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Abstract

When an asset is completely liquid, an investor can realize his desirable strategy. But when the asset is
not sufficiently liquid, the investor cannot trade the asset continuously and his strategy is restricted. He has to
consider the risk of the failure of the trade.

In this paper a risky asset is traded at random times. We solve an optimal portfolio problem. And a procedure
of an asymptotic expansion of the optimal strategy is proposed. Further we discuss the convergence of the value
function when the liquidity of the asset increases. '

1 Introduction

As various assets are traded in the market, the liquidity risk becomes more important. There are many
studies related with the liquidity risk. For example, a transaction cost has a close relation to the liquidity.
Leland[6], Boyle and Vorst[1], Kusuoka[5] analyze a replication strategy of the derivatives, using the
transaction cost. Also Subramanian and Jarrow[4] consider a liquidation strategy, using the price impact
and the execution delays. Further they modify the standard VaR computation.

In this paper we represent the liquidity by the success rate of the trade and consider an optimal
portfolio problem between a risky asset and the saving account in a finite period. We consider the
investor who has a log-utility function or a power utility function. The investor can trade an asset at the
random times distributed exponentially. When the risky asset is completely liquid, the optimal portfolio
problem is solved by Merton[9]. The Merton’s optimal strategy is to keep the risky asset ratio constant.
In our setting the investor cannot realize the Merton’s optimal strategy because he has to trade the risky
asset continuously for the Merton’s optimal strategy. We consider how the optimal strategy and the value
function change when the risky asset becomes less liquid. The following results are shown.

1. The optimal strategy exists and it converges to the Merton’s optimal strategy as the liquidity
increases.

2. A procedure of an asymptotic expansion of the optimal strategy is given concretely.

3. When the liquidity becomes lower, the utility becomes lower. The value function converges to the
Merton’s value function as the liquidity increases.

This paper is organized as follows. The next section provides the setting of the market and explains
our problem. In Section 3, we discuss the problems when the investor has a log-utility function. In
Section 4 we consider the investor whose utility function is a power function.

The author wishes to express my deepest thanks to Prof. Sigeo Kusuoka for the encouragement in
this study.
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2 Setup

Let (Q,F,P,{¥:;0 <t < T}) be a filtered probability space satisfying the usual condition. Under P,
{B(t);0 <t < T,B(0) = 0} is a {#;}-Brownian motion and {P(t);0 < t < T, P(0) = 0} is a {F; }-Poisson
process with intensity A. We denote by 3(t) the saving account and by S(¢) the price of the risky asset.
They are assumed to be governed by §(0) =1, S(0) = Sy,

dg(t) rA(t)dt,
dS(t) = uS(t)dt+oS(t)dB(2)

I

where So, 7, 4 and o are positive constants and 7 < p. The investor invests a part of wealth in the
risky asset and the rest in the safety asset. Let the amount invested in the risky asset be W;(t) and the
amount invested in the safety asset be Wy(t). The investor tries to trade the risky asset worth of V (t)
at t but the trade succeeds only at the jump times of the Poisson process. We fix constants w;, wg. For
any predictable locally bounded process V, we consider the following stochastic differential equations

Wolt) = wo+ /0 Wo<s—>“f((5’— / V(s)dP(s), 2.1)
Wilt) = wi+ /0 Wl(s—)%z+ /0 V(s)dP(s). 22)

Then these stochastic differential equations have a unique solution Wy(t), Wy (t) by Theorem 14.6 of
Elliot[3].
We say V is an admissible strategy if V satisfies

—Wy(t=) < V(t) < Wo(t—)

for 0 < ¢t < T. This means that the investor cannot make a short sale of the low liquid risky asset
and must not invest more risky asset than his total asset. If V is admissible, then Wy (¢) and W, (¢) are
nonnegative. ‘ '

We denote by W (t) the total asset and by X (t) the fraction of the wealth invested in the risky asset,
ie.,

W(t) = Wo(t)+Wi(t),
Wi (2)
X0 = moewmn

Let v(t) be given by

V() + W)
Y0 = e T W)

By the Ito formula, we have

W) = wo+w + /o W s—) (s — ) X(5=) + r)ds + fo ‘W(s-)X(s-)odB(s),  (23)

X = 'wgu-:-lwl + /0 X(s=)1-X(s=)(u-r—02X(s=-))ds
+/(; X(s-)(1 - X(s—))odB(s) +/0 (v(s) — X(s—))dP(s). (2.4)

We define a set of processes by

Vit,T] = {v|v is predictable and 0 < v(s) <lfort<s<T}



184

If V is admissible, then v € V[0, T).
For any v € V[0,T], (2.3) and (2.4) have a unique solution X (t), W(t) by Theorem 14.6 of Elliot[3].
We can show 0 < X(t) < 1. Then

Wo(2) W1 - X(t)),
Wi(t) = W(H)X(),
V() = (@) -X@E-)W(-)

Il

is a solution of (2.1), (2.2) and V is admissble. Therefore there is a one-to-one correspondence between
Wo(t), Wi(t), V(t) and W(t), X(t), v(t). Further, V is admissible if and only if v € V[0,T]. Therefore
we consider W (t), X (t), v(t) and we call v a strategy instead of V. When we emphasize that a process
depends on v, we denote W (t), X (t) by W(t;v), X (t;v).

For the utility function of investor U : R = R, our problem is to find an optimal strategy v* which
maximizes E[U(W (T;v))] among v € V[0, T] and to analyze the value function given by

VA (t, z, w) = sup E[U(W(T, 'U))Ift“(x(t),W(t))=(z,w) .
vEV[L,T]

For preparation, we define L, (t) = fot s"e *ds for n € N U {0}. Note that 0 < L,(\t) < n! and

Lp(Xt) < n!

La(A) = m!’ (25)

for 0 < m < n, since Ly (At) = n! (1 —e 31 (At)'/i!).

3 Log-Utility function

In this section we consider the investor who has a log-utility function. We will prove three theorems. For
preparatory steps of these proofs, some lemmas are necessary. Since we aim for concise presentation, we
sketch these proofs. Please refer to Matsumoto[7] for the details.
Let U(W) =logW and
u—r

To = .
0,2

We assume that 0 < z9 < 1. The Merton’s optimal strategy v°°(t) and the Merton’s value function
Ve (t,z,w) are given by

’Uoo(t) = Io,

Ve, z,w) = logw+ (r + (”2;;)2) (T -1t).

For the details, see Merton[10], Duffie[2], etc.

3.1 Optimal Strategy and Value Function

In this subsection we prove the existence of optimal strategy exists and consider its convergence as the
liquidity increases.
Let

AMt,z) = /Ot e MK(s,z)ds + /\/ot sup (/a e MK (u, y)du) ds (3.1

o<y<t \Jo
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where

K(ty) = E[fy*®)],

fly) = (w-ry+r- %02y2,
v yS(t)/So
O = BT G- vEa
By the Ito formula we get
dy¥(t) = Y¥(@)Q-Y¥(t))(p—r—a’Y¥(t))dt + Y¥(t)(1 - Y¥(t))odB(t). (3.2)

Alsoif 0 <y <1, then 0 < Y¥(t) <1 and specially if y = 0 or 1, then Y¥(t) = y.
Theorem 3.1 The optimal strategy erists and the value function is given by
VAt,z,w) = logw+ AMT —t,z). (3.3)
Specially if A is sufficiently large, an optimal strategy is unique and satisfies
)~z < O3, 0<t<T (3.4)
for some constant C.
For the preparation of the proof of this theorem, we will show some lemmas.
Lemma 3.1 The optimal strategy ezists. The value function is given by
VAt z,w) = logw+ ANT —t, ).
Proof.  Because A*(T - t,r) is continuous with respect to z, there exists 0(t) which satisfies

AMT —t,0(t)) = sup AMT —t,x).
0<=2<1

9 is a deterministic process.
It can be shown that log W (¢;v) + A* (¢, X (t;v), W (¢;v)) is a supermartingale for all v € V[0, T and
specially log W (¢; %) + A*(t, X (t;9), W (t;0)) is a martingale. Then we have

Ellog(W (T; v))| Fellix oy, we)y=(zw) < logw + ANT —t,z)
Eflog(W (T; 9)| Fellx (1), w () =(zw)-

Therefore ¢ is an optimal strategy and the result follows. a
Let

3 1 At u
g Mt,z) = / e"\"K(s,w)ds:—/ e “K(=,r)du,
0 Ao A

i4-J
Kij a K(O,'mO),
’ ot'ox’ ,
n
B, = sup{a—.f—{ﬁ’_i.) 05i5n,05t5T,05x51},
atlamn 1

for 4,j,n € N U {0}. Because the second term of (3.1) does not depend on z, A*(t,-) has an absolute
maximum at the same point as g*(t,-). It can be shown that Ko; = 0, Koz = —02, Ko = 0(k > 3),
Kl,O = —%0’4128(1 - 220)2, K171 = —0’4.’1:0(1 - xo)(l - 2!1]0)
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Lemma 3.2 Suppose that

A > max (Hl + 2H, 1 4(33 +B4/3))

H3 7 |Kogl
where
K
H = -K;l—i = 02xo(1 — 20)|1 ~ 2,
H By =——(H} + 2H, +2)
2 2|K l 1 1 y
Hz = min(——‘M~— zo,xo).

4(Bs + B4/ 2)’
Then there uniquely ezists h*(t) which satisfies ’

8 (£, 20 + K (8))

Oz =0
B (®)| < Hs.
Further h*(t) satisfies
1
|h)‘(t)| < (Hl + 2H2)')—"
Proof. By the Taylor’s theorem, we get
Ag_t_””i’-i'-h—) Z Z( ) — WK g inoiLe(AL) + Sn (A 1, B, 1) (3.5)

n=0

where
At u
SN(At k1) = / enuRN(X)h, l)du,
0
N 1 N-1 gl+N
_ N\ &Nk (1-9) TV K (st,zg + sh)
Since
N 1 N-1 N
N\ g iN-k (1-3) _ N\ ok Nk 1
|Rn(t, R0 < l;( k )t W™ " BNyt ey ds—kzzo g )BT BNy
we get
BN+ > 1 Nok
ISn(A\ 8, R 0| < Lo(Af) Z( ) -)‘—k|h| ~kpt. (3.6)

Substituting 2 for N in (3.5), we get

A ag*(t, o + h) - h+ lKl,lLl (At) Sz(A, t,h, 1)
Ko,gLo(At) oz - A KO,2L0()\t) Ko’zLo(At) |

Therefore h satisfies 8g*(t, zo + h)/0z = 0 if only if

1K Li(M) S8 k1)
A Ky QLQ(/\t) Ko,zLo(At)

h+ < =0. (3.7)
By (3.6) we get

1S,k 1)] < Lo(A) 22 (|n|2+2 |h1+21).
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Also we have

’_“_.552(’;;’ b 1)’ < Lo(M) (%‘-gh12+ (Bs + %1) (lhl 1)) (38)
since

Oh
We solve (3.7) by the successive approximation. Let

1 K1 1Li(At) 1K11Li(A) _ So(At, hny(2),1)

9 u) , By 2 u  u?
' Ra( 1”"1)] < BS(Ihl+x)+7<lhl +20hl5 + 37 ) -

- —T07TT hn = ’ Z 2.
h (t) A Ko,zLQ (At) ! (t) /\ K zLo(/\t) Ko,zLo()\t) n
By (2.5) we get
K1 1 H1 Hl
< —_— < H
'hl(t)l—,\ Kos| - A SH, tom, 3
and then
Sa (A t, hy(t),1) B; (Hf H, 1 ) H,
- = 22— +2= ) = —.
Iha(t) = m(2)] KozLo(M) |~ 2[Kea] \ 22 T532 T452) =
Since A > 1,

[ha(t)] = |ho(t) — ha(t)| + M (B)] < E%

FAN

Hy H1+2H2<
Y ST o =

We show that for all n > 2 the following inequalities hold.

[hn(®) = hns O] < sglhat) = ha (),
Hl + 2Hy
A

ha(t)] < < H,.

The inequalities hold for n = 2. Suppose that inequalities hold for all k = 2,...,n. By this assumption
and (3.8), we get

B3 + By /2 B3 + B4/3) 1 ha(t) — hy (t
s = ha] < (BB, o Bt B3 1) lhn<t>—hn_1(t>|sﬂ—;n—_ll—”'
and
n+1
1 2H. 1 _ H;+2H.
e O1 < 3 sz lha®) = B (0)] + I ()] < 532 + Hig < 2222 < g,
k= 2

Therefore the inequalities hold for all n > 2. Then h,(t) has the limit h(t) satisfying
39 (t, zo + h(t))
ox 0,

hee) < E2H gy

Suppose that h(t) is a second solution which satisfies 9’ (¢, :co + h(t =0, |A(t)| < Hs. In the similar
way to the above argument we can show

A = | 2RO _ 5:006A0,1)] .
h(t) — h(t)| = h(t) — h(t)|.
l ( ) ( )! K0,2L0(At) Ko,zLo(At) | ( ) ( )l
Therefore h(t) is a unique solution and the results follows. a

By the definition of g*(¢,z) the following lemma can be shown.
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Lemma 3.3 Forall0<t<Tand0<z<1

IM

1

A
that is, Ag*(t,)/Lo(\t) converges to f(z) uniformly when X tends to co.

By Lemma 3.1 we have already shown the first half of Theorem 3.1. We prove the latter half.
Proof of Theorem 3.1. Let
1

a = zo’Hi= swp  f(zo)~ f(z)
|z—2za|<Ha

If A > Hy = 2B, /¢;, by Lemma 3.3 we obtain
Ag (t z)

WO ja| <2
Suppose that
H, +2H, 4(33 + B4/3) )
A2 , 1, JHy ).
= max ( Hy |Ko,a !

If |z — zo| > Hj, then f(zg) — f(z) > € and then

A A
/\io((t;\f)()) - Ago&g) > (f (o) - %51) - (f(:c) + %el) > (f(zo) — f(z)) — €1 > 0.

Therefore Ag*(t,)/Lo(At) has a maximum in |z — zo| < Hs. By Lemma 3.2, zo + h*(t) is a unique
extreme point of g*(t,) in |z — zg| < H3. The result follows. w

Remark 3.1 By the above proof, the optimal strategy can be represented by
v MT = t) = zo + A (2),

when X is sufficiently large.

3.2 Asymptotic Expansion of the Optimal Strategy

In this subsection we show the asymptotic expansion of the optimal strategy.
When A is sufficiently large, we have

Y L3 (1) SR K] < Citle) 69)

n=0 k=0 A

for some constant Cy_; by Theorem 3.1, (3.5) and (3.6).
Let

Glz)=v+Y, > vzt~

i=1 k=1
where v; &, 1 < k < ¢ are constants. We seek a formal power series of

U(z) = Zd}‘;zj, such that G(z,¥(2)) =

i=1
The solution of this problem is given by solving the equations in terms of the coefficients of

\Il(z)+ZZ'y,kz (z)* = 0.

=1 k=1
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These equations are of the form
$1=-mn1 B =—Pi(vip, ¢ 1<k<i<jl<j-1)(j>2)

where P; is a polynomial with positive integer coefficients. Therefore we can solve recursively for the
coefficients ¢7,j > 1 and they are uniquely determined.
We define A} (t), by replacing -, x in ¢} by

i\ 1Kgikq Lyi(t)
k)il Kop Lo(t)

By the procedure for making hj}, the following proposition can be proved.
Proposition 3.1 Let h} : [0,00) = R be given by

K1 aLi(t)
" KozLo(t)

Ly (t)

B (1) = T

t>0

—-g Z‘o(l - :Eo)(l - 2.’130)

and h{(0) = hi(0+4). Then h} is bounded and continuous. If \ is sufficiently large, there exists a constant
C: such that

h*(t)—h:w)%] <G, o<isT, (3.10)
‘9.4A *(At) ! 3.11
3 (t,z0+h1()\t)x) SCIF: 0<t<T, (3.11)
ANt 30 + KA (1)) — A2, 70 + h{(/\t)%) < cl)\l—s, 0<t<T. (3.12)

By the mathematical induction, we prove the following theorem.

Theorem 3.2 There exist bounded continuous functions h} : [0,00) = R, i > 1 such that, for alln € N,
there exist Cp, > 0 and A, > 0 satisfying ‘

(T —t) - |z + h(’\t 1 , 0St<T,A> A\,
< A'n+1
1o = hI(At
B—EVA(T—ta Io + %,W)'SC,,X;];—Q-, OStSTaAZ/\na
i=1
VMT = t,0MT - t),w) - VMNT — ¢ +Zh ’\t) <Cn /\QLS, 0<t<T,A> A

Proof.  For n =1 it reduces to Proposition 3.1. Suppose that the assertion holds for n < N. By (2.5),

we have
i\ 1 Kpikt1 Le(t) < | Eri-kt1 1 K i k1
k 3! Ko,z Lo(t) - Ko,g (7, - k)! - K[),z
for 1 < k <i. Since h%(t) is a polynomial of
i\ 1 K i—py1 Le(2) )
it Ll iRt A S k<L:<
(k)i! Koz Lo(t)’ - SFSism
ks, is bounded and continuous. By the definition of hZ,
N+l d N+1 =k A
1 hI(At) Cn+1Lo(Xt)
Z ]r Z ( ) (; N ) Kritj-eLe(At)] < N (3.13)




for some constant Cn41. By (3.9), the induction hypothesis and (3.13), we get

N+1 ., N+l
(h’\(t) -~ Z hi )(‘/\t)> Ky 2Lg(A2) Z 7l Z ( > M) * Ky 14— Le ()

=1 k=0
N+1 j . N+1 —k
1 J hi(At)
+ ‘ FZ ( % ) Ak (h)‘(t) (Z —)\T—) ) Kk,1+j—k,Lk(/\t)
=2 k=1 =1
N+1 j . N+1 —k N
1 J 1 hl(\t)
P ﬁZ( k ) Ia (Z X ) Kiitj-kLe(At)} < Tz lo Lo(At)
j=0 k=0 1
for some constant C. Therefore we obtain
N+1 A
hi(At) C 1
RMt) - i< .
(t) ; N | S TRea W

When |h*(t) — h(t)] < Cn41 /ANF2,
‘Aag"(t,mwh(t)) - ’ \09 (2o + (1) _, 89’(t, Zo+h'\ ()

a oz

Chi1Lo(2t) < Chi1Lo(At)
,\N+2 - )\N+2

N+1 7 Aavi—k _ ik
Z 3! Z( ) ) A) K i+j—xLi(At)| +

k
=0 A

for some constants Cy,; and Cj,,. Therefore we obtain

(C +Cnt1)Lo(At)

N+1
h} /\t
——A*(tz +Z ( ) A3 J

i=1

N+1 h*(,\t)

At
AN, 3o + R (E)) — APt 2o + Z‘ < N1 Lo(X)

| Ko 2| A2V H+S

By the above argument, the assertion for n = N + 1 holds and then the result follows. 0

3.3 Limit of the Value Function

We have shown that the optimal strategy converges to the Merton’s strategy when X tends to co. In this
subsection we discuss the limit of the value function.
The following lemma can be proved similarly to Theorem 3.2.
Lemma 3.4 When ) is sufficiently large, there exists a constant Cy such that
A (t,z0)
Oz

|AMt, mo + RA(t)) — AP (¢, zo)| < Co%, 0<t<T.

<Coyy 0SEST,

By Lemma 3.4 we get

ot

T-t
—~-,1\-e'>‘(T_t)(K(T —t,2) — K(T — t,20)) + % / e (BK(”"”) - 28K(s’z°)) ds
(4]

ot ot
. /T -t / _Ma K(u zo)
0 ,\

AMT - t,z) - (K(O, zo)(T —t) + % (K(O, z) — K(0,z0) + M(T - t))) }

<

1
C"z‘
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for some constant €. Therefore we get the following consequence.
Theorem 3.3 For0<t< T,

VAt z,w) - Vot o, w) (3.14)
and

L 22(1 = 2o)2(T - t) (3.15)

AV®(t,2,w) - VAt 2,1)) - %02@ ~50)? + >

as A = oo uniformly in0< z < 1.

4 Power Utility Function

In this section the investor has a power utility function. Since we aim for concise presentation, we sketch
the proofs. Please refer to Matsumoto[8] for the details.
Let U(W) = W< for fixed 0 < @ < 1 and
p—r
(1-a)o?
We assume that 0 < z, < 1. The Merton’s optimal strategy v°(t) and the Merton’s value function
V(t, z,w) are given by

Ty =

v2(t) = x4,
Velt,z,w) = w*exp (a (r + 5&‘%—;—;) (T - t)) .

For the details, see Merton[10], Duffie[2], etc.

4.1 Value Function and Optimal Strategy

In this subsection, we show the existence and the uniqueness of the optimal strategy.
Let A*(t,z) be a solution of

t
AMt,z) = / D(t — s,2)e ¢~ \A*(s)ds + D(¢, z)e ™ (4.1)
0

where

AMt) = sup AM¢,z),

0<z<1

D(t,y)=E [JJ ! “’""”“] ,

f) = alp =)y +ear ~ za(l - a)o’y?

and Y'¥(t) is a solution of
YVE) = g4 /0 V()L = YY) (= — 0(1 — )Y Y(s))ds + /o *YY(s)(1 - Y¥(s))odB(s).

Note that Y¥(t) has a unique solution by Theorem 14.6 of Elliot[3]. f0<y <1,then0<Y¥(t) <1
Specially if y = 0 or 1, then Y¥(t) = y. By the definition, D(0,z) = 1 and 8D(0, z)/6t = f(z). Since
f(z) £ f(za), we have

0< emin(f(O),,f(l))t < D(t z) < ef(“o)t’ (42)
min(£(0), $1)) < 2202 < 4(a).

By the successive approximation, the following lemma can be shown.
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Lemma 4.1 There erists a unique solution A (t) of

t
A = Ozugl/o D(t — s,z)e” M=) \A>(s)ds + D(t,z)e*t. (4.3)

Further A*(t) satisfies
0 < A*(t) < ef(==)t, (4.4)

By Lemma 4.1, (4.1) has a unique solution.
It can be shown that W (t;v)*A*(T - t, X(t;v)) is a supermartingale for v € V[0, T]. The following
lemma can be proved similarly to Lemma 3.1.

Lemma 4.2 The optimal strategy ezists and the velue function is given by
VMt,z,w) = wrAMT -t,z).

By Lemmas 4.1 and 4.2, we have w® A*(t) > w®e®"t and then

AMt) > eo™ > 1. (4.5)
Let
Bn=sup{ g oe.z) OSiSn,OStST,OSwSI},
ot*'doz™*
At 3 R
Ma(\ 1) = / et (At - 5) ~ 1)ds
0
for i,j,n > 0. Also g*(¢,x) is defined by
A(AMt 2) — Mo(M t) — 1)
A - ) ! 4.
g(t=) MOy + Lo(0d) .
g*(t,z) has an absolute maximum at the same point as A*t,z). By (4.5) and Lemma 4.1,
0 < Ma(A 1) < (ef=) — 1)L, (A1), (4.7)

Lemma 4.3 Suppose that

2H,
A> 2Hy, —
2 max( 2 H3 )
where
1
H = — B f(z:,_,,)T’
! a(l - a)o? °°
1 .
H = —— __B f(z'a)7,
? a(l — a)a? 4
H; = min(l-z4,2,)-

Then there unigquely ezists h*(t) which satisfies

B9 (t, o + B (2))
Oz

h(t) < Hs.

Further h*(t) satisfies
RAt) < 2H1§.



Proof. By (4.1)
AMt,z) = D(

By Taylor’s theorem, we have
A(t) = Mot + (MM 1) + Lo(A) f()
1 At 2 N 1
+X5/0 (A (t— —) . 1)/ 1 —.s) D(s)‘,x)dsdu
1 At
+,\_2/0 ue'“/o ﬁD(sx,z)dsdu + 1.
By (4.6) we have

P63) = f@)+3(6)62) +B(6)

where

? N ulem (A2 M; (A, t) + Lo(A
22 = [Cwe (Be-9-1) [[a-9 T D6l g [ M0, + Lo,

Atz) = /Mue / Btz ,x)dsdu/(Ml(z\,t)+L0()\t)).

Differentiating g*(t, z) with respect to = and substituting z = z + h,

097 (t, To + h) 3g2*(t, To + h))

09 (t, o + h)
Or Oz

Oz
By (4.7) and (2.5), we have

= —ha(l - a)o? +/\(

6g1A(t! x) %_ Mg(/\,t) < & (ef(za)t - I)LZ(’\t) < B3(ef(z¢.)t -1)
Or 2 Mi(\,t)+ Lo(Mt) = 2 Lo(At) = ’
Bz = PBMO)+ Lo = ¥

Similarly we get

&g} (t,z) N g3 (t,z)

flza)t
b2 5c7 | S BuelC

We solve
8g*(t,zo + h)

or =0

by the successive approximation. Let

_ 1 991 (t,Ta + hn1 () | 893 (t,7a + hn_l(t))> .
MO =0 ) = g ( 8z + 5z T2
Then
= 1 agi\(ti To) ag;(tama) _:_l_ -B_se_f_(ji-l— <
) =l = ( * Al T e(l-a)o? X ~ H;

a(l - a)o? oz oz

We show that for all n > 2 the following inequality holds.

Ba(®) = s (8] € s la 0]

>—'lr-d
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(4.9)

(4.10)
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The inequality holds for n = 2. Suppose that the inequality holds for all k = 2,... n. By this assumption
d (4.10), we get

f(za)t
)= a(Ol € A Slha) = s (O] S B20n0) = hacs (0] < s a0

Therefore the inequality holds for all n > 2. Since

lha(t)] < Zlhm) B2 (®)] + [ha (8)] < 2Aha(t)] < 2H: =,

T = A
we obtain for all n > 2, i
|hn(t)] < 2H1X < H;.
Then h,(t) has the limit h(t) satisfying
8g* (¢, 2 + h(2))
=0,
Oz
[h(®) < 2H < H,
Suppose that A(t) is a second solution which satisfies
89 (t, o + h(2))
=0,
oz
|h(t)| < H.
By (4.10) we obtain
f
|h(t) - A(t)] < U )2AM@) h(t)| < SHIA(t) - hUN<-MU) h(t)|.
Therefore h(t) is a unique solution and the results follow. O

Similarly to (4.10) we have |9} (t,z) + g3 (£, )| < Bye/(*=)t. By (4.9) and this inequality, the following
lemma, can be proved.

Lemma 4.4 For all0<t<T and0<z<1
[(t,2) - £@)] < Baef=)T S,
that is, g*(t,T) converges to f(z) uniformly when X tends to oo.

By Lemma 4.2 we have shown the first half of the following theorem. The latter half can be proved
by the above lemma similarly to Theorem 3.1.

Theorem 4.1 The optimal strategy ezists and the value function is given by
VMt,z,w) = wAMT -t,z).
Specially if X is sufficiently large, an optimal strategy is unique and satisfies
[02() ~ 2al < Coy, 0<t<T
where Cy 13 some constant.
Remark 4.1 When ) is sufficiently large, the optimal strategy can be represented by

VMT —t) = zq + B (2).
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4.2 Asymptotic Expansion of the Optimal Strategy

In this subsection we propose a procedure of an asymptotic expansion of the optimal strategy.

Let o
8"t D(0,z4)

Dis = —5aai

2
Then DOO = 1 ng = O(k > 1) D10 = 2(1a_a) (#;—27‘) + ar, Dl,l = 0, Dl,g = —-a(l —01)0'2,

Dy =0(k>3), Do = ( a (¥ Uzr) + ar) + %a(a - 1)22(1 - 24)%0*, Dy = a(a — 1)z.(1 -

2(1-a)
To)(1 - 2z4)0". '
Differentiating (4.8) with respect to x, we have by Taylor’s theorem

w - Zzhn ka,n_k+1 ((:)W*’(::i)%)

n=2 k=1

+Sn (At k1) (4.11)
where
At u . U 1w _
Sn(\t k1) = [ R (3, m0,0e (A (t-3)- 1) dut [ RN(Goh 1 e du,
N 1 N—1 am+I+N
_ N\ kv [ Q=9 0 D(st,z + sh)
RN(tahamal) = kgo( k )t h /(; (N— 1)' atm+k6$l+N~k ds
forl,m,Ne Nand 0 <z, +h<1.
Since
Y (N 1
Bxtehmdl < 35 (F ) #H By,
we get by (4.7) and (2.5)
SN(Aa t, h’ l)
4.12
' Lo(At) (4.12)
BN+I Z N+ 1 Ith-}-l-—k(ef(ma)t _ l)k! . BN4is1 i N 'h’N—kk!
< W~V +1)! 2 NI\ k P

Suppose that Ty, T,... are independently uniformly distributed in [0, 1] under P. Let

JMt;h) = e Z‘ n+1,t;h),
n=0
F(n,t;h) = E,,[H D(tTi, za + h(tT3))]
=1
where z,, +he V0,7, Ts=1- 23—1 T; and B[] = E[-| Y, T; = 1]. By (4.2),

0< emm(f(O),f(l))t < F(ﬂ,t; h) < ef(fﬂa)t

and then

0 < emn(OSNE < JA(4: p) < (=)t (4.13)
By the definition

t
ANt) = [ D(t - 8,24 + B t))e = NA*(s)ds + D(t, zo + h*(t))e .
1}
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Therefore we get for all N € N,

e A ty) = D(to, To + b (to))

to tn-y f/n—1
+ Z,\"/ / (H D(ti — tis1,70 + h’\(ti))) D(tn, Za + h*(tn))dtn - - - di;

e / / (H Dit: =tis,2a + hA(t ))) I\tN+1/i)‘(tN+1)dt1v+1 oo dty.

=0

The following lemma can be proved.

Lemma 4.5 A>(t) satisfies

AMt) = I pY). (4.14)
By Taylor’s theorem,
logD(t,zo + h) = (Dl’g + %Dl,;,)h?) t+ Z(t,l‘a =+ h)t2
where \
1 2 +
Z(t,3) = / (1-s) [ L2082 pigt ) - (M) D(st,)%ds.
0 ot ot
Let
Z,,:sup{ §—Z—(t—’—_£_2 OSisn,OStST,OSzSI}.
ot'oz™
Lemma 4.6 Let
hy(t) =0

for0<t<T. Then

!J"(t~ hy) — ef=a)t| < Cl 0<t<T, A> A, (4.15)

IA~’\( ~ P hy)| < c -, 0<St<T, A> o, (4.16)

ffi*(t — efleat| < CX’ 0<t<T, A> A (4.17)
for some constants C and )q.
Proof. By the definition,

F(n,t;h) = eProtE, [exp (E =D1 2h(tT)2tT; + Z(tTi, zo + h(tT))tsz)]
=1
Since
2
Diot _ F(p ¢ h* < D1_ot+Zot’Z t2 TZ — oD1,0t+20t? Zo 2%
e (n,t;h3)] < e ; e —T

we get

leProt — P (8 hg)| < '“E At) |eProt — (n+1,t;h5)|gzeD1-°‘+Z°*’zo§

n=0
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and then yields (4.15). For all 4 + ho, zo + h1 € V[0, 7],
|F(n, ¢ h1) — F(n, t; ho)| (4.18)
< e(D1'°+%ID"”|)t+z"t2En[Z bl = b ((T3)* = ho($T3)2 (4T + Z1 by (¢T5) — ho(tT3) 182 T7).
i=1

By Theorem 4.1 we get

F(n,t;h”\ — F(n, & he ) < e(Dx'o+%|D1,2])t+Zot2 ID 2, 0t+Z Co _2__
/\ n+1

for some constant Co. Therefore we get
' 1 C
[JAERA) = JAE R < elProtiiDualittZor? (E‘DI,ZICO +2zl) :\-gt.

By Lemma 4.5 we get (4.16). (4.17) is an immediate consequence of (4.15) and (4.16). ]

Let

Glz, ) =9+ 3 mpzt Iyt~

i=2 k=2
where v; x, 2 < k < i are constants. We seek a formal power series of

U(z2) = chﬁ;zj, such that G(z,¥(z)) =0.
J=1

The solution of this problem is given by solving the equations in terms of the coefficients of
)+ Zz'y. $2F 1O (2) 7k =
i=2 k=2
These equations are of the form
= Y22, 8] = —Pi(vip, ¢ :2<k<i<j+1LI<j-1) (522

where P; is a polynomial with positive integer coefficients. Therefore we can solve recursively for the
coefficients #3,J > 1 and they are uniquely determined.
We define A} by replacing 7; x in ¢; by

Dii—k+1 (( i )9_1:_+( i—1 ) Bt )
D1 2(a1 + Bo) k J il k-1 )G-1)"

Since h} depends on ax,...,a;41,80,. . -, Bj, we denote h} by
h;(9;)
where 9; = (a1,...,0j41,0,...,5;). Then we have the following lemma.

Lemma 4.7 For alln € N if there ezist M,, : [0,00) x [0,T] = R for 0 < m < n+ 1 satisfying
(min(1, &/ W) — DL (M) < Mm(At) < (€ C = DL, (M), 0<t<T, (4.19)
there exists a constant C,, such that for 0 < t <T, A>0,

1A (0 (A, )] < Ch, (4.20)

—k .
n+l 3
D > Tar(Me(M ), Loy (M) o k (Z G0, t))) < fiz (4.21)

t=2 k=1
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where
Lik (@0, B0) = Dri-k+1 (( Z ) % + ( ;:i ) (i £301)!)’
0,,()\, t) = (Ml (Ay t)s v 7Mn+1(’\1 t)’ Lo(l\t), Tt Ln(At))

The following lemma can be proved by Lemma 4.7, using the mathematical induction. Refer to
Matsumoto[8] for the details.

Lemma 4.8 Suppose that there exist M, n(A, 1) satisfying

(min(1, e’ ™) — 1)L, (M) < Mo n(At) < (/@) —1)L,(At), 0<t<T, (4.22)

[Mn(X,8) = My (2, t)]<CL°()‘t), 0<t<T, 1<n<N+1 (4.23)

for some constant C and N > 1. Let
9,,,N(/\, t) = (M1 N(’\ t) n+1 N(’\ t) Lo(At), Ln(At))

Then for 1 <n < N there exist C,, and )\, such that

[ha@a N (M) S Cny 0<t<T, A> A, (4.24)
A (2) - 2": hf(ei,;(/\, t)) < Cn/\,,l.,.;’ 0<t<T, A> A, (4.25) .
=]
54 1o a+zh*(a"v(* D)< Guctr, 0<t<T, A2, (4.26)
i=1
ANt) — ANt 20 + ; G g,(’\ t))) S Cosgarsy O0<E<T, A2 (4.27)

By (4.13) and (4.18), the following lemma can be shown.
Lemma 4.9 Suppose that ) is suﬂ‘ibiently large and ﬁ(t) satisfies
0< zo+h(t) <1, 0<t5T,

BMt) -~ A(t)| < C—=, O0<t<T

/\N+1 ?

Jor some constant C. Let

J\Zf,,(,\,t)'=/0'\t ne~u (J’\(t— e h)—-l)

Then
(min(1, e’ M) — 1)L (At) < Ma(A,8) < (e7®=) — 1)L, (M), 0<t<T, (4.28)
(0,0 = B 0,8) S Ca T332, 0<t<T (429)

for some constant C,,.

Let

M, (\t) = (ef(%)"—l) La(A).
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Theorem 4.2 For all N € N there erists an approzimation of the optimal strategy, v such that

Xip oA o
DA, %,;(T D) CN,\A}H’ 0<t<T, A> A, (4.31)
A ENT =) = L GNT )| S Onvigmrg, 0SEST, A2 (432)

for some constants Cy and \y.

Proof.  We use the mathematical induction. By Lemma 4.6,

|Mn(A,t) = Mai (A, 2)]

Atu"e-“ Tt - 28 — 1) du— Mu"e"‘ ef@a)t=%) _ 1) gy
0 A

0

<

Ln(A8) + Lny1 ()
)

+ /O‘M ute ™ (ef("’)(t"*) - 1) du — (ef(’“)lt - 1) L.(At)| < ¢,

for some constant C;. By Lemma 4.8 the assertion holds for N = 1. .
Suppose that the assertion holds for N < N;. Let hy, (t) = vx, (T - t) ~ 2, and

] At u
M n+1(At) = / ue™¥ (J’\(t -3 hN,) — 1) du.
0
By Lemma 4.9
(min(1, e/ M) — 1)L (M) < My n,11(0\8) < (eFCe)t 1)L (A), 0<t<T,
1
[Ma(At) = My v y1 (M 1)) < CN‘“W’ 0<t<T, 1<n<N; +2

for some constant Cy, +;. By Lemma 4.8, the assertion holds for N = Nj + 1 and then the result follows.
[}

Remark 4.2 By the arguments before Lemma 4.7, we have shown how to determine h? recursively.
Further we have shown how te construct M, n successively in the proof of Theorem 4.2. Therefore we
can construct v), successively.

We have the following corollary from the proof of Theorem 4.2.
Corollary 4.1 Let

01,1 (’\’ t) = (Ml,l (’\1 t)) M2,1(A1 t)7 LO(’\t)7 Ll (At))
Let v} be given by

(ef("")t - 1) La(A8)/2 + Li(MD) 4

Y L GELCS) B U "'
: . T e T L + Lo A

A

for0<t < T and v} (T) = z,. Then v} satisfies (4.90), (4.81) and (4.32) for N = 1.
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4.3 Limit of the Value Function

In the previous subsection, we have shown that the optimal strategy converges to z, when A tends to
0o. In this subsection we show the limit of the value function.

Lemma 4.10 There exists C; > 0 such that

1

'XE, 0<t<T

JMt hy) ~ (ef (®a)t 4 22(0, 2, )e’ (%”;)! <

Proof. We have

2
Dl,ot 2 - Ch*
e (1 + Z(0,z4)t s 1) F(n,t; hg)

2
- 1 = 67; + 14Z3texp (Zot?)
Dot 7 43 3 2. Diot 72,4 2 2 D1 ot43 0
< Ptz BB :T,-]+2e 1ot Z2¢ exp(Zot)En{(E T) ] < eProty CFOICTS

i=1" i=1

Also we have

t — (At)" 2t
eDrot (1 +2Z(0, ma)x) —e M Z (—n!)—eDmt (1 + Z(0,z4) i )

1
D
n+ 2 <2Z(0,z4)e I'Ot:\?

n=0
" Therefore we get
1

J*(t; hy) — eProt (1 +2Z(0, :z:a);) ' < (621t + 1422¢% exp (Zot?) + 2Z(0, 4)) eProt XA

The result follows. D

By Lemma 4.6 the following lemma can be shown.
Lemma 4.11 There exists C; > 0 such that

AJ(t; hy)

1
— Ff(za)t — <
5 Flza)e SCIA’ 0<t<T.

By Lemmas 4.6, 4.10 and 4.11 and (4.1), we have

ANt z) — e/ (=)t — 270, za)ef(’°)‘§

1

<C's

t —
_/ (G_D%_f’_"”_)ef(za)s - D(t- s’m)f(za)ef(@'a)B) e At—9) gg
0

for some constant C’. Then we get the following theorem.

Theorem 4.3 For0<t<T,
VAt z,w) = VO(t, 2, w)
and

AV=(t, z,w) — VA(t,z,w))

- -;-w"‘a(l — 0)o?ef T (3 — 2,)? + 22 (1 - 24)20%(T - ) >0 (4.33)

as A = oo uniformly in0 <z < 1.
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