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Abstract-

I the first part of this paper is given a theoretical caleulations of error caused by a lateral
heal leakage through the basal faces of the test piece shaped in a hollow cireular eylinder. The
experimental procedure is to measure heat flows from the inner wall toward the outer of the
hollow . eylinder, with differences in temperature at these two walls ranging from 47°C to 337°C.
Thermal conductivity is lastly calculated as function of lemperature, and for Shirakawa-ishi two
abrupt changes in the thermal conductivity are observed at 210°C and 573°C (quartz-inversion
point), while for Gashli-ishi an abrupt change is observed only at 210°C (220°C). In the
concluding remarks our resulis are compared with those of Birch and Clark.

Adoption of a hollow circular cylinder

Our purpose is to measure the thermal conductivity of granites at high
temperatures over the quartzinversion point 573°C.  For this purpose two methods
are available, one being the pafaﬂel plate method
and the other the hollow circular cylinder method.
To determine the choice between these two methods
requires a close investigation from the stand points
of the effect of grain size of the test piece to be used,

capacity of heat generator put inside it and lateral RN A
heat leakage and also of easiness of minimization of o 1>
heat leakage. ~ This lastly mentioned stand point g <> :
seems to be very important.  This has made us ~~»~—% Ua s
employ the hollow circular cylinder method, é g <>f
1f the conductivity % is assumed to be indepen- >
dent of temperature, we obtain,
k . O logbla (1.1) ' ZZIL.?Z&ZQIQL
2wc  U,—1, Fig. 1.

where () is half the total heat quantity generated per unit time in a heater put
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coaxially inside the hollow circular cylinder test piece, u, and u, the temperatures
respectively at the inner wall and the outer of the cylinder at distances of a
and & from the longitudinal axis of the cylinder and ¢ bhalf its height.

The equation (1.1) is valid when no heat leakage takes place through the
basal faces of the cylinder. Rocks are bad conductors of heat and to insulate
the basal faces from the heat leakage is difficult; even if we use the worst
conductor for the insulation, and therefore we have to examine the error caused
by the lateral heat leakage, as will be shown below. .

In order to lessen the lateral heat leakage, ¢ > b is desired, and in order
that the test piece of granite may be regarded as homogeneous, the thickness
b~a must be sufficiently large as compared with the greatest grain size of the
test piece,  The size of the test piece we could finally attain in our laboratory
is a=8cm, b=20cm and 2¢=25cm.

Effect of the lateral heat escape
The upper half of the apparatus is evidently symmetrical with the lower as

_is shown in Fig. 1.  Let suffixes 1 and 2 be used
f for the test piece and the insulator respectively. The
T coordinates-axes used in the present problem should
T RS N be cylindrical ones as shown in Fig. 2, At the
N g rf(r surface of con’act of the test piece with the insulator,
. i NN CE IR the following conditions must be satisfied :
Z4 _ , ou ou,
[ ‘r(&i U =u, , ]”l-a‘z‘f‘z k_z"é;: .
WW-L__l L1 The latter condition indicates that the rate of normal
- heat flow at the boundary on the test piece side and
£ —~ . . ;
that on the insulator side are equal, and let this rate
Fig. 2. be put equal to f(r) where r=Ty Ty Further, let
us assume the boundary conditions,
(.?Eﬁ) _ N (,?fﬂ) =0
arl r1=a‘~ kl ? azl z1=0 ? (2 1)
- ou 1 )
(u’l)rl:b 0, 5 <8i>z1=c:kl f(rx),
- ou, s
o =0 s <._.._: —t < s
(ud)m:b 8z2>2'2=0 kz for el (2.2)
W), =0, :MIZ{ f ) for a <r,<b,

where I is the thickness of the insulator.

Now our problem is to determine f {(r), ¢, and ¢, from the condition u;=u,
at the surface of contact of the test piece with the insulator. The tem-
perature decreases as the coordinates r and z increase and £ is a positive
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quantity, so that ¢,, ¢, and f (r) are negative.

g, may, in a strict sense, vary from place to place at the surface r;=a and
0 < z< ¢, and g, does likewise at the surface z,= 0 and r,< a.  If the insulator
were a perfect non-conductor, ¢, would be a constant and ¢, zero. The thermal
conductivity %, of the insulator used in our experiment is, as will be mentioned
later, very small as compared with k;, so that ¢ and ¢, may be assumed to be
approximately constant.

In order to obtain a very exact solution, we have to consider the effect of
radiation upon the inside surface.  But it is disregarded in this paper,

The differential equation of a steady state flow of heat under consideration is,
The solution of (2.3) satisfying the boundary conditions (2.1) is, as will be
proved in the Appendw,

Uy = Z a log 5
R i sy [ ey
where X (r25) = j: E:Jb)) _ ){z:::% , (2.5)
X (125) = gig;f) : 2:6)
e (b < py Ceornn g v ) are the roots of X'(a, s) = 0, and, putting v, 7 = x,

Ju (%) is the Bessel function of zeroth degree and Y, (x) the Neumann’s cylindrical
function (the cylindrical harmonic of the second kind) of zeroth degres.
For the boundary condition (2.2) the solution is,

/ sinhjii l-z) o (28 r) Ji (,2‘%)

Uy= — 26 3 %, ,
= A cash»zi [P
. A N
s o ez W) N
__i%;\ b (b f,k,f(g)jo(bs)tdt,

cosh gsl LD e ™ (2.7

where \, are the rools of J; (x) = 0.
In order to satisfy the condition at the surface of contact, u; (z,=¢) = u, (3,
=0), let us assume that the function f (r) will be given by a finite series such as,
S(r)=>2}C,X (rn) 2.8)
=]
where X (r,n) is the cylindrical function defined by (2.5) and C, a constant
which will be determined later.  Then (2.4) and (2.7) become respectively
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Uy = ] a log b + ﬁi} 1 coshy,z, I C.X (rn), (2.9)

=y, sinhy,c

s AT 5 i
: S %)

_9 1 mn ic_‘ 1
2a. k;% C.X (@,n) S ']"/Ti
cosh
5"
N X,
J“<’b r) ]1(77“> . (2.10)
[L(w)]

Then, the condition at the surface of:-contact, u,=u, takes the form,
1 2 C, coshy,c

T, 2 av, b, © )
n 7 sinh 2” l JD< >I\)S r> f,( 7‘*3.a>
A L C X (a,n) 2_] b' ,,,,,, - . 4
o M=l = Yy Ny Ao 2
! cosh b“-»l [ L0
R rf Ny N
v Jo<~~ = r) J, (/, Sa sinh 51
2%y TANb JTND i b Dlogl. (@1
2t [J.oWr ™ cosh /\;'l '
If ¢, is assumed to be given, this equation involves m+4 1 unknown constants,
C,(n= 1,2, 0. m) and ¢,. It is likely that the quantity of heat passing

through a point at r=a perpendicularly to the base of the insulator is conti-
nuous, and therefore let us as:ume f (a) =g, that is,
>3 €. X (a,n) —q,=0. (212)

nssl
From (2.8) and (2.5), naturally we get f (b)=0.

Solving the m+1 simaltaneous equations consisting of m equations (2.11)
satisfied at r=r; with ¢ <r <b and i=1, 2, .ccver , m and (2.12), we can find
the m different values of C, and the value of ¢,

Taking a=3 cm, b=12cm, ¢=10cm and [=12cm, let us in the next
calculate the effect of the lateral escape of heat. The roots of X’/ (a,s)=0
have been obtained graphically, giving @ » =0.6670, a »,=1.6450, a y;=2.6643,
a y,=3.7007, @ v;=4.7405,-......... The roots of J, (x}=0 are well known. In
(2.8) let us choose m=3. In ovder to see the order of magnitude of C,, we
assume f (r) oc log (r/b), and then through some labour of calculations we get
C,exX (a,s)/(av,)’. - Therefore we obtain C, : C,;=X (a,1) : 0.032 X (a, 4).
From this result, approximation of f(r) by m =3 does not seem to involve great
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error.  With m=3 we have to solve the simultaneous linear equations baving
4 unknowns,

By taking ;=4 cm, r,=6 cm and r;=% cm in (2.11) and by using (2.12),
we get the following 4 simultaneous equations :

(- Lop77- :2_4.2680> G+ <_1- 2.353+ 2 1.0609> c,
k, k, ky k.,

1 PR Ry -2 . 1
+ ( '3 1.265+ T 0..)66;,> C,+ »7;0.1 428 g, = I 1.0986q,
1 2
_1gsi9_2 L 023342 0.1349) €,
( k8519 k37873 C+(k1 23344 01340
+< L r22-Losez )( +2.0.0697g,=10.6931 4, \(2.13)
T , ks T |

1 1, .. 2 ,
<.~_;, 4.337— 22, 01?9> C + (_7: 1615 - ().83()4) C,

(7 ll) L

+<1 0. ’Z7+1 0.2583 c+w00 44q,_,M028//q1
(

Ly

— 6,454 C, + 4.467C, 4+ 5 ]IgC--—-r/2~~ 0,
For the material of the insulator, the insulation fire brick manufactured by
Isoraito Kdogyd K. K., Nanao, Ishikawa Prefecture, is used. Coeflicient of thermal
conductivity reported by this maker is 0.147 Keal/m. h. °C, so that k,=0.0017
joulefem, sec.°C.  If we employ the average value of the thermal conductivity
of granites already known, we are to take k= 0.023 joule/ecm. sec. ‘C.”>  These
values make k /k,=13.5. It is evident that the larger the ratio k/k, the
smaller the escaping heat.  Therefore let us employ two values 10 and 5 for
this ratio, which will determine from (2.13) the ratio C, : C,: C;: q,: q, as shown
in Table I,

Table I
kr/ks G : C : Cy N g2 : q1
10 -7.13 : 5.34 : 3.52 : 87.89 : 1000.00
5 -13.16 : 9.95 : 6.75 : 163.90 : 1000.00

From this table are computed the graphs of Figs. 3 and 4.

If we denote by u, (e¢,0) the temperature at r,=a and 2 =0, the tem-
perature at r;=0 and z =0 being taken as zero always, the conductivity % can
be given from (2.9) by,

. G a  &C, 1 1 «

b= Bos s 3 g X @) @14
The constants ¢, and ¢, are simply related with Q which is half the rate of total
heat generation of a heater put inside the inner space of the test piece, by an
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equation ¢, =-Q [ (27ac + wa* ¢,/g)) where ¢, and ¢, are negative as already
mentioned. By neglecting small quantities, (C,/q,)* and (¢./q,)* and higher terms,
we finally obtain from (2.14),

O logbla O 1 {“ 92 Jog °

YT U(@0)  2me T un(ao) 2mc (26q, Fw
w6 T X(re»,'%).}. (2.15)

gy ay, sinho,c

The first term on the right side of (2.15) is the conductivity to be found when
the length of the cylinder 2¢ is very long as compared with its outer radius b.
The second term is, therefore, a correction to be applied to the first term when
the length is not large.  The value of the second term with it’s minus sign
exclusive has been proved to be positive for m = 3.

If the first term is denoted by %), the ratio (k,~k)/k, (->0) has been com-
puted for k,/kZ::lO and 5, giving,

"=k, = %2.4‘8% for k [k, =10
4.67% for kfk, = 5.

In our experiment, we cool the outer surface of the test piece with water
and that of the insulator is cxposed in air, so that the lateral heat escape through
the insulator is evidently less than that of the case in which the outer surface
of the insulator is likewise cooled with water, and therefore the above mentioned
errors become much smaller for the case actually employed.  Therefore, we

finally disregard the second term on the right side of (2.15) and employ the
first term as giving the conductivity k, that is,

N 0 logile 216
By, YT (o) 2mc '
g5 of . which the maximum error will be a few
X percentage for 5 <k /k,< 10 which is of our
case as will be seen later.
104
The apparatus
5 Two kinds of granite have
been chosen for the test pisce:
one is Shirakawa-ishi, or Hiei-
0 Granite from between Mt. Hiei
0 S 4 6 Ty R2om o ang My, Daimonji in Kyoto,
Fig. 3. Variation‘ with 1 of percentage relative hcat and the other Goshii-ishi, or
leakage £0)/q2 Hira Granite from Mt. Hira in

Shiga Prefecture.  The latter granite is pegmatitic.
Form of our test piece has been made into a hollow circular cylinder,
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Finishing of its whole surface has been
done by a stonemason.  The finished
piece are shown in Fig. 5. The form
of the cylinders has been carefully mea-
sured and the results are shown in
Table II. )

The sketch of the apparatus is
shown in Fig. 6. Junctions of thermo-
couples are fixed in tiny hollows made
at the extremities of three diameters
separated by 60° angle and lying on
the horizontal plain bisecting the test
piece ; alumel-chromel at the inside and
cupper-constantan out-side. . Each wire
of thermo-couple is contained inside an
insulation tube of an outer diameter of
about 1.5 mm.  Good contact of the
thermo-couples to the walls of the test
piece is secured by pressing thin layers
of plaster of Paris kneaded with water
glass toward the walls,

Chemically pure plaster of Paris
is used for the inner wall where the temperature is higher and the ordinary
one for the outerwall where the temperature is lower. For temperatures higher

(€43
N

3 Y TP
7] S A2em

Fig. 4. Temperature uy computed by (2.9)

o o]

Table II. Mean dimensions of test piece (in mm)

‘ Outer dia. { Inner dia. ] Height
Shirakawa-ishi 201.95 .+ 0.27 % 98.41 =+ 0.95 194.5
Goshii-ishi $ 19730 + 0.39 } 8545 + 0.48 180:6

than about 200°C, plaster of Paris (CaSO,”2 H,0) becomes dead burnt gypsum
(CaS0,) which is chemically stable against temperature change above this tem-
perature.  In order to lessen an error produced by minute irregularity of the
inner and outer cylindrical surfaces of the test piece with which the stuffing
material, the plaster of Paris, is in contact, it is desirable that the conductivity
of the test piece and that of the stuffing material are equal as possible.  The
conductivity of plaster of Paris is 0.011 joule/em. sec. “C” which is of the same
order of magnitude with that of granite, but the thermal conductivity of dead
burnt gypsum is regrettably unknown. We have nothing to do, therefore, but
to assume the thermal conductivity of dead burnt gypsum to be approximately
equal to that of plaster of Paris,  This assumption may give rise to unknown
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"

TFig. 5. Left: Goshi-ishi, right : Shirakawa-ishi.

errors in the values of conductivity reported in this paper.

Representation of thermal conductivity as function of temperature

First let us assume that the bases of the cylinder are perfectly insulated.
This assumption comes from the neglect of the second term on the right side
of (2.15) of which the effect is small as already mentioned,  Let us now denote
a temperature by a letter v expressed by an arbitrary scale. Then we obtain

27[7' k (’U) %:— q,
and we get
b va
%{ log (F):jvh k (v) dv, (4.1)

where ¢ is the quantity of heat applied per unit time and per uint length along
the longitudinal axis, and v, and v, the temperatures respectively at the inner
wall and the outer of the test piece.

As it is most general to represent the unknown function % (v) in power
series of v, we get )
k@) =a,+ap+ a?, (4.2)
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in which @, @, and @, are the constants to be determined.  For simplicity put
q log (bja)] 27 = &, (4.3)
which is a measurable quantity, and the mean conductivity, say k, is given from
(4.1) and (4.3) by
k=E| (v,~v,). (4.4)
From (4.3), (4.2) and (4.1), we get

E=ay(v, —v,) + .Z_l (w2 —v2) + _‘; W} — ). (4.5)
If we are given n sets of observations of (4.5) with n> 3, the constants g, a,
and a, can be determined by the method of least squares,

At the quartz-inversion point 573°C, we may anticipate £ (v) as discontinuous,
In such a case two diffevent sets of constants will occur, one for the temperatures
lower than 573°C and the other higher than it.

Experimental results on Goshii-ishi

Table III. Measurements for Géshii-ishi

No. of :‘ Temp. Temp. Quantity Mean conductivity
measurement inside oulside of heat n
i uy"C up"C 2Q joule joule/ém. see. °C
1 283 169 258.99 0.0168
2 308 180 . 285.69 i 164
3 379 217 311.01 141
4 430 244 358.93 142
5 495 292 447.79 148
6 557 302 482,74 140
7 608 322 534.07 138
8 690 353 - 61621 135

For the sake of calculation, let the texﬁperature v be defined by
100v =u-400, (5.1)

where u is the temperature in °C.
At first. let us make use of all the measurements shown in Table I, and
the least squares solutions for (4.3) give,

ty=1.402, 0,=-0.0799, a =0.0220, and &=0.1098, (5.2)

+34 +201 =209
where the errors annexed to @, @, and @, are the mean crrors and & the mean
error for a single measurement of £, Then transforming the variable from

v to u, we get from (5.2), (5.1) and (4.2),
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e (1) =1.402-10* — 0.0799 (u=400)-10-*+0,0220 (1~400)%10-7,
for 169°C<u<690°C, 5.3)

From a close inspection of Table III, it is noticed that when we pass from
i=2 to 3, k suddenly decreases, after we pass i=3 it shows a gradual increase
until we reach i=5 and after i=95 it does, on the contrary, a gradual decrease.
Then, if we omit the two data of i=1 and 2, the least squares solutions applied.
for the remaining 6 data give,

ay=1.440, a,=-0.0223, a,=-0.0291, and &£=0.0776. (5.4)
+27 %251 +235

The similar transformation of v into u gives,

I (u)=1,440.10-*—0.0223 (u-400).107¢—0.0291 (1~400)*10-",
for 217°C<u<690°C. (5.5)

The value of & given in (5.4) is less than that in (5.2), and therefore the
result (5.5) will be more likely than (5.3), so that let us assume that k(u) given
by (5.5) will be the thermal conduectivity of G&shd-ishi for 217°C<u<690°C,

For the purpose of obtaining the thermal conductivity k (u) for temperatures
below 217°C, number of the available data are regretiably only two and the
conductivity has to be expressed by a linear equation.  If we denote by v, (se-
peration temperature) the lower limit of the temperature range for which (5.5)
is valid, the following two kinds of conductivity come into play on the right
side of (4.1):

k@y=by+b,v for vcv,, (5.6)
and k@) =a,+a v+a, v for vocv, (5.7)

where the values of @, @, and @, are given by (5.4) and b, and b, are the
constants to be determined.  Putting these into (4.1), we get

a o o @, .
-t~ B )= (o5 ) =80~ )

R ) R
where v,«v,v,. 217°C (u, for i=3) may not be a plausible temperature corres-
ponding to the separation temperature v, ~ The separation temperature may lie
in the neighbourhood of 217°C which is the lower limit of the temperature
range for which (5.5) is determined. Let us, therefore, assume two kinds of
separation temperature, one being 210°C. and the other 220°C, which give rise
to two kinds of v,, —1.9 and ~1.8.  Values of b, and b, will be then determined
from (5.8) by using the two data of i=1 and 2.  The transformtion of v into
« will be similarly done.  The results with ;= —~1.9 are

E () =11.93.107% 4 4.65(u~400).1074, for 169°C <u < 210°C.  (5.9)
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And the results with v,=—1.8 are,

k(u)=9.63.10"*43.67 (1 —400;.10~*, for 169°C <u < 220°C. (5 10)

The two coefficients on the right sides of (5.9) and (5.10) involve no errors
because of only the two data.

Graphs showing the equations (5.3), (5.5), (5.9) and (5.10) are represented
in Fig. 7.  Difference between the values of v, -1.9 and -1.8, produces ap-
preciable change in the conductivity below 217°C.  This indicates that from our
experimental data the separation temperature has an important influence for
the determination of %k (u) below 217°C. But regrettably we have no basis
by which we can reasonably determine the separation temperature. The two
kinds of % (x) below 217°C obtained ahove are to be seen as showing only a
general tendency, It is worth noting that the conductivity abruptly changes
when we pass through the neighbourhood of 217°C and also the conductivity
below this temperature very steeply increases with temperature. ~ And we have
to remark that it can not be justified from our present data whether the con-
ductivity is as really discontinuous at 210°C or 220°C as shown in Fig. 7.

Beforehand we have had for granites an expectation of occurrnce of a dis-
continuity or an abrupt change in the conductivity at the quartzinversion point
573°C.  In the next section, it will be shown that the conductivity of Shirakawa-
ishi shows an abrupt increase when the temperature passes 573°C toward higher
temperatures, For Gdshfi-ishi, however, the values of k£ (Table ILI) show a steady
decrease, even when u, passes 573°C toward higher temperatuzes.  Therefore,

5
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Tig. 7. Thermal conductivity of Goshi-ishi
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Fig. 8. Thermsl conductivity of Shirawa-ishi.

it is likely that the thermal conductivity of Goshdi-ishi is not discontinuous or
does not show an abrupt change at 573°C.

Experimental results on Shirakawa-ishi

Table IV. Measurements for Shirakawa-ishi

No. of Temp. Temp. Quantity Mean conductivity
measurement inside outs.de of heat E

i us C ur”C 2@ joule ! joule/em. sec. “C

1 150 112 14807 | 0.0185

2 195 133 170.92 162

3 239 152 250.73 170

4 284 173 297.03 157

5 377 213 391.91 140

6 420 226 44845 136

7 489 257 497.56 126

8 560 282 559,43 118

9 628 306 686.76 125

10 668 335 - 76841 130

In this case the favourable transformation of temperature is
100 v=u~-300. (6.1)

As well as in the case of GOsh@-ishi, let us - firstly make use of all the
measuremnts shown in Table IV, for which the least squares solutions are,
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a,=1.328, a,=-0.2294, a,=0.0916, and &=0.1070, 6.2)
+ 30 +338 +£588

and & (u) =1.328.10"*— 0.2294 (4-300)-10"+0.0916 (u~300)%10"",
for 112°C < u < 668°C.  (6.3)

Observing the values of & (Table 1V) carefully, we find that 1) when the
higher temperature u, exceeds 560°C, which is just below the quartz-inversion point
573°C, k clearly shows an increase, while & does a steady decrease as u, increases
up to 560°C, and 2) if k for i=3 (u,=239°C, u,=152°C) is put aside, all the
values of k£ up to i=28 steadily decrease. The former fact suggests that the thermal
conductivity of Shirakawa-ishi will abrudtly change when we pass the quartz
inversion point. The latter does that the thermal conductiviity will also abruptly
change when we pass a certain temperature falling between 239°C and 152°C.
For this temperature let us assume 210°C or 220°C we have employed for Goshg-
ishi.  Let the measurements given in Table 1V be divided, therefore, into
three groups by 210°C and 573°C.  The first group consists of the measurements
of 1=1,2,3 and 4, of which the lower temperature u, does not exceed 210°C, the
third group i=9 and 10, of which the higher temperature u, exceeds 573°C,
and the second group the rest of the measuremnts, i=5, 6, 7 and 8,

The results of the calculation of & (1) for the second group are,

a,=1.396, @ =0.2027, a,=0.0164, and &£=0.0127, 6.4)
+ 5 +269 +163
and k(1) =1.396.10"2-0.,2027 (©~300)-10-*+0.0164 (x-300)*10-%,
for 213°C <u <573°C (the second group). (6.5)

k (u) for the third group has been calculated in the similar way we have used
for GOoshi-ishi for the temperatures lower than 210°C. The result is

k() =-1.073.10-*4-0.936 (u-300).10",
for 573°C <u < 668°C (the third group). 6.6)

For the first group, the higher temperatres u, for i=3 and 4 exceed the separa-
tion temperature 210°C, and thervefore it will be necessary to obtain two hypo-
thetical data of which u, is taken as equal to 210°C and u, to 152°C for i=3 and
to 173°C for i=4. For doing this, let this separation temperature be denoted
by v, the conductivity for v < v, by &, (v) and that for v> v, by k; (v) which
is identical with (6.5) if u is transformedto v.  Then we have

Vg Va,
g:{ b, (0) dv+ j kg (v) d. (6.7)
) Vs
If we give to v, the values corresponding to 239°C (i=3) and 284°C (i==4), two
values of the second integral on the right side of (6.7) can be evaluated.  Since
the values of & on the left side of (6.7) can be found from (4.3, two values
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of the first integral can be also done, which are the values of £ of the two
hypothetieal data mentioned above.  Thus we obtain Table V.

Table V. Measurements modified by 210°C for Shirakawa-ishi

i i e C : " C £ joule/em. sec k joule/cm.sec. °C
1 | 159 | 12| 0.8711 0.0185
2 | 195 ‘ 133 I 1.0055 162
3 |20 0 152 1.0230 176
4 | 210 173 0.6309 170

Expressing k, (v) by,

ko W)=c,+c v, 07 (6.8)
the solutions become
¢,=1.246, ¢,=8.437, ¢,=3.116, and £=0.0487, (6.9)

+£3.923  +5.849 +2.113

and k(1) =7.246.107%48.437 (1—300).107* +3.116 (©~-300)*10-¢,
for 112°C <u < 210°C (the first group). {6.10)

The errors annexed to the values of ¢, ¢, and ¢, in (6.9) are relatively large.
The origin of these great errors will lie in that both the separation temperature
assumed at 210°C and the approximation of %, (v) by a second order equation
(6.8) may not he satisfactory.

Graphs of the equations (6.3), (6.5), (6.6) and (6.10) are shown in Fig. 8.
For Shirakawa-ishi, there are two characteristic temperatures 210°C and 573°C
(quartz-inversion point) at which the thermal conductivity shows abrupt change.
Below 210°C the conductivity has a sharp minimum at about 165°C.  Between
210°C and 573°C the conductivity decreases as the temperature increases.  Above
the quartz-inversion point, the conductivity increases steeply with temperature.
It is regrettable that we could not obtain more than two data above 573°C owing
to melting of the heating wire,

Coneluding remarks

I) Change of thermal conductivity with temperature of GOshii-ishi expressed
by (6.9) (or (56.10)) and (5.5), which have been obtained by the separation of
the data at 210°C (or 220°C), will explain the observed data more satisfactorily
than that expressed by (5.3) which has been obtained by the method in which
the separation is not employed.  For showing this, standard deviations o have
been computed by these two kinds of equations. The results are: By the set
of the equations (5.9) (or (5.10)) and (5.5) 5==0,0476 which is clearly less than
0=0.0868 obtained by the equation (5.3). Similarly, the equations (6.10),
(6.5) and (6.6) which have been obtained for Shirakawa-ishi by the separations
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at 210°C and 573°C will also explain the observed data more satisfactorily than
the equation (6.3), as a standard deviation calculated by the former set of equations
is ¢==0.0159 which is also clearly much less than ¢=0.0895 obtained by (6.3).

1) As for the results obtained for the two kinds of granites, Goshii-ishi
(pegmatitic) and Shirakawa-ishi, there are two questions which follow: 1) why
does not Gdshl-ishi show an abrupt change in conductivity at 573°C (quartz-
inversion point) while Shirakawa-ishi does?, and 2) why do the conductivities
of both of the two granites change abruptly at about 210°C ? These two questions
seem to be important, and prior to finding answers to them we have to make
other experiments to investigate into the above two facts, One experiment will
be that in which we have to observe such suitably selected physical quantities
other than thermal conductivity that change with temperature.  The other will
be that in which ranges of temperatures for which the mean conductivities k are
to be obtained are made as small as possible than those employed in our
present experiments.

IlI) Lastly we have to make an important reference-to the works of Birch
and Clark.® They measured by an ingenious device change of thermal con-
ductivity with temperature between 0°C and 400°C of 18 igneous rocks and
seven sedimentary and metamorphic rocks and etc.  The specimen they used
was shaped into a flat circular disk of 6.35 mm thickness and 38.1 mm diameter
and the difference in temperature at the two faces of the specimen was about
5°C. Such a smallness of the temperature difference ensures their result safely
to be the thermal conductivity as function of the temperature, that is k (u).
Therefore, we may compare our results of k (u) to those of Birch and Clark.
But here it must be remembered that our results are deduced from the observed
mean conductivity % for large temperature ranges.  On close inspection of their
result for anorthosite and diabasic rocks, nine in number, shown in their Fig. 5,
it may be worth noting that thermal conductivitics of diabase (Vinal Haven) and
gabbro (Wisconsin 2) show an increase, though not very conspicuous, in the
shape of a cusp at about 200°C, and similar cuspidal increase can also bhe ob-
served for diabase (Mt. Holyoke) and albitite (Sylmar, Pa.), while Birch and
Clark represent the thermal conductivities of these rocks by smooth curves.
Excepting gabbro (French Creek), the thermal conductivities of diabase (Maryland),
gabbro (Wisconsin 1), anorthosite (Stillwater) and anorthosite (Transvaal) are not
reported at temperatures above 200°C, but they increase steadily with tempera-
ture toward 200°C. It is also noteworthy that diabase (Maryland) shows a
minimun thermal conductivity at about 150°C,  These facts above noliced are
consistent qualitatively with our results obtained for GOshii-ishi and Shirakawa-ishi.
On the other hand, the thermal conductivities of Rockport granites 1 and 2
represented in their Fig. 4 .show steady decrease with increasing temperalure up
to nearly 300°C and that of Barre granite docs similar decrease up to a little
less than 200°C.  On the contrary, our two granites do not show such a decrease
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in a temperature range from 112°C to 220°C.

Appendix

In the following is given the derivation of the equation (2.4) which is the
solution of (2.3) satisfying the boundary conditions (2.1). For doing this, the
suffix 1 in (2.4) is dropped for simplicity’s sake. If we pnt u=v4w, it is
required to determine v and w which satisfy the following equations :

wy g _ ov\ oA
(), =F @m=0.(2) —0.(2) —o, ®.)
v 1 fv P
o T e e =0, (8.2)
and g:v> - =0, (w),., =0, (%3;.) < VVVVVVVV :71; o,
(8.3),(8.4),(8.5), (8.6)

dw 1 ow Sw
ot T e T
The solution of (8.2) subject to the boundary conditions (8.1) is given by

=0. 8.7)

-
v =MZ~ alog b (8.8)
For finding w let us put w=2 (2)-R (r). Then from (8.7) we obtain,
d*Z d*R 1 dR
U 2 *R=0, : )
d 9 ')7 0 d 2 + r d' R (8’9)?(8 10)
where p is a constant.  The solution of (8.10) is
R (1) =AJ, (rv) + BY, () , 8.11)

where A and B are arbitrary constants. In order that this equation R'(r)
satisfies (8.3) and (8.4), v must be a root of the equation

Ji@ayy Y, (ay)|=
J,(by) Yy(by) (8.12)

which equation can be replaced by X' (¢,s)=0 as will be easily seen through
simple calculation (Cf. (2.5) and (2.6)). Putting av=x and bfa=p, (8.12)
becomes

Jiwy « Yo tpxy ~J, (px) - Y, (x)=0. (8.13)

Using the asymptotic values of J,(x) and Y, fx) for large, positive values of x,

J. (%) ‘/—mcos x——\ (2n+1)] and Y ()= }/~———~sm x—__.(2n+1)] the left

side of (8.13) is approximately equal to BE}ZT cos (p—1) x for large values of
T .
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%, and therefore we know that (8.12) has an infinitly large number of positive
roots.  Let these roots be denoted by y <y <p<eweeo . Determining the
arbitrary constanis 4 and B by (8.3) and (8.4), we obtain

o (R Y
R ()=C, <7321563 T =) (8.14)

where C; is a constant.  On the other hand, the solution of (8.9) satisfying
(8.5) is

7@ =C cosh Y& (8.15)

S sinhove’
where C] is another constant.  Therefore the general solution of w is

- cosh vz

w :S%_l, K, Sinh v X (r,35), (8.16)
where K,=C, C!. From (8.6) we get
]lgf {r :2 Ks"’sx (r:9) . (8]7)
=1
Multiplying r X (r,m) with m=1, 2, - s, 10 both sides of (8.17) and then

integrating from r=a to r=>0, we obtain

=1 2 » f(5)
- _y: b*X"%(b,s) - azxz(a"s)ja“];“ X (¢,5) tdt (8.18)

and hence

w= i‘ % X(t,s) tdt . 18.19)
s=1 Mg

2% (r,s) cosh vz ‘?’f(t)
b*X3(b,s) . a*X*(a,s) sinh v ) o

One can easily prove that the equations (8.8) and (8.19) are respectively the
solution of (8.2) satisfying (8.1) and that of (8.7) satisfying (8.3), (8.4), (8.5)
and (8.6), and therefore that v+ w=u is the required solution.
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