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ABSTRACT: We present some facts and pose several open problems and conjectures about
period-two trichotomies in rational difference equations of the form

$X_{n+1}= \frac{a+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-}2}{A+Bx_{n}+Cx_{n-1}+Dx_{n-2}}$ , $n=0,1$ , $\ldots$

with nonnegative parameters and nonnegative initial conditions.

1. INTRODUCTION

We present some facts and pose several open problems and conjec-
tures about period-two trichotomies in rational difference equations of
the form

$x_{n+1}= \frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+Bx_{n}+Cx_{n-1}+Dx_{n-2}}$ , $n=0,1$ , (1.1)

with nonnegative parameters $\alpha$ , $\mathrm{a}$ , $\gamma$ , $\delta$, $A$ , $B$ , $C$, $D$ , and nonnegative ini-
tial conditions $x_{-2}$ , $x_{-1}$ , $x_{0}$ such that the denominator is always posi-
tive. To avoid degenerate cases we will assume without further mention
that

$\alpha+\beta+\gamma+\delta$ , $B+C+D\in(0, \infty)\mathrm{t}$

By a period-two trichotomy result for Eq.(l.l), we mean a bifurcation
result where at a certain value of a parameter all solutions converge to
a period-two solution of the equation, and then for smaller values all
solutions have limits, while for larger values there exist unbounded
solutions.
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For the Riccati equation

$x_{n+1}= \frac{\alpha+\beta x_{n}}{A+Bx_{n}}$ , $n=0,1$ , .. 1

there are no periodic solutions unless

$\beta=A=0$

in which case every solution is periodic with period 2.

there are no periodic solutions unless

$\beta=A=0$

in which case every solution is periodic with period 2.

The second order rational difference equation

$x_{n+1}= \frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+Bx_{n}+Cx_{n-1}}$ , $n=0,1$ , $\ldots$ (1.2)

has been the subject of investigation in the Monograph [9]. For this
equation, with $B+C>0,$ we have a period-two trichotomy result
when

$C=0$ and $B>0$

and this result is summarized by the following theorem about the equa-
tion

$x_{n+1}= \frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+Bx_{n}}$ , $n$ $=0,1$ , $\ldots$ (1.3)

and this result is summarized by the following theorem about the equa-
tion

$x_{n+1}= \frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+Bx_{n}}$

.
’ $n=0,1$ , $\ldots$ (1.3)

Theorem $A$ (See $[6],[7]$ , and [9]). Assume that $B>0.$ Then the follow-
ing period-two trichotomy result holds for Eq.(1.3):

(a) Every solution of Eq.(1.3) has a finite limit if and only if
$\gamma<\beta+A.$

(b) Every solution of Eq.(1.3) converges to a (not necessarily prime)

period-two solution of Eq.(1.3) if and only if

$\gamma=\beta+A.$

(c) Eq.(1.3) has unbounded solutions if and only if

(b) Every solution of Eq.(1.3) converges to a(not necessarily prime)

period-two solution of Eq.(1.3) if and only if

$\gamma=\beta+A.$

(c) Eq. (1.3) has unbounded solutions if and only if

$\gamma>\beta+A.$

In addition to Theorem A the following two period-two trichotomy
results have been established for the difference equations

$x_{n+1}= \frac{\alpha+\gamma x_{n-1}+\delta x_{n-2}}{A+x_{n-2}}$ , $n=0,1$ , $\ldots$ (1.4)
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and
$x_{n+1}= \frac{\alpha+\gamma x_{n-1}}{A+Bx_{n}+Dx_{n-2}}$ , $n=0$ , 1, . . [ (1.5)

Theorem $B$ (See $[1],[3]$ , and [8]). Assume that $\gamma+\delta+A>0.$ Then the
following period-two trichotomy result holds for Eq.(1.4):

(a) Every solution of Eq.(1.4) has a finite limit if and only if
$\gamma<\delta+A.$

(b) Every solution of Eq.(1.4) converges to a (not necessarily prime)

period-two solution of Eq.(1.4) if and only if
$\gamma=\delta+A.$

(c) Eq.(1.4) has unbounded solutions if and only if

$\gamma<\delta+A.$

(b) Every solution of Eq. (1.4) converges to a(not necessarily prime)

period-two solution of Eq. (1.4) if and only if
$\gamma=\delta+A.$

(c) Eq.(1.4) has unbounded solutions if and only if

$\gamma>\delta+A.$

Theorem $C$ (See [4]). Assume that $\gamma+A+B>0.$ Then the following
period-two trichotomy result holds for Eq(1.5):

(a) Every solution of Eq.(1.5) has a finite limit if and only if
$\gamma<A.$

(b) Every solution of Eq.(1.5) converges to a (not necessarily prime)

period-two solution of Eq.(1.5) if and only if
$\gamma=A.$

(c) Eq.(1.5) has unbounded solutions if and only if

$\gamma>A.$

$\gamma<A.$

(b) Every solution of Eq. (1.5) converges to a(not necessarily prime)

period-two solution of Eq.(1.5) if and only if
$\gamma=A.$

(c) Eq.(1.5) has unbounded solutions if and only if

$\gamma>A.$

No other period-two trichotomy result is known at this time for
Eq.(l) or any special cases of it.

Are there other period-two trichotomy results which a $\mathrm{e}$

true for any special cases of Eq.(l)?

One can show that for Eq.(l) to have a period-two trichotomy it is
neccessary that

$C=0$ and $7>0$
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in which case the equation reduces to

$x_{n+1}= \frac{\alpha+\beta x_{n}+\gamma x_{n-1}+\delta x_{n-2}}{A+Bx_{n}+Dx_{n-2}}7$ $n=0,$ $1_{7}$ (1.6)

Furthermore Eq. (1.6) has prime period-two solutions if and only if
$\gamma=\beta+\delta+A.$

Computer observations and analytic investigation suggest that if
Eq.(1.6) has a period-two trichotomy it should be as follows with some
of the parameters possibly equal to zero or restricted appropriately.

(a) Every solution of Eq.(1.6) converges to a finite limit if and only
if

$\gamma<\beta+\delta+A.$

(b) Every solution of Eq.(1.6) converges to a (not necessarily prime)

period-two solution if and only if
$\gamma=\beta+t$ $\delta+A.$

(c) Eq.(1.6) has unbounded solutions if and only if(c) Eq. (1.6) has unbounded solutions if and only if

$\gamma>\beta+\delta+A.$

Open Problem 1. Find special cases of Eq.(1.6) such that the above
three statements (a), (b), and (c) are all true.

Conjecture 1. Show that the special case of Eq.(1.6) given by

$x_{n+1}= \frac{\beta x_{n}+\gamma x_{n-1}+x_{n-2}}{1+x_{n}}$ , $n=0,$ 1, . . 1 (1.7)

with $\beta$ , $\gamma\in(0, \infty)$ has a period-two trichotomy character. More pre-
cisely, show that the following three statements are true.

(a) Every solution of Eq.(1.7) has a finite limit if and only if
$\gamma<\beta+2$

(b) Every solution of Eq.(1.7) converges to a (not necessarily prime)
period-two solution if and only if

$\gamma=$
$\mathrm{d}$ $+2$

(c) Eq.(1.7) has unbounded solutions if and only if
$\mathrm{y}$ $>$ d $+2$

(b) Every solution of Eq.(1.7) converges to a(not necessarily prime)
period-two solution if and only if

$\gamma=\beta+2$

(c) Eq.(1.7) has unbounded solutions if and only if
$\gamma>\beta+2$
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Conjecture 2. Show that a special case of Eq.(1.6) with a unique posi-
tive equilibrium $\overline{x}$ has a period-two trichotomy character if and only if
the following two statements hold:

(i) $\overline{x}$ is locally asymptotically stable when
$\gamma<\beta+\delta+A.$

(ii) Every solution of Eq.(1.6) is bounded when
$\gamma=\beta+\delta+A.$

Conjecture 3. Show that the solutions of Eq.(1.6) have the following
character:

(a) Eq.(1.6) has unbounded solutions when
$\gamma>\beta+\delta+A.$

(b) Every solution of Eq.(1.6) is bounded when
$\gamma<\beta+\delta+A.$

(b) Every solution of Eq.(1.6) is bounded when
$\gamma<\beta+\delta+A.$

It is known that some special cases of Eq.(1.6) have unbounded sO-
lutions when

$\gamma=\beta+\delta+A.$

For example, one can show that the solutions of the equationFor example, one can show that the solutions of the equation

$x_{n+1}= \frac{\alpha+x_{n-1}+x_{n-2}}{x_{n}}$ , $n=0)$ 1?. . . (1.8)

with $\alpha\geq 0$ and with initial conditions $x_{-2}$ , $x_{-1}$ , $x_{0}$ such that
$x_{0}=x_{-2}\leq 1$

are unbounded. See [2] and [5]. Indeed, it follows from Eq.(1.8) thatare unbounded. See [2] and [5]. Indeed, it follows from Eq. (1.8) that

$x_{n+2}-$ $\mathrm{J}0n=\frac{1}{x_{n+1}}(x_{n}-x_{n-2})$ , $n\geq 0.$

Therefore, in this case,
$x_{\mathit{2}n}=x_{0}$ , $n\geq 0$

and so from Eq.(1.8) we see that

$x_{2n+1}= \frac{\alpha+x_{0}}{x_{0}}+\frac{1}{x_{0}}n_{\mathit{2},-1}$ $arrow$ oo as $narrow\infty$ .

and so from Eq. (1.8) we see that

$x_{2n+1}= \frac{\alpha+x_{0}}{x_{0}}+\frac{1}{x_{0}}x_{2n-1}arrow\infty$ as $narrow\infty$ .
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Open Problem 2. Obtain necessary and sufficient conditions on $\alpha$ , $\mathrm{f}1$ ,
$\gamma$ , $\delta$ , $A$ , $B$ , and $D$ so that every solution of Eq.(1.6) is bounded when

$\gamma=\beta+\delta+A.$

2. SPECIAL CASES REMAINING To BE INVESTIGATED

On the basis of the above discussion one can see that there remain 28
special cases of Eq. (1.6) with positive parameters to be investigated for
possible period-two convergence, for existence of unbounded solutions,
and for conditions under which the equilibrium is globally asymptoti-
cally stable.

After a change of variables of the form
$x_{n}=\lambda y_{n}$

these twenty eight equations may be reparameterized to be as follows
with all their parameters positive:

$y_{n+1}= \frac{\alpha+y_{n}+\gamma y_{n-1}+\delta y_{n-2}}{y_{n}}$ ,$n\underline{n-11\vee\nu n-\mathrm{z}}$ , $n=0,1$ , . . 1 (2.1)

$y_{n+1}= \frac{\alpha+\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{y_{n-2}}$ , $n=0,1$ , . (2.2)

$y_{n+1}= \frac{\alpha+y_{n}+\gamma y_{n-1}+\delta y_{n-2}}{A+y_{n}}$ , $n=0,1$ , . (2.3)

$y_{n+1}= \frac{\alpha+\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{A+y_{n-2}}$
フ $n=0,1$ , $\ldots$ (2.4)

$y_{n+1}= \frac{\alpha+\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{By_{n}+y_{n-2}}$, $n=0$ , 1, . . . (2.5)

$y_{n+1}= \frac{\alpha+\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{A+By_{n}+y_{n-2}}$ , $n=0,$ 11 . . $\mathrm{c}$ (2.6)

$y_{n+1}= \frac{1+\beta y_{n}+\gamma y_{n-1}}{y_{n-2}}$ , $n=0_{\ovalbox{\tt\small REJECT}}$ $1,$ . . $|$ (2.7)



$y_{n+1}= \frac{\alpha+\beta y_{n}+\gamma y_{n-1}}{1+y_{n-2}}$ $n=0,$ $]$, ’. (2.8)

$y_{n+1}= \frac{\alpha+y_{n}+\gamma y_{n-1}}{y_{n}+Dy_{n-2}}$,

$\alpha+$ !y$n+$ ’llln-1
$y_{n+1}$ $=1$ $+y_{n}+Dy_{n-2}$

’

$y_{n+1}= \frac{1+\gamma y_{n-1}+\delta y_{n-2}}{y_{n}}$ ,

$n=0,1$ , . . 1 (2.9)

$y_{n+1}= \frac{\alpha+y_{n}+\gamma y_{n-1}}{A+y_{n}+Dy_{n-2}}$ , $n=0,1$ , . . $\tau$ (2.10)

$y_{n+1}= \frac{1+\gamma y_{n-1}+\delta y_{n-2}}{y_{n}}$ , $n=0,1$ , . . $r$ (2.11)

$y_{n+1}= \frac{\alpha+\gamma y_{n-1}+\delta y_{n-2}}{1+y_{n}}$ , $n=0,1$ , . . . (2.12)

$y_{n+1}$ $= \frac{\alpha+\gamma y_{n-1}+y_{n-2}}{By_{n}+y_{n-2}}$ , $n=0,1$ , . . $\mathrm{t}$ (2.13)

$y_{n+1}= \frac{\alpha+\gamma y_{n-1}+y_{n-2}}{A+By_{n}+y_{n-2}}$ ,

$y_{n+1}= \frac{y_{n}+\gamma y_{n-1}+\delta y_{n-2}}{y_{n}}$ ,

$y_{n+1}=\underline{\beta y_{n}+\gamma y_{n-1}+y_{n-2}}$ ,
$y_{n-2}$

$n=0,1$ , . . $\mathrm{t}$ (2.14)

$y_{n+1}= \frac{y_{n}+\gamma y_{n-1}+\delta y_{n-2}}{y_{n}}$ , $n=0,1$ , . . . (2.15)

$y_{n+1}= \frac{\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{y_{n-2}}$ , $n=0,1,$ $\ldots$ (2.16)

$y_{n+1}= \frac{y_{n}+\gamma y_{n-1}+\delta y_{n-2}}{A+y_{n}}$ , $n=0,1$ , . . $|$ (2.17)

$y_{n+1}= \frac{\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{A+y_{n-2}}$ , $n=0_{J}$ $1$ , . . [ (2.18)

$y_{n++}$ $= \frac{\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{By_{n}+y_{n-2}}$ , $n=0,1$ , . . $\mathrm{t}$ (2.19)
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$y_{n+1}= \frac{\beta y_{n}+\gamma y_{n-1}+y_{n-2}}{A+By_{n}+y_{n-2}}$
》

$n=0$ , $1_{\ovalbox{\tt\small REJECT}}$ . $|$ (2.20)

$y_{n+1}= \frac{y_{n}+\gamma y_{n-1}}{y_{n-2}}$ ,
$n-|2\underline{Jd\tau\iota-[perp]}$

, $n=0,1$ , . . 1 (2.21)

$y_{n+1}= \frac{\beta y_{n}+\gamma y_{n-1}}{1+y_{n-2}}$, $n=0,1$ , . . 1 (2.22)

$y_{n+1}= \frac{y_{n}+\gamma y_{n-1}}{y_{n}+Dy_{n-2}}$ , $n=0,1$ , . . $\tau$ (2.20)

$\mathrm{j}/_{n\mathrm{H}1}=\frac{y_{n}+\gamma y_{n-1}}{A+y_{n}+Dy_{n-2}}$ , $n=0,1$ , . . $l$ (2.24)

$y_{n+1}= \frac{\gamma y_{n-1}+y_{n-2}}{y_{n}}$
$n|\underline{|\mathrm{w}n-z}$ , $n=0,1$ , . . $\mathrm{t}$ (2.25)

$y_{n+1}= \frac{\gamma y_{n-1}+\delta y_{n-2}}{1+y_{n}}$ , $n=0,1$ , . (2.26)

$ll_{n\mathit{1}1}= \frac{\gamma y_{n-1}+y_{n-2}}{By_{n}+y_{n-2}}$ , $n=0,1$ , . . (2.27)

$y_{n+1}= \frac{\gamma y_{n-1}+y_{n-2}}{A+By_{n}+y_{n-2}}$ , $n=0,1$ , $\ulcorner$ . . (2.28)

The following open problem actually contains 28 problems, each of
which is quite a challenge.

Open Problem 3. Investigate each of the above twenty eight equations
for boundedness, global stability, and period-two convergence.
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3. PERIOD-TWO CONVERGENCE WHEN $\gamma$ $=\beta+\delta+A$

The characteristic polynomial $P(\lambda)$ of the linearized equation assO-
ciated with Eq.(1.6) about its equilibrium evaluated at $\mathrm{A}=-1$ is

$P(-1)= \frac{2(\gamma-A-\beta-\delta)}{A+\beta+\gamma+\delta+\backslash \frac{4\alpha(B+1)+(\beta+\gamma+\delta-A)^{2}}{}}$ . (3.1)

Therefore A $=-1$ is a root of the characteristic equation if and only
if $\gamma$ $=\beta+\delta+A.$ For the twenty eight third-Order equations, Eqs.(2.1)
through Eq.(2.28), it can be shown that when $\gamma=\beta+\delta+A$ the two
remaining characteristic roots lie on the unit circle or inside the unit
disk. Furthermore, for all except Eqs.(2.7) and (2.21) they lie inside
the unit disk.

What is it that makes Eqs.(2.7) and (2.21) different from the
rest of Eqs.(2.1)-(2.21)? No doubt this is due to the nature of
the characteristic roots of their linearized equations.

For Eqs.(2.7) and (2.21) the condition
$\gamma=\beta+\delta+A$ (3.2)

does not imply period-two convergence.

Also, for Eqs.(2.11) and (2.25) we do not have period-two conver-
gence because as we saw, Eq.(1.8) has unbounded solutions.

For Eqs.(2.11) and (2.25) the characteristic roots of their correspond-
ing linearized equations are all real numbers with the dominant char-
acteristic root equal to -1, which is a second root of 1.

What caused the unboundedness of solutions of Eqs.(2.11)
and (2.25)? Could it have been detected from the linearized
equations about their positive equilibrium points?

A question of paramount importance for rational equations
is to understand the extent to which the characteristic roots
of the linearized equation about the equilibrium determine
the periodic convergence of the equations, their boundedness
character, or their global asymptotic stability.’
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Open Problem 4. Does the equation

$x_{n+1}= \frac{x_{n-1}+x_{n-2}}{x_{n}+x_{n-2}}$ , $n=0,1$ , . .

have unbounded solutions?

Conjecture 4. Assume that (3.2) holds. Show that every bounded
solution of Eq.(1.6) converges to a period-two solution when A $=-1$
is the only characteristic root of the linearized equation on the unit
circle.

Conjecture 5. Assume that the linearized equation about the equilib-
rium point has two characteristic roots which are complex conjugate
and inside the unit disk. Show that every solution of Eq.(1.6) converges
to a (not necessarily prime) period-two solution of Eq.(1.6) if and only
if the third characteristic root is equal to -1, that is, if and only if
(3.2) holds.

One can see that when $\gamma=\delta+1$ the solutions of Eq.(2.1) satisfy the
identity

$y_{n+2}-y_{n}= \frac{1}{y_{n+1}}$ $(y_{n+1}- j_{n-l})$ $+ \frac{\delta}{y_{n+1}}(y_{n}-y_{n-2})$ , $n\geq 0.$

Prom this if follows that the subsequences of even and odd terms of
the solution of (2.1) are eventually monotonic and bounded. There-
fore when $\gamma$ $=\delta+1$ every solution of Eq.(2.1) converges to a period-two
solution.

What is it that makes Eqs.(2.1) and (1.8) different in their
boundedness and period-two convergence character?

When (3.2) holds, -1 is a root of the characteristic equation of the
linearized equation of Eq.(1.6) about the equilibrium of the equation.
Table 1. below gives information about the nature of the other two
roots of the linearized equation.
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Table 1.

4. EXISTENCE OF UNBOUNDED SOLUTIONS
It is clear from (3.1) that the characteristic polynomial $P(\lambda)$ of the

linearized equation associated with Eq.(1.6) evaluated at A $=-1$ is
positive when $\gamma>\beta+\delta+A$ , so in this case $\mathrm{P}(\mathrm{X})$ must have a real root
less than -1 and therefore outside the unit disk.

We have conjectured that Eq.(1.6) has unbounded solutions when

$\gamma>\beta+\delta+A.$

The problem of the boundedness character of solutions of Eq.(l.l) is
extremely difficult and only very few of the 225 possible special cases
of Eq.(l.l) have been investigated so far. On the other hand of the 49
special cases of the second order rational equation (1.2) with positive
parameters, the question of boundedness has been resolved for all but
the following two equations:

$x_{n+1}= \frac{\alpha+\beta x_{n}+x_{n-1}}{A+x_{n-1}}$ , $n=0,1$ , . 1 (4.1)

and

$x_{n+1}= \frac{\alpha+\beta x_{n}+x_{n-1}}{Bx_{n}+x_{n-1}}$ , $n$ $=0,1$ , . . $\mathrm{t}$

$(4,2)$
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For these two solutions we offer the following conjectures.

Conjecture 6. Every positive solution of Eq.(4.1) is bounded.

Conjecture 7. Every positive solution of Eq.(4.2) is bounded.

When $B=C=0,$ Eq.(1.2) reduces to a linear equation and its
boundedness is easy to describe. For the nonlinear case $B$ $+C>0$ we
pose the following conjecture.

Conjecture 8. Every solution of Eq.(1.2) is bounded if and only if either
$C>0$ or

$B>0,$ $C=0,$ and $\gamma$ $\leq\beta+A.$

Contrary to Eq.(1.2), when $C>0,$ it is not true that every solution
of Eq.(l.l) is bounded. In fact we offer the following conjecture.

Conjecture 9. Every solution of each of the following equations

$x_{n+1}= \frac{px_{n}+x_{n-2}}{x_{n-1}}$ , $n=0,1$ , . . $\iota$

and

$x_{n+1}= \frac{p+x_{n}}{x_{n-1}+x_{n-2}}$ , $n=0,1$ , $|$ $1$

is bounded if and only if $p\geq 1.$

Contrary to Eq.(1.2), when $C>0,$ it is not true that every solution
of Eq.(l.l) is bounded. In fact we offer the following conjecture.

Conjecture 9. Every solution of each of the following equations

$x_{n+1}= \frac{px_{n}+x_{n-2}}{x_{n-1}}$ , $n=0,1$ , . .

and

$x_{n+1}= \frac{p+x_{n}}{x_{n-1}+x_{n-2}}$ , $n=0,1$ ,

is bounded if and only if $p\geq 1.$

Conjecture 10. Assume $\gamma>\delta+\mathrm{I}$ . Show that for every unbounded solu-
tion of Eq.(2.1) the subsequence of its even terms and the subsequence
of its odd terms converge, one of them to oo and the other to

$\frac{\gamma}{\gamma-\delta}$
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Conjecture 11. Assume $\gamma>\delta$ . Show that for every unbounded solution
of Eqs.(2.11) and (2.25) the subsequence of its even terms and the
subsequence of its odd terms converge, one of them to oo and the other
to zero. Note that in Eq.(2.25), $\delta=1.$

Open Problem 5. Does the equation

$x_{n+1}= \frac{\gamma x_{n-1}+x_{n-2}}{x_{n}+x_{n-2}}$ $\}n=0_{l}1$ ,

with $\gamma>1$ have a solution $\{x_{n}\}_{n=-2}^{\infty}$ such that
$\lim_{narrow\infty}x_{2n}=0$ and $\lim_{narrow\infty}x_{2n+1}=\infty$?

with $\gamma>1$ have a solution $\{x_{n}\}_{n=-2}^{\infty}$ such that
$\lim_{narrow\infty}x_{2n}=0$ and $\lim_{narrow\infty}x_{2n+1}=\infty^{r}.$

’
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