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1 Introduction
Let (©, F, P) be a standard probability space. We denote LP(Q, F, P) by LP, 1 < p < co.

Definition 1 We say that a map ¢ : L — R is a coherent value measure, if the following
are satisfied.

(1) If X > 0, then ¢(X) > 0.

(2) Superadditivity : $(X1 + Xa) > ¢(X1) + d(X2).

(3) Positive homogeneity : for A > 0 we have p(AX) = Ap(X).

(4) For every constant ¢ we have ¢(X + c) = ¢(X) +c.

Then Delbaen [6] essentially proved the following.

Theorem 2 For ¢ : L™ — R, the following conditions are equivalent.
(1) There is a ( closed convex ) set of probability measures Q such that any Q € Q is
absolutely continuous with respect to P and for X € L™

¢(X) = inf{E?[X]; Q € Q}.

(2) ¢ is a coherent value measure and satisfies the Fatou property, i.e., if {X,}, C L*®
is uniformly bounded and converging to X in probability, then

é(X) > limsup ¢(Xy).

(3) ¢ is a coherent value measure and satisfies the following property. If X, is a uniformly
bounded sequence that increases to X, then ¢(X,,) tends to ¢(X).

Now we introduce the following notion.

Definition 3 We say that a map ¢ : L — R is law invariant, if ¢(X) = ¢(Y) whenever
X,Y € L™ have the same probability law.

*Integrated Finance Limited (Japen)



244

Let £ denote the set of probability measures on R, £,, p € [1,00), denote the set
of probability measures v on R such that [ |z|Pv(dz) < oo, and Lo denote the set of
probability measures v on R such that v(R\ [-M, M]) = 0 for some M > 0. Also, My
be the set of probability measure on [0, 1].

For v € L, let F, be the distribution functions of v, i.e., F,(2) = v((o0,2]), z € R.
Let us define Z : [0,1) x £L — R by

Z(z,v) = inf{z; F,(2) > z}, z€(0,1), veL.
Then Z(-,v): [0,1) — R is non-decreasing and right continuous, and the probability law
of Z(-,v) under Lebesgue measure on [0,1) is v (c.f.[9]). For any random variables X, we

denote by ux the probability law of X.
For each a € (0,1], let 1o : £1 — R be given by

Na(V) = a’1/ Z(z,v)dz, vE€L.
0

Also, we define 1 : L, — R by
no(v) = inf{z € R;v((—0,z]) >0} X € L.
Then we have the following (cf. [8], also see Section ).

Theorem 4 Assume that (0, F, P) is a standard probability space and P is non-atomic.
Let ¢ : L — R. Then the following conditions are equivalent.
(1) There is a ( compact convez ) subset Mo of M) such that

H(X) = inf{/u1 ne(px)m(de); m € My}, X e L™

(2) ¢ is a law invariant coherent value measure with the Fatou property.

Definition 5 We say that a map 1 : Lo — R is a mild value measure (MVM), if there
is a subset My of M) such that

1
10) = nf{ [ ma@Imlda)i m € M}, v € Lo
0
For any MVM n, we define a subset M(n) of M by
1
M(n) = fm e M; n(v) < / na(v)m(de) for all v € Loo}.
0

For any v € £, we see that 7,(v) < m(v), a € [0,1]. So any MVM 7 can be extended
to a map from £; to [—o0,00) by

n(v) = inf{ /0 na(v)m(da); m € M(n)}, v € Li.

We denote this map by the same symbol 7.
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Definition 6 Letn be an MVM and (2, F, P) be a probability space.
(1) For any integrable random variable X and any sub-c-algebra G, we define a G-
measurable random variable n(X|G) by

n(X1G) =n(P(X € dz|F)),

where P(X € dz|G) is a regular conditional probability law of X given a sub-o-algebra G.
We call n(X|G) a conditional value measure.
(2) For any integrable random variable X and any filtration {Fi )7, we define an adapted
process { Zy}2_, inductively by
Zn = (X |Fn),
Zk—l = U(Zklfk—l), k= n,n— 1, ey 1.

We denote an Fo-measurable random variable Zy by n(X|[{Fx}?_,), and call it a homoge-
neous filtered value measure.

(3) For any filtration {Fi}p_, and any integrable adapted process {Xx}7_o, we define an
adapted process {Yx }7_, inductively by

Yn = Xna

Yi-1 = Xp-1 An(Y|Fi-1), k=nn-1,...,1

We denote an Fy-measurable random variable Yo by n({ Xk }e_ol{Fk}io), and call it a
homogeneous filtered value measure of an adapted process {Xi}7_,.

- In this paper, we consider two kinds of limit theorem for homogeneous filtered value
measures. Let us introduce the following notion. For any MVM 7 and p € [1, 00), let

1— )=

: (
Ay(1) = supf / (=7 A ym(da); m € M(n)}.

1.1 Brownian-Poisson Filtration

Let (2,7, P) be a complete probability space, {B(t);t € [0,00)} be a d-dimensional
Brownian motion and {N;(t);¢t € [0,00)}, 2 = 1,...,4, be Poisson processes with an
intensity A;. We assume that they are independent. Let A\ = Zf=1 Ai, and let F; =
o{B(s),Ni(s);s < t,i=1,...,4}, t>0.

Let nn, n=1,2,..., be MVM’s. We assume the following.

(A-1) There is a constant C > 0 such that Ax(n,) <C2™™2, n=1,2,....
Let Fo(y;0,8), y € R%, 0 < a < B <1, be given by

14
Fo(y;0,8) = inf{/ov Z(@, A7 Y Ay )dz; o <y < B}

i=1

£
= inf{ym, (A ) Niby,); e <y < B,

i=1
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and let b, : REx R* = R, n=1,2,..., be given by
1
ba(z, y) = inf{|22*( / (o) m(da))

+/\(/1 m{da)a Fo(y; 0V (1~ (2"A7(1 — @), L A 2"A 7 a));m € M(mn)}-

Here py is a standard normal distribution.
Then b, : R? x RY — R is concave,

bn(sz, sy) = sba(z, ), zeRS yeR), s>0,
and
bn(xvylv cee aye) < b.,,,(.’l,",y;_, s 7y2)7

if |z) > 2|, y1 <95, - v < e
Let us assume the following furthermore..

(A-2) There is a continuous function b : R* x R — R such that b, — b, n — o0,
uniformly on compacts in R x R¥.

Let K be a compact convex set in R? x R? given by

¢
K = {(z,w) € R? x [0,00)%; b(z,y) <z -2+ ZAiyiw,- for all (z,y) € R* x RY}.

=1

Also, let K be a set of martingales p(¢) such that there are predictable processes ¢ :
[0,00) x 2 — R4, 9; : [0,00) X  — [0,00), i =1,...,¢, for which

P((o(t), ¥1(8), .. e(t)) € K for any t € [0,T]) =1
and
Z t 1 : £ t
5 =T]( v exo( [ o(5)dB(s)-% [ 18(s)2ds=3" X [ (Wi(s)-1)ds),
o ESE(O’HEWO (s)) exp / o()dB(s)~ / 600)ds=3 / (6()~1)ds

t>0.
Then we have the following.

Theorem 7 Under the assumption (A-1) and (A-2), we have the following.
For any X € L*(Q, Fr,P), T > 0,

lim 70 (X|{Fp-mi}imo) = inf{ E[p(T)X]; p € K}.

We prove this theorem in Section 5 via a nonlinear partial differential equation.
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1.2 Collective Risk

Let (9, F, P) be a probability space. Let K > 1, p € (1,00), px € R, M\ > 0, and 14
€Ly k=1,... K Let Zi(k), 'ri(k), k=1,...,K,7=1,2,..., be independent random
variables such that the distribution of Zi(k), is v, and P(Ti(k) > 1) = exp(—Akt), £ > 0, for
k=1,...,K,i=1,2,... . Let NP(t) = 1 and X () = ZENF (1) + pe () At)
fort>0,k=1,... K, i=12,....

Let F; = J{Xi(k)(s); se0,t],k=1,... ,K,i=1,2,...},t > 0. Also, let

{r{¥<tp

K m

k
X(t7 my,... )mK) = ZZX‘L( )(t)
k=1 i=1
for any ¢ > 0, and any my,... ,mg € Zxp. Here Z5( denotes the set of non-negative

integers.

Theorem 8 Let n be MVM. Assume that Ay(n) < oo. Let @ : [0,00)% x R — R be
given by

[e) K (/\kzk)tk ’ . K
8@ =n( > (Ilexp(-Mezn) =5 ))(v1 ~ &)™ %k (v — €x)™) + Y _ pra,
140 =0 k=1 : k=1

forz € [0,00)%, ¢ € RX. Here * stands for the convolution and v+a denotes a probability
measure on R given by the following for any probability measure v on R and a € R.

(v+a)(A) =v({z € R; z— a € A}) for any Borel set A in R.

Asuume that there is a C! fucntion u : [0,00) x [0,00)% — R such that u(0,z) = 0,
z € [0,00)%, and satisfies the following Hamilton-Jacobi equation

0 B 0 0 K
au(t,z) = Q(z,gﬁu(t,m), . ’é?c?u(t’x))’ (t,z) € [0,00) % [0,00)".

Then we have the following.
sup{|hn(X (6 ma, ... ,mi){Fin}ieg) — ult,mih, .. ,mxh)];

t,mlh,... ,mKhG [O,R],ml,... ,mKEZZ()}-%O,
ash | 0, for any R > 0.
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