have

$$G > (a_1) > (a_1, a_3) > (a_1, a_3, a_2) > (a_1, a_3, a_2, a_4) > Z(G).$$

Moreover $a_1a_3 = a_3a_1$. Thus, $g(G) \geq 6$.

Case 7: $a_1a_2 \neq a_2a_1, a_1a_3 \neq a_3a_1$ and $a_2a_3 = a_3a_2$.

Then we have

$$G > (a_2) > (a_2, a_1) > (a_2, a_1, a_3) > (a_2, a_1, a_3, a_4) > Z(G).$$

Moreover $a_2a_3 = a_3a_2$. By case 6, $g(G) \geq 6$.

Therefore, by case 1 through 7, we hold $a_1a_2 \neq a_2a_1, a_1a_3 \neq a_3a_1$ and $a_2a_3 \neq a_3a_2$.

Case 8: all of a_1, a_2, a_3, a_4 are noncommutative except $a_1a_4 = a_4a_1, a_2a_4 = a_4a_2$.

Then we have

$$G > (a_1) > (a_1, a_2) > (a_1, a_2, a_4) > (a_1, a_2, a_4, a_3) > Z(G).$$

Moreover $a_1a_4 = a_4a_1$. By case 6, $g(G) \geq 6$.

Case 9: all of a_1, a_2, a_3, a_4 are noncommutative except $a_1a_4 = a_4a_1, a_3a_4 = a_4a_3$.

Then we have

$$G > (a_1) > (a_1, a_3) > (a_1, a_3, a_4) > (a_1, a_3, a_4, a_2) > Z(G).$$

Moreover $a_1a_4 = a_4a_1$. By case 6, $g(G) \geq 6$.

Case 10: all of a_1, a_2, a_3, a_4 are noncommutative except $a_2a_4 = a_4a_2, a_3a_4 = a_4a_3$.

Then we have

$$G > (a_2) > (a_2, a_3) > (a_2, a_3, a_4) > (a_2, a_3, a_4, a_1) > Z(G).$$

Moreover $a_2a_4 = a_4a_2$. By case 6, $g(G) \geq 6$.
In the cases of remaining we understand the following:

Lemma 17 Let $G > (a_1) > (a_1, a_2) > \cdots > (a_1, a_2, a_3, a_4, a_5) = Z(G)$. Then we can do as follows: all of a_1, a_2, a_3, a_4 are noncommutative except $a_1 a_4 = a_4 a_1, a_2 a_4 = a_4 a_2, a_3 a_4 = a_4 a_3, a_1 a_5 = a_5 a_1, a_2 a_5 = a_5 a_2, a_3 a_5 = a_5 a_3$.

(proof) We have

$G > (a_1) > (a_1, a_2) > (a_1, a_2, a_3) > (a_1, a_2, a_3, b_4) > (a_1, a_2, a_3, b_4, b_5)$. Moreover all of a_1, a_2, a_3 are noncommutative, and all of b_4, b_3, b_2 are noncommutative, as desired.

Question 18 Does there exist a group G of $g(G) = 5$?

References

