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Abstract

We consider an oligopoly model where the firm’s (marginal) cost depends

upon the number of pairwise collaborative links it has with the other firms.

This reflects the benefit resulting from information exchange between two

firms or common use of basic means of technology. We analyze the firm’s

incentive to form a pairwise link and a structure of resulting network.

We find that the complete network and the unlinked network in which

three firms form links each other (triangle) and one firm has no link (isolated

firm) can be pairwise stable networks. Furthermore, there can be environment

under which cycle of network structures emerge.
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1 Introduction

We consider an oligopoly model where the firm’s (marginal) cost depends upon the

number of pairwise collaborative links it has with the other firms. This reflects the

benefit resulting from information exchange between two firms or common use of

basic means of technology. We analyze the firm’s incentive to form a pairwise link

and a structure of resulting network.

Each firm announces the name of the firm which it would like to form collab-

orative link anticipating the final result of Cournot competition in the later stage

which determines the distribution of profits. A link is formed if and only if a pair of

firms finds it advantageous to do so. On the other hand, a link may be disconnected

by single firm’s decision irrespective of the profit of the partner. The final pairwise

stable network is the subgame perfect equilibrium.

The basic idea governing the evolutionally process of network formation is the

pairwise stability as described in their papers and in Jackson and Watts(2002).1

In the four-firm model of oligopoly, we find that, depending on the firms’ cost

parameters and the effects of pairwise collaboration, two different stable networks

will emerge. One is the complete network in which all pairs of firms are linked.

The complete network results when the cost saving is decreasing in the number

of links. The other is the unlinked network in which three firms form links each

other (triangle) and one firm has no link (isolated firm). Furthermore, there can be

environment under which a cycle of network structures emerge. This cycle includes,

e.g., a circle network, a wine glass network which consists of triangle with one
additional link between a central firm and one peripheral firm, and some other.

Most closely related to this paper is the above mentioned literature on the net-

lDutta and Mutuswami(1997) also analyzes a similar problem by considering a strategic-form

game of network formation.
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work formation (For a survey, see Slikker and van den Nouweland (2001).) Re-

cently, like this paper, Goyal and Joshi (2003) analyzed network formation game in

oligopoly. Compared with the work by Goyal and Joshi, our analysis lays particular

emphasis on the convexity (or concavity) of cost function with respect to the number

of links. This yields variety of outcomes even for cases of small number of firms.

The rest of paper is organized as follows. Section 2 introduces the model. In

Section 3 we will explain some of the basic concepts of graph theory and illustrate

possible network patterns In Section 4 the concept of pairwise stability is defined.

In Section 5, we will derive the equilibrium profits for each network. Section 6 exam-
ines the pairwise stable networks and the transition movement between networks.

Section 7 concludes the paper.

2 The Model

We consider a market of homogeneous products with the following linear demand

function:

$p=a-bX$, $a$ , $b>0,$ (1)

where $p$ and $X$ denote the price and the amount of demand respectively.

Let $N=\{1, \cdot\cdot ‘ , n\}$ be a set of $ex$ ante identical firms. The cost function of firm
$i$ depends upon its collaboration links with other firms. Each collaboration link is
pairwise and induces lower costs of production. Specifically, assume that firm $i$ ’s

cost function is given by

$C(x_{i};d_{\dot{f}})=c(d_{i})x_{i}$ , (2)

where $x_{i}$ denotes firm $i$ ’s outputs and $d_{i}$ is the number of links firm $i$ has. (We do

not consider the fixed cost of production or link formation.) We assume that the

marginal cost $\mathrm{c}(d_{\dot{1}})$ is strictly decreasing in the number of links $d_{i}$ ;
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Assumption 1 For any $m\in \mathbb{Z}$ , $c(m)>c(m+1)$ .

The link by two firms can be interpreted as, e.g., the exchange of technology,

sharing and standardization of parts, and so on.

Finally, we put a restriction in order to ensure the positive amount of output for

every firm.

Assumption 2

$a>c(0)$

The market clearing condition requires

$X= \sum.\cdot x_{i}$
. (3)

3 Structure of Network

The link between player $i$ (firm $i$ ) and player $j$ (firm $j$ ) is denoted $\{i,\dot{7}\}$ . Define

$L^{N}\equiv\{\{i,j\}|ij\subset N, j\neq i\}$ . Thus, $L^{N}$ represents the set of all possible links on
$N$ , that is, $L^{N}$ is the complete graph on $N$ . A network (of links) on $N$ is a graph

$(N, L)$ which has the set of firms as its vertices and pairwise links as the set of edges

$L\subset L^{N}$ . Let $L_{i}\subset L$ be the set of links in which player $i$ is involved. Then, $d_{i}$ is

the cardinality of $L_{i}$ .
Besides the complete network $L^{N}$ , there are several interesting forms of networks.

Suppose that there exists some $i^{0}$ and network is described by

$L=\{\{i^{0}, j\}|j\in N, j\neq i^{0}\}$ .

This network is called a star network and $i^{0}$ can be referred to a central firm. The

network

$L=\{\{i, i+1\}|i\in NZn$ :
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is a line network, and

$L=\{\{i, i+1\}|i\in N\}$ ,

where $\{n, n+1\}$ is identified as $\{n, 1\}$ , is a circle network.

Each network $(N, L)$ is characterized by (i) the total number of edges (projects)

which is same as the cardinality of $L$ , and (ii) the degree of firm $i$ , $d_{i}$ , which shows the

number of links in which firm $i$ is involved. Since each firm’s profit from a network

depends upon its own $d_{i}$ and rivals’ $d_{j}$ , we can express each firm’s profit by the

degree sequence $d=$ (di, $\cdot\cdot( , d_{n})$ which characterizes the form of $L$ . To be specific,

we focus on the cases three or four players. When $n=3,$ we can classify players

into three types; the type $A$ firm has no link $(d_{A}=0)$ , the type $B$ firm is involved in

one link $(d_{B}=1)$ , and the type $C$ has two projects $(d_{C}=2)$ . The possible network

patterns when $n=3$ are summarized in Figure 1, where, for example, $A^{s}$ denotes
the type $A$ player in network $L^{s}$ . Note that only the line network and complete

network are connected when $n=3.$

Similarly, when $n=4,$ we can classify players into four types, that is, additional

to type $A$ , $B$ , and $C$ firms, there may be type $D$ firm who has three links with

other firms $(d_{D}=3)$ . The possible network patterns when $n=4$ are summarized

in Figure 2, where $L^{0}$ to $L^{4}$ indicate unconnected networks, and $L^{5}$ to $L^{N}$ are
connected networks. We assume that all these networks are independent of the

naming of vertices (firms).

[Figure 1 and 2 are inserted around here]

4 Pairwise Stability

For a given network $L$ , let $\pi_{\dot{l}}(L)$ be the profit of firm $i$ . We consider the case in

which players are free to form new links or sever existing links as long as this will
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increase their payoffs. The concept of pairwise stability reflects this idea, and is

defined formally as follows:

Definition 1 A network $(N, L)$ is pairwise stable if these two conditions are satis-

fied.

7. For all $\{\mathrm{i}\mathrm{j}\}$ $\in L$ , $\pi_{i}(L)2$ $\pi_{i}(L\backslash \{i,j\})$ and $\pi_{j}(L)\geq\pi_{j}(L\backslash \{i,j\})$ .

2. For all $\{i,\dot{\mathrm{y}}\}$ $\not\in L,$ if $\pi_{i}(L)<\pi_{i}(L\mathrm{U}\{i,j\})$ , then $7\Gamma_{\mathrm{j}}(L)>\pi_{j}(L\cup\{i, 7\})$ .

We adopted this definition from Jackson and Wolinsky (1996).

2. For all $\{i, j\}\not\in L,$ if $\pi_{i}(L)<\pi_{i}(L\mathrm{U}\{i, j\})$ , then $\pi_{j}(L)>\pi_{j}(L\cup\{i, j\})$ .

We adopted this definition from Jackson and Wolinsky (1996).

5 Cournot Equilibrium under Fixed Network

Remember that firms first form collaboration links, and then compete in the product

market. Applying the backward induction, we derive the equilibrium level of $\pi:(L)$

(and $x_{i}$ ) for each fixed network $L$ in order to examine the incentive for link formation.

Given any network $L$ , it is easily checked that the Cournot equilibrium output

for firm $i$ can be written as

$x_{i}(L)= \frac{a-nc(d_{\mathrm{i}})+\sum_{j\neq i}c(d_{j})}{b(n+1)}$, $i\in N,$ (4)

and the equilibrium profit for firm $i$ is $\pi_{i}(L)=b(x_{i}(L))^{2}$ .

The equilibrium profit for each firm depends only upon its own type and rival

firms’ types, which are characterized only by the network form. Thus, for any

network form, each type firm’s profit is independent of firm’s name. We denote

type $M$ firm’s equilibrium profit in network $L$ by $\pi_{M}(L)$ , where $M=A,$ $B$ , $C$ when

$n=3,$ and $M=A$, $B$ , $C$, $D$ when $n=4.$ In order to analyze the incentives to form

links (and change networks) , we will compare levels of the equilibrium profits below.

$n=3$ case
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First, let us consider the case that $n=3.$ In this case, we have the following lemma

which ranks the equilibrium profits:

Lemma 1 Suppose that $n=3.$ Then, under Assumption 1 and 2, we have the

following results.

1. $\pi_{C}(L^{111})>\pi_{C}(L^{N})$ , $\pi_{C}(L^{N})>\pi_{B}(L^{111})$ , $\pi_{C}(LN)$ $>\pi_{A}(L^{1})$ , $\pi_{B}(L^{11})>\pi_{A}(L^{1})$ ,

and $\pi_{A}(L^{1})>\pi_{A}(L^{11})$ always hold.

2. $\pi_{B}(L^{111})>\pi_{A}(L^{1})$ and $\pi_{B}(L^{1\mathrm{I}})>\pi_{C}(L^{1\mathrm{V}})$ if and only if $c(d_{A})+c(d_{C})>2c(d_{B})$

(Condition $\mathrm{I}$ ).

3. $\pi_{B}(L^{111})>\pi_{A}(L^{11})$ if and only if $3c(d_{A})+$ c(dc) $>4c(d_{B})$ (Condition $\mathrm{I}\mathrm{I}$).

4. $\pi_{C}(L^{111})>\pi_{B}(L^{11})$ if and only if $4c(d_{B})>\mathrm{c}(d_{A})+$ 3c(dc) (Condition III).

Figure 3 summarizes the results of Lemma 1.

[Insert Figure 3 around here.]

Note that Condition I is the sufficient condition for Condition $\mathrm{I}\mathrm{I}$ . Furthermore,

Condition I can be rewritten as $c(d_{B})-c(d_{A})>$ c(dc) $-c(d_{B})$ , which asserts that

the effect of additional link decreases as the number of links increases. This closely

relates to the convexity of the link formation game.

$n=4$ case

Next, we examine the case $n=4,$ where we focus only on connected graphs $(L^{5}$

to $L^{N}$ ). (In the following section, we will discuss link formation movements and

pairwise stable networks considering only unconnected graphs. However, it can be

shown that the possible pairwise stable networks among all four firm graphs are $L^{N}$

and $L^{4}$ .) The following lemma characterizes the equilibrium profits for each network

structures. Figure 4 summarizes the main results which will be used below.
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Lemma 2 Suppose that $n=4.$ Then, under Assumption 1 and 2, we have the

following results.

1. $\pi_{D}(L^{5})>\pi_{C}(L^{6})$ , $\pi_{D}(L^{5})>\pi_{D}(L^{7})$ , $r_{D}(L^{7})>\pi_{D}(L^{9})$ , $\pi_{D}(L^{9})>\pi_{D}(L^{N})$ ,

$\pi_{D}(L^{N})>\pi_{C}(L^{8})$ , $\pi_{C}(L^{6})>\pi_{C}(L^{8})$ , $\pi_{C}(L^{8})>\pi_{C}(L^{9})$ , $\pi_{C}(L^{8})>\pi_{B}(L^{5})$ ,

$\pi_{C}(L^{8})>$ nD(L9), $\mathrm{n}\mathrm{B}$ {Lb) $>\pi_{B}(L^{7})$ , and $\pi_{B}(L^{6})>\pi_{B}(L^{7})$ always hold.

2. $\pi_{C}(L^{7})>\pi_{C}(L^{8})$ and $\pi_{B}(L^{5})>\pi_{B}(L^{6})$ if and only if $c(d_{B})+c(d_{D})>2c(d_{C})$

(Condition 1).

3. $\pi_{C}(L^{6})>\pi_{D}(L^{9})$ if and only if $\mathrm{c}(\mathrm{d}\mathrm{B})+3c(d_{D})>5\mathrm{c}(\mathrm{d}\mathrm{c})$ (Condition 2).

4. $\pi_{C}(L^{6})>\pi_{D}(L^{N})$ and $\pi_{C}(L^{9})>\pi_{B}(L^{5})$ if and only if $2c(d_{B})+c(dD)$ $>$ 3c{dc)

(Condition 3).

5. $\pi_{C}(L^{6})>\pi_{D}(L^{7})$ and $\pi_{C}(L^{7})>\pi_{D}(L^{9})$ if and only if $c(d_{B})+$ $4\mathrm{c}(\mathrm{d}\mathrm{D})$ $>$ 5c(dc)

(Condition 4).

6. $\pi_{C}(L^{9})>\pi_{B}(L^{7})$ and $\pi_{C}(L^{7})>\pi_{B}(L^{6})$ if and only if $5c(d_{C})>4c(d_{B})+c(d_{D})$

(Condition 5).

7. $\pi_{C}(L^{9})>\pi_{B}(L^{6})$ if and only if $3c(d_{B})+2c(d_{D})>5c(d_{C})$ (Condition 6).

8. $\pi_{C}(L^{7})>\pi_{D}(L^{N})$ if and only if $c(d_{B})+2c(d_{D})>$ Sc(dc) (Condition 7).

Moreover, note that Condition 1 is sufficient condition for Condition 3, 5, and 6,

and Condition 4 is sufficient for Condition 1.

[Insert Figure 4 around here.]

$\pi_{D}(L^{N})>\pi_{C}(L^{8})$ , $\pi_{C}(L^{6})>\pi_{C}(L^{8})$ , $\pi_{C}(L^{8})>\pi_{C}(L^{9})$ , $\pi_{C}(L^{8})>\pi_{B}(L^{5})$ ,

$\mathrm{k}\mathrm{c}$ (L6) $>\pi_{B}(L^{6})$ , $\pi_{B}(L^{5})>\pi_{B}(L^{7})$ , and $\mathrm{n}\mathrm{B}$ {Lb) $>\pi_{B}(L^{7})$ always hold.

2. $\pi_{C}(L^{7})>\pi_{C}(L^{8})$ and $\pi_{B}(L^{5})>\pi_{B}(L^{6})$ if and only if $c(d_{B})+c(d_{D})>2c(d_{C})$

(Condition 1).

3. $\pi_{C}(L^{6})>\pi_{D}(L^{9})$ if and only if $2c(d_{B})+3c(d_{D})>5c(d_{C})$ (Condition 2).

4. $\pi_{C}(L^{6})>\pi_{D}(L^{N})$ and $\pi_{C}(L^{9})>\pi_{B}(L^{5})$ if and only if $2c(d_{B})+c(d_{D})>$ 3c{dc)
(Condition 3).

5. $\pi_{C}(L^{6})>\pi_{D}(L^{7})$ and $\pi_{C}(L^{7})>\pi_{D}(L^{9})$ if and only if $c(d_{B})+4c(d_{D})>$ 5c(dc)

(Condition 4).

6. $\pi_{C}(L^{9})>\pi_{B}(L^{7})$ and $\pi_{C}(L^{7})>\pi_{B}(L^{6})$ if and only if $5c(d_{C})>4c(d_{B})+c(d_{D})$

(Condition 5).

7. $\pi_{C}(L^{9})>\pi_{B}(L^{6})$ if and only if $3c(d_{B})+2c(d_{D})>5c(d_{C})$ (Condition 6)

8. $\pi_{C}(L^{7})>\pi_{D}(L^{N})$ if and only if $c(d_{B})+2c(d_{D})>$ 2c(dc) (Condition 7)

Moreover, note that Condition 1is sufficient condition for Condition 3, 5, and 6,

and Condition 4is sufficient for Condition 1.

[Insert Figure 4around here.]
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6 Network Formation and Firm Behavior

We next go back to the first stage of the game, and examine firm’s incentive to form

collaboration links. Remember that the process of network formation is governed

by the pairwise stability. As a result, a new link will be formed if a pair of players

finds it advantageous to cooperate and a link will be severed if some firm thinks

that the opposite is the case.

$n=3$ case

When te $=3,$ Lemma 1 says that

1. The transition $L^{1}arrow L^{11}$ always realizes. A pair of $A^{1}$ players forms a link

since $\pi_{B}(L^{11})>\pi_{A}(L^{\mathrm{I}})$ .

2. The transition $L^{111}arrow L^{N}$ always realizes. A pair of $B^{\mathrm{I}11}$ players forms a link

since $\pi_{C}(L^{N})>\pi_{B}(L^{111})$ .

3. The transition $L^{11}arrow L^{111}$ realizes if both Condition II and Condition III are
satisfied. A pair of $B^{11}$ and $A^{11}$ forms a new link since both $\pi_{B}(L^{111})>\pi_{A}(L^{11})$

and $\pi_{C}(L^{111})>\pi_{B}(L^{11})$ are satisfied under Condition II and Condition III. If

the reverse inequality of Condition II or Condition III holds, then $L^{111}arrow L^{11}$ .

2. The transition $L^{111}arrow L^{N}$ always realizes. Apair of $B^{\mathrm{I}11}$ players forms a link

since $\pi_{C}(L^{N})>\pi_{B}(L^{111})$ .

3. The transition $L^{11}arrow L^{111}$ realizes if both Condition II and Condition III are
satisfied. Apair of $B^{11}$ and $A^{11}$ forms a new link since both $\pi_{B}(L^{111})>\pi_{A}(L^{11})$

and $\pi_{C}(L^{111})>\pi_{B}(L^{11})$ are satisfied under Condition II and Condition III. If

the reverse inequality of Condition II or Condition III holds, then $L^{111}arrow L^{11}$ .

As a result, we obtain the following results.

Proposition 1

Suppose that $n=3.$ Then,

1. If both Condition $II$ and Condition $III$ are satisfied $(3\mathrm{c}(\mathrm{c}\mathrm{U})4-\mathrm{c}(\mathrm{d}\mathrm{c})>4c(d_{B})>$

$c(d_{A})+3c(d_{C}))$ , the complete network $L^{1\mathrm{V}}$ is pairwise stable.

2. If the reverse inequality of Condition $II$ or that of Condition $III$ holds $(3c(d_{A})+$

$c(d_{C})<4\mathrm{c}(d_{B})$ or $4c(d_{B})<\mathrm{c}(d_{A})+3\mathrm{c}(d_{C}))$, both $L^{11}$ and the complete network

$c(d_{A})+3c(d_{C}))$ , the complete network $L^{1\mathrm{V}}$ is pairwise stable.

2. If the reverse inequality of $Co$ ndi\dot tion $II$ or that of Condition $III$ holds $(3c(d_{A})+$

$c(d_{C})<4c(d_{B})$ or $4c(d_{B})<\mathrm{c}(d_{A})+3\mathrm{c}(d_{C}))$, both $L^{11}$ and the complete network
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$L^{N}$ a$re$ pairwise stable. In this $case_{J}(\dot{i})$ if the initial network is $L^{1}$ or $L^{11}$ , then

link $fo$ rmation processes reaches $L^{\mathrm{I}1}$ , (ii) if the initial network is $L^{111}$ , then link

formation processes can realizes both $L^{11}$ and $L^{N}$ (multi-valu $ed$), and (ii) if
the initial network is $L^{N}$ , then the nerwork does not change.

$n=4$ case

When $n=4,$ Lemma 2 says that

1. The transition $L^{5}arrow L^{7}$ i $\mathrm{s}$ always possible. A pair of $B^{5}$ players forms a link

since $\pi_{C}(L^{7})>\pi_{B}(L^{5})$ .

2. The transition $L^{6}arrow L^{8}$ is always possible. A pair of $B^{6}$ players forms a link

since $\pi_{C}(L^{8})>\pi_{B}(L^{6})$ .

3. The transition $L^{8}arrow L^{9}$ is always possible. A pair of $C^{8}$ players forms a link

since $\pi_{D}(L^{9})>\pi_{C}(L^{8})$ .

4. The transition $L^{9}arrow L^{N}$ is always possible. A pair of $C^{9}$ players forms a link

since $\pi_{D}(L^{\mathrm{N}})>\pi_{C}(L^{9})$ .

5. If the reverse inequality of Condition 4 and Condition 5 are satisfied, then

the transition $L^{6}arrow L^{7}$ is possible. A pair of $C^{6}$ and $B^{6}$ forms a link since
$\pi_{D}(L^{7})>\pi_{C}(L^{6})$ under the reverse inequality of Condition 4 and $\pi_{C}(L^{7})>$

$\pi_{B}(L^{6})$ under Condition 5. If Condition 4 or the reverse inequality of Condition

5 holds, the transition $L^{7}arrow L^{6}$ is possible.

6. If the reverse inequality of Condition 1 holds, then the transition $L^{5}arrow L^{6}$

is possible. A pair of $B^{5}$ and $A^{5}$ forms a link, with severing a link with
$D^{5}$ , since $\pi_{B}(L^{6})>\pi_{B}(L^{5})$ under the reverse inequality of Condition 1 and
$\pi_{A}(L^{6})>\pi_{A}(L^{5})$ . Under Condition 1, the transition $L^{6}arrow L^{5}$ may occur.
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7. If Condition 1 holds, then the transition $L^{8}$ $arrow$ $L^{7}$ is possible. Some $C^{8}$

player severs a link and form a link another firm since $\pi_{C}(L^{7})>\pi_{C}(L^{8})$ under

Condition 1 and $\pi_{D}(L^{7})>\pi_{C}(L^{8})$ always. Otherwise, the transition $L^{7}arrow L^{8}$

may occur.

8. If the reverse inequality of Condition 5 holds, then the transition $L^{9}arrow L^{7}$

may occur. A pair of $B^{9}$ and $C^{9}$ players severs a link since $\pi_{A}(L^{7})>\pi_{B}(L^{9})$

and $\pi_{B}(L^{7})>\pi_{C}(L^{9})$ under Condition 1. Under Condition 5, the transition
$L^{7}arrow L^{9}$ is possible.

When focusing on connected networks with four firms, Proposition 2 summarizes
the transitions of network structures, where the transition dynamics is multi-valued
in many cases:
Proposition 2

Suppose that $n=4.$ Then, under Assumption 1 and 2, we have the following results:

1. The complete network $L^{N}$ is always pairwise stable.

2. If Condition 5 $(5c(d_{C})>4c(d_{B})+c(d_{D}))$ is ssatisfied, then netettork transition
process always reaches to $L^{N}\iota$

S. If Condition 1 holds $(c(d_{B})+c(d_{D})>2c(d_{C}))$ , then there is a cycle of network
transition movement which consists of $L^{6}$ , $L_{j}^{7}L^{8}$ , and $L^{9}$ .

4. If both Condition 1 and the reverse inequality of Condition 5 hold $(c(d_{B})+$

$c(d_{D})>$ 2c(dc) and $4c(d_{B})+c(d_{D})>$ 2c(dc) $)$ , then there is a cycle of network
transition movement which consists of $L^{7}$ , $L^{8}$ , and $L^{9}$ .

Figure 5 summarizes the results of Proposition 2 with emphasizing on the multi-
valued nature of transition dynamics.

[Insert Figure 5 around here.]
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Next, let us examine the pairwise stable networks for unconnected networks $(L^{0}$

to $L^{4}$ ) as well as connected networks. Now, suppose that the current network is $L^{4}$ .
In this case, if $c(d_{A})-c(d_{B})>4(c(d_{C})-c(d_{D}))$ , then $\pi_{C}(L^{4})>\pi_{D}(L^{7})$ , and $C^{4}$

player has no incentive to form a link with $A^{4}$ player. Furthermore, if $c(dc)-c(dD)>$

$4(c(d_{A})-c(d_{B}))$ , then $\pi_{B}(L^{4})>\pi_{A}(L^{7})$ , and $A^{4}$ player has no incentive to form

a link with $C^{4}$ player. As a result, either $c(d_{A})-c(d_{B})>4(c(d_{C})-c(d_{D}))$ or
$c(dc)-c(d_{D})>4(c(d_{A})-c(d_{B}))$ makes $L^{4}$ be the pairwise stable network. Similar

analysis for the possible transitions from $L^{4}$ leads us to the following result:

Proposition 3

Suppose that $n=4.$ Then, under Assumption 1 and 2, if either $c(d_{A})-c(d_{B})>$

$4(c(d_{C})-c(d_{D}))$ or $c(d_{C})-$ c(dp) $>4(c(d_{A})-c(d_{B}))$ is satisfied, $L^{4}$ is the pairwise

stable network.

7 Conclusion

We have analyzed a model of Cournot oligopoly with link formation and examined

the nature of equilibrium networks. It is established that for the case of four play-

ers, depending on the parameters of the model, there can arise two pairwise stable

networks; one is the complete network $L^{N}$ and the other is the triangular links with

an isolated player called $L^{4}$ .
Our network formation game defines a (multi-valued) dynamics on the set of

graphs. Even for the case of three players and $n=4$ players, link formation processes

can be fairly complicated. Assuming simple linear demand and cost functions, we
have shown that for the case four players, a cycle of order 3 or 4 may arise, both

of which involves a wine glass form network. This network can be transferred into

many other networks and hence plays the central role for the emergence of a cycle.

Although our analysis was confined to the cases of three and four players, our
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results may be extended to the general $n$ player environment. We may also consider a
variety of link formation games. An example is a $\mathrm{c}\mathrm{o}$-author game studied by Jackson

and Wolinsky (1996) and Kawamata and Tamada (2004). The game’s outcome

depends on the number of players directly connected to each other. We could show

that different networks may form depending on the value function of the game,

which describes productive externalities between players. Further generalization of

the game may allow us to assess how various form of network structure arise as a
result of local incentives and externalities. It is hoped that the paper gives a clue

to analyze how various forms of network emerge and how the network changes to

another. These analyses await future papers.
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Comparison of equilibrium profits when $n$ $=3.$
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