Homogeneous Law Invariant Coherent Multiperiod Value Measures and their Limits

Shigeo KUSUOKA, Yuji MORIMOTO *
Graduate School of Mathematical Sciences
The University of Tokyo
Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

1 Introduction

Let (Ω, \mathcal{F}, P) be a standard probability space. We denote $L^p(\Omega, \mathcal{F}, P)$ by L^p , $1 \le p \le \infty$.

Definition 1 We say that a map $\phi: L^{\infty} \to \mathbf{R}$ is a coherent value measure, if the following are satisfied.

- (1) If $X \ge 0$, then $\phi(X) \ge 0$.
- (2) Superadditivity: $\phi(X_1 + X_2) \ge \phi(X_1) + \phi(X_2)$.
- (3) Positive homogeneity: for $\lambda > 0$ we have $\phi(\lambda X) = \lambda \phi(X)$.
- (4) For every constant c we have $\phi(X+c) = \phi(X) + c$.

Then Delbaen [6] essentially proved the following.

Theorem 2 For $\phi: L^{\infty} \to \mathbf{R}$, the following conditions are equivalent.

(1) There is a (closed convex) set of probability measures Q such that any $Q \in Q$ is absolutely continuous with respect to P and for $X \in L^{\infty}$

$$\phi(X) = \inf\{E^{Q}[X]; \ Q \in Q\}.$$

(2) ϕ is a coherent value measure and satisfies the Fatou property, i.e., if $\{X_n\}_{n=1}^{\infty} \subset L^{\infty}$ is uniformly bounded and converging to X in probability, then

$$\phi(X) \ge \limsup \phi(X_n)$$
.

(3) ϕ is a coherent value measure and satisfies the following property. If X_n is a uniformly bounded sequence that increases to X, then $\phi(X_n)$ tends to $\phi(X)$.

Now we introduce the following notion.

Definition 3 We say that a map $\phi: L^{\infty} \to \mathbf{R}$ is law invariant, if $\phi(X) = \phi(Y)$ whenever $X, Y \in L^{\infty}$ have the same probability law.

^{*}Integrated Finance Limited (Japan)

Let \mathcal{L} denote the set of probability measures on \mathbf{R} , \mathcal{L}_p , $p \in [1, \infty)$, denote the set of probability measures ν on \mathbf{R} such that $\int_{\mathbf{R}} |x|^p \nu(dx) < \infty$, and \mathcal{L}_{∞} denote the set of probability measures ν on \mathbf{R} such that $\nu(\mathbf{R} \setminus [-M, M]) = 0$ for some M > 0. Also, $\mathcal{M}_{[0,1]}$ be the set of probability measure on [0, 1].

For $\nu \in \mathcal{L}$, let F_{ν} be the distribution functions of ν , i.e., $F_{\nu}(z) = \nu((\infty, z]), z \in \mathbf{R}$. Let us define $Z : [0, 1) \times \mathcal{L} \to \mathbf{R}$ by

$$Z(x, \nu) = \inf\{z; F_{\nu}(z) > x\}, \qquad x \in [0, 1), \ \nu \in \mathcal{L}.$$

Then $Z(\cdot, \nu): [0, 1) \to \mathbf{R}$ is non-decreasing and right continuous, and the probability law of $Z(\cdot, \nu)$ under Lebesgue measure on [0, 1) is ν (c.f.[9]). For any random variables X, we denote by μ_X the probability law of X.

For each $\alpha \in (0,1]$, let $\eta_{\alpha} : \mathcal{L}_1 \to \mathbf{R}$ be given by

$$\eta_{lpha}(
u)=lpha^{-1}\int_{0}^{lpha}Z(x,
u)dx, \qquad
u\in\mathcal{L}_{1}.$$

Also, we define $\eta_0: \mathcal{L}_{\infty} \to \mathbf{R}$ by

$$\eta_0(\nu) = \inf\{x \in \mathbf{R}; \nu((-\infty, x]) > 0\} \qquad X \in \mathcal{L}_{\infty}.$$

Then we have the following (cf. [8], also see Section).

Theorem 4 Assume that (Ω, \mathcal{F}, P) is a standard probability space and P is non-atomic. Let $\phi: L^{\infty} \to \mathbb{R}$. Then the following conditions are equivalent.

(1) There is a (compact convex) subset \mathcal{M}_0 of $\mathcal{M}_{[0,1]}$ such that

$$\phi(X) = \inf\{\int_0^1 \eta_{\alpha}(\mu_X) m(d\alpha); m \in \mathcal{M}_0\}, \qquad X \in L^{\infty}.$$

(2) ϕ is a law invariant coherent value measure with the Fatou property.

Definition 5 We say that a map $\eta: \mathcal{L}_{\infty} \to \mathbf{R}$ is a mild value measure (MVM), if there is a subset \mathcal{M}_0 of $\mathcal{M}_{[0,1]}$ such that

$$\eta(
u)=\inf\{\int_0^1\eta_lpha(
u)m(dlpha);\; m\in\mathcal{M}_0\}, \qquad
u\in\mathcal{L}_\infty.$$

For any MVM η , we define a subset $\mathcal{M}(\eta)$ of $\mathcal{M}_{[0,1]}$ by

$$\mathcal{M}(\eta) = \{ m \in \mathcal{M}; \; \eta(\nu) \leq \int_0^1 \eta_{\alpha}(\nu) m(d\alpha) \; \textit{for all } \nu \in \mathcal{L}_{\infty} \}.$$

For any $\nu \in \mathcal{L}_1$, we see that $\eta_{\alpha}(\nu) \leq \eta_1(\nu)$, $\alpha \in [0,1]$. So any MVM η can be extended to a map from \mathcal{L}_1 to $[-\infty,\infty)$ by

$$\eta(
u)=\inf\{\int_0^1\eta_lpha(
u)m(dlpha);\; m\in\mathcal{M}(\eta)\},\qquad
u\in\mathcal{L}_1.$$

We denote this map by the same symbol η .

Definition 6 Let η be an MVM and (Ω, \mathcal{F}, P) be a probability space.

(1) For any integrable random variable X and any sub- σ -algebra \mathcal{G} , we define a \mathcal{G} -measurable random variable $\eta(X|\mathcal{G})$ by

$$\eta(X|\mathcal{G}) = \eta(P(X \in dx|\mathcal{G})),$$

where $P(X \in dx|\mathcal{G})$ is a regular conditional probability law of X given a sub- σ -algebra \mathcal{G} . We call $\eta(X|\mathcal{G})$ a conditional value measure.

(2) For any integrable random variable X and any filtration $\{\mathcal{F}_k\}_{k=0}^n$, we define an adapted process $\{Z_k\}_{k=0}^n$ inductively by

$$Z_n = \eta(X|\mathcal{F}_n),$$

$$Z_{k-1} = \eta(Z_k | \mathcal{F}_{k-1}), \qquad k = n, n-1, \dots, 1.$$

We denote an \mathcal{F}_0 -measurable random variable Z_0 by $\eta(X|\{\mathcal{F}_k\}_{k=0}^n)$, and call it a homogeneous filtered value measure.

(3) For any filtration $\{\mathcal{F}_k\}_{k=0}^n$ and any integrable adapted process $\{X_k\}_{k=0}^n$, we define an adapted process $\{Y_k\}_{k=0}^n$ inductively by

$$Y_n = X_n$$

$$Y_{k-1} = X_{k-1} \wedge \eta(Y_k | \mathcal{F}_{k-1}), \qquad k = n, n-1, \ldots, 1.$$

We denote an \mathcal{F}_0 -measurable random variable Y_0 by $\eta(\{X_k\}_{k=0}^n|\{\mathcal{F}_k\}_{k=0}^n)$, and call it a homogeneous filtered value measure of an adapted process $\{X_k\}_{k=0}^n$.

In this paper, we consider two kinds of limit theorem for homogeneous filtered value measures. Let us introduce the following notion. For any MVM η and $p \in [1, \infty)$, let

$$\Delta_p(\eta) = \sup \{ \int_0^1 (\alpha^{-1/p} \wedge \frac{(1-\alpha)^{1-1/p}}{\alpha}) m(d\alpha); \ m \in \mathcal{M}(\eta) \}.$$

1.1 Brownian-Poisson Filtration

Let (Ω, \mathcal{F}, P) be a complete probability space, $\{B(t); t \in [0, \infty)\}$ be a d-dimensional Brownian motion and $\{N_i(t); t \in [0, \infty)\}$, $i = 1, \ldots, \ell$, be Poisson processes with an intensity λ_i . We assume that they are independent. Let $\lambda = \sum_{i=1}^{\ell} \lambda_i$, and let $\mathcal{F}_t = \sigma\{B(s), N_i(s); s \leq t, i = 1, \ldots, \ell\}$, $t \geq 0$.

Let η_n , $n = 1, 2, \ldots$, be MVM's. We assume the following.

(A-1) There is a constant C > 0 such that $\Delta_2(\eta_n) \leq C2^{-n/2}$, $n = 1, 2, \ldots$

Let $F_0(y; \alpha, \beta), y \in \mathbf{R}^{\ell}, 0 \le \alpha \le \beta \le 1$, be given by

$$F_0(y;\alpha,\beta) = \inf\{\int_0^{\gamma} Z(x,\lambda^{-1} \sum_{i=1}^{\ell} \lambda_i \delta_{y_i}) dx; \ \alpha \leq \gamma \leq \beta\}$$

$$=\inf\{\gamma\eta_{\gamma}(\lambda^{-1}\sum_{i=1}^{\ell}\lambda_{i}\delta_{y_{i}});\ \alpha\leq\gamma\leq\beta\},$$

and let $b_n: \mathbf{R}^d \times \mathbf{R}^\ell \to \mathbf{R}, n = 1, 2, \dots$, be given by

$$b_n(x,y) = \inf\{|x|2^{n/2}(\int_0^1 \eta_{\alpha}(\mu_0)m(d\alpha))$$

$$+\lambda(\int_{0}^{1}m(d\alpha)\alpha^{-1}F_{0}(y;0\vee(1-(2^{n}\lambda^{-1}(1-\alpha)),1\wedge2^{n}\lambda^{-1}\alpha));m\in\mathcal{M}(\eta_{n})\}.$$

Here μ_0 is a standard normal distribution.

Then $b_n: \mathbf{R}^d \times \mathbf{R}^\ell \to \mathbf{R}$ is concave,

$$b_n(sx, sy) = sb_n(x, y), \qquad x \in \mathbf{R}^d, \quad y \in \mathbf{R}^\ell, \quad s \ge 0,$$

and

$$b_n(x, y_1, \ldots, y_\ell) \leq b_n(x', y_1', \ldots, y_\ell'),$$

if $|x| \ge |x'|, y_1 \le y'_1, \ldots, y_{\ell} \le y'_{\ell}$.

Let us assume the following furthermore..

(A-2) There is a continuous function $b: \mathbf{R}^d \times \mathbf{R}^\ell \to \mathbf{R}$ such that $b_n \to b, n \to \infty$, uniformly on compacts in $\mathbf{R}^d \times \mathbf{R}^\ell$.

Let K be a compact convex set in $\mathbf{R}^d \times \mathbf{R}^\ell$ given by

$$K = \{(z, w) \in \mathbf{R}^d \times [0, \infty)^{\ell}; \ b(x, y) \le x \cdot z + \sum_{i=1}^{\ell} \lambda_i y_i w_i \text{ for all } (x, y) \in \mathbf{R}^d \times \mathbf{R}^{\ell} \}.$$

Also, let \mathcal{K} be a set of martingales $\rho(t)$ such that there are predictable processes $\varphi: [0,\infty)\times\Omega\to\mathbf{R}^d, \ \psi_i: [0,\infty)\times\Omega\to[0,\infty), \ i=1,\ldots,\ell,$ for which

$$P((\varphi(t), \psi_1(t), \dots, \psi_{\ell}(t)) \in K \text{ for any } t \in [0, T]) = 1$$

and

$$\rho(t) = \prod_{i=1}^{\ell} (\prod_{s \in (0,t], \Delta N_i(s) \neq 0} \psi_i(s)) \exp(\int_0^t \varphi(s) dB(s) - \frac{1}{2} \int_0^t |\phi(s)|^2 ds - \sum_{i=1}^{\ell} \lambda_i \int_0^t (\psi_i(s) - 1) ds),$$

 $t \geq 0$.

Then we have the following.

Theorem 7 Under the assumption (A-1) and (A-2), we have the following. For any $X \in L^2(\Omega, \mathcal{F}_T, P)$, T > 0,

$$\lim_{n \to \infty} \eta_n(X | \{\mathcal{F}_{2^{-n}k}\}_{k=0}^{2^{2n}}) = \inf\{E[\rho(T)X]; \rho \in \mathcal{K}\}.$$

We prove this theorem in Section 5 via a nonlinear partial differential equation.

1.2 Collective Risk

Let (Ω, \mathcal{F}, P) be a probability space. Let $K \geq 1$, $p \in (1, \infty)$, $p_k \in \mathbf{R}$, $\lambda_k > 0$, and ν_k Example (1, 5, 1) be a probability space. Let $1 \geq 1$, $p \in (1, \infty)$, $p_k \in 1$, $p_k \in$ for $t \geq 0$, $k = 1, \ldots, K$, $i = 1, 2, \ldots$ Let $\mathcal{F}_t = \sigma\{X_i^{(k)}(s); s \in [0, t], k = 1, \ldots, K, i = 1, 2, \ldots\}, t \geq 0$. Also, let

$$X(t; m_1, \dots, m_K) = \sum_{k=1}^K \sum_{i=1}^{m_k} X_i^{(k)}(t)$$

for any $t \geq 0$, and any $m_1, \ldots, m_K \in \mathbf{Z}_{\geq 0}$. Here $\mathbf{Z}_{\geq 0}$ denotes the set of non-negative

Theorem 8 Let η be MVM. Assume that $\Delta_p(\eta) < \infty$. Let $\Phi : [0, \infty)^K \times \mathbf{R}^K \to \mathbf{R}$ be

$$\Phi(x,\xi) = \eta(\sum_{\ell_1,\ldots,\ell_K=0}^{\infty} (\prod_{k=1}^{K} (\exp(-\lambda_k x_k) \frac{(\lambda_k x_k)^{\ell_k}}{\ell_k!})) (\nu_1 - \xi_1)^{*\ell_1} * \cdots * (\nu_K - \xi_K)^{\ell_K}) + \sum_{k=1}^{K} p_k x_k,$$

for $x \in [0,\infty)^K$, $\xi \in \mathbf{R}^K$. Here * stands for the convolution and $\nu + a$ denotes a probability measure on **R** given by the following for any probability measure ν on **R** and $a \in \mathbf{R}$.

$$(\nu + a)(A) = \nu(\{x \in \mathbf{R}; x - a \in A\})$$
 for any Borel set A in \mathbf{R} .

Assume that there is a C^1 function $u:[0,\infty)\times[0,\infty)^K\to\mathbf{R}$ such that u(0,x)=0, $x \in [0,\infty)^K$, and satisfies the following Hamilton-Jacobi equation

$$\frac{\partial}{\partial t}u(t,x) = \Phi(x, \frac{\partial}{\partial x^1}u(t,x), \dots, \frac{\partial}{\partial x^K}u(t,x)), \qquad (t,x) \in [0,\infty) \times [0,\infty)^K.$$

Then we have the following.

$$\sup\{|h\eta(X(t;m_1,\ldots,m_K)|\{\mathcal{F}_{jh}\}_{j=0}^{[h^{-2}]})-u(t,m_1h,\ldots,m_Kh)|;$$

$$t, m_1 h, \ldots, m_K h \in [0, R], m_1, \ldots, m_K \in \mathbf{Z}_{\geq 0} \} \to 0,$$

as $h \downarrow 0$, for any R > 0.

References

- [1] Artzner, Ph., F. Delbaen, J.-M. Eber, and D. Heath, Coherent Measures of Risk, Math. Finance 9(1999), 203-228.
- [2] Artzner, P., F. Delbaen, J-M. Eber and D. Heath, Multiperiod Risk and Coherent Multiperiod Risk Measurement, Preprint 2003.

- [3] Artzner, P., F. Delbaen, J-M. Eber, D. Heath and H. Ku, Coherent Muliperiod Risk Measurement, Preprint 2003.
- [4] Artzner, Ph., F. Delbaen, J.-M. Eber, D. Heath, and H. Ku, Coherent Multiperiod Risk Adjusted Values and Bellman's Priciple, Preprint 2003.
- [5] Cheridito, P., F. Delbaen, M. Kupper, Coherent and Covex Risk Measure for Bounded Cádlág processes Preprint 2003.
- [6] Delbaen, F., Coherent Risk Measures on General Probability Spaces, Preprint 1999.
- [7] Inoue, A., On the worst conditional expectation, J. Math. Anal. Appl. 286(2003), 83-95.
- [8] Kusuoka, S., Law Invariant Coherent Risk Measures, Adv. Math. Econ. 3(2001), 83-95.
- [9] Williams, D., *Probability with Martingales* Cambridge University Press 1991, Cambridge.