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2-ELEMENTS OUTSIDE OF THE DRESS SUBGROUP OF TYPE 2

TOSHIO SUMI  (KYUSHU UNIVERSITY)

1. Introduction

Let G be a finite group. We denote by n(G) the set of prime divisors of the order
of G. For a prime p, we denote by the symbol O?(G), called the Dress subgroup of
G of type p, the smallest normal subgroup of G such that 7(G/OP(G)) < {p}. We
denote by P(G) the set of subgroups P of G of prime power order, possibly 1 and
by £L(G) the set of subgroups H of G containing the Dress subgroup O?(G) of type
p for some prime p.

We say that a G-module V is £(G)-free if dim Vo*©@ = 0 holds for any prime
p- Here a G-module means a R[G]-module which is finite dimensional over R. We
denote by D(G) the set of all pairs (P, H) of subgroups of G suchthat P < H < G
and P is of prime power order. A G-module V is called a gap G-module if V is
L(G)-free and the number

dim V* - 2 dim V¥
is positive for any pair (P, H) € D(G). A finite group G is called a gap group if
there exists a gap G-module and is called a nongap group otherwise.

A finite group G is an Oliver group, if G has no isthmus series of subgroups of
the form

PaH<G

where {n(P)| < 1, [x(G/H)| £ 1 and H/P is cyclic. A finite group G has a fixed point
free smooth action on a disk if and only if G is an Oliver group ([5]). Furthermore,
Oliver has completely decided which a smooth compact manifold is the fixed point
set of a smooth action on a disk ([6]). On the other hand, Laitinen and Morimoto

([2]) has shown that a finite group G has a smooth one fixed point action of a sphere
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if and only if G is an Oliver group. We do not know which a smooth manifold of
positive dimension is the fixed point set of a smooth action on a sphere. For an
Oliver group G which is a gap group, one can apply equivariant sufgery to convert
an appropriate smooth action of G on a disk D into a smooth action of G on a
sphere § with S¢ = M = D, where dim M > 0 (cf. [3, Corollary 0.3]). Thus it is

important to ask whether a given group G is a gap group.

2. Centralizers of 2-elements outside of the Dress subgroup of type 2

Let G be a finite group. An element x of G is a 2-element if the order of x is a
power of 2 or equals to 1. Let X be a normal subgroup of G with K > 0*(G).

For an element x of G, we denote by y(x) the set of odd primes g such that there
exists a subgroup N of G satisfying x € N and OY(N) # N. We define a subset
E,(G,K) of G \ K as the set of involutions (elements of order 2) x such that either
(x| > 1 or [m(Ce(x)| = [7(O*(Cs(x)))| = 2 holds, and define E4(G, K) as the
subset of 2-elements x of G \ K of order > 4 with |y(x)] > 0. Set E(G,K) =
E»(G,K) U E((G, K) (cf. [8]). Note that E»(G,K) = @ if K # O*G). We define
sets E5(G, K), E5(G, K) and E4(G, K) as follows. The set E%(G, K) consists of 2-
elements x of G \ K of order > 2 such that C¢(x) is not a 2-group. The set E§(G, K)
consists of involutions x of G\ K such that [7(0*(C¢(x)))! = 2 holds. Set E4(G, K) =
E$(G, K)UE%(G, K). Note that the sets E5(G, K), E5(G, K) and E*(G, K) are subsets
of E»(G, K), E4(G, K) and E(G, K) respectively.

We set

DG = {(P,H) € D(G) | [H: P] = [0*(G)H : O*(G)P) = 2 and
O%(G)P = G for all odd primes q} .

(cf. [4]) and set
D*G.K) ={(PH) e DXG) | H £ K}.

According to Laitinen and Morimoto {2], we denote by V(G) the G-module

RIGI-R) - €D RIG/0”G)]-R).
per(G) '



If G is a group of prime power order, then V(G) = {0} holds. Laitinen and Morimoto
[2, Theorems 2.3 and B] have shown that V(G) is an £(G)-free G-module such that

dim V(G)? - 2dim V(G)?

is nonnegative for any pair (P,H) € D(G) and is zero only if either (P,H) €
D*(G, @) or P € L(G). Note that P ¢ L(G) for (P, H) € D(G) if P(G) and L(G)

are disjoint.

Theorem 1. Let G be a finite group such that P(G) and L(G) are disjoint. Let K be
a subgroup of G with index 2. Then the fo'llowing claims are equivalent.

(1) E4(G,K) is empty.

(2) E(G,K) is empty.

(3) There exist pairs (P;, H;) € D*(G, K) such that

> (dim v - 2dim V) = 0

j
for any L(G)-free G-module V.

Corollary 2. If P(G) and L(G) are disjoint, then either sets E(G,0*(G)) and
E2(G, O%(G)) are both empty or both nonempty.

3. Nongap groups

Let G be a finite group such that P(G) and L(G) are disjoint. The group G is
a gap group if and only if any subgroup K of G with K > O*(G) is a gap group.

Therefore it is easy to see the following result by Theorem 1.

Theorem 3. Let G be a finite group and let K be a gap subgroup of G with index 2.
Then the following claims are equivalent.

(1) E3(G, K) is empty.

(2) E(G,K) is empty.

(3) G is a nongap group. -

Now, assume that P(G) N L(G) = @. Recall that if P(G) N L(G) # @, then G is

a nongap group.
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Proposition 4. Let G be a finite group such that O*(G) # G and P(G) N L(G) = @,
and let K be a subgroup of G such that (G, K] = 2. Suppose that E4(G,K) = @. Let
G, be a Sylow 2-subgroup of G. Then it holds the followings.

(1) If two elements x and y of G, outside of K are conjugate in G, then they are

conjugate in G,.

2
(2) Z = 1, where (x)g runs over conjugacy classes in G represented
£41Co, )]

- by elements of G, outside of K.

INg, (O)l
by cyclic groups C of G, with CK = G.

C
3 Z . 1, where (C)g runs over conjugacy classes in G represented
©)x

Proof. For an element x of G \ K, we denote by x, the involution of the cyclic
subgroup generated by x. As E5(G) is empty, x, is an element outside of K. Recall
that if two elements x and y of G \ K are conjugate in G, namely x = g~'yg, for
some g € G, then x; = g”'y,¢ and thus g € Cs(xz). Since E5(G, K) is empty and

G G
o =61~ 1K1 = 2,

wegonx 1€

we have

2 2
1= = + + —
(*)GSG K [Ce(0)] [(.r);:\x (x)GZ:G:\K (x)aGG\K] ICe(x)l

|x=2 Lxi»2* x=2>2
(
2 2 2
= —_—+ + —e
(3N 4 ICG(_Y)t (6EC K 'CG(X)I ()GeOK ICG(X)'
b2\ xy=y; Wie2° Id=2*>2
{
2 2 2
= Z + —— |t —_
(GEGK ICc (IGEGAK ICCG()’)(x)l (995K [Ce(x)|
b=2 \ x=ys d#2* x4=2*>2
- 2 2
e K (RcSG K |CCG(.Y)(x)I (XGEGK |CG(X)I
M=2  xy=y; 1) 0dd ej=2>2

Set L(y) = OX(Ce())y) = 0*Cs(»)) x (). Let B(y) (resp. C(y)) be the set of
conjugacy classes in Cg(y) which are represented by elements of L(y) \ 0*(Cg(y))
(resp. O*(Cs(y))). Note that if two elements x and x’ of G outside of K with X = X,



are conjugate in G, then they are conjugate in Cg(x,). Therefore we obtain that

2 2
=0, 2 * ) o

Ceyp(x
m(l:ﬁ;fz\x *csneB80) | C(y)( ) (Jlfr)laszuz

2 2
= —_—
©) w;‘ (x,cd,z,e%) iCaoor0) (}%‘:\f ICoo

2 2
=2 X ; ICe)l’

WeECAK (2)Co()ECO) ICeorn @ ’ i
Let A be the set of conjugacy classes (x)g, in G, represented by elements of G; \
(G2 N K). As E(G, K) is empty, we have Cg(x) for x € G \ K with [x| = 2* > 2 s
a 2-group. Furthermore by using the assumption that E3(G, K) is empty again, the
last number at (5) equals to

20*CoO) 2
2, iCoo)l Wrome

0GSG K ()6SG K

(6) W=z x=2*>2
2 2 2
= + — < =1,
U)GCZG\K [Cc(el (x,czca\x |Cq(x)a (y)é.ﬂ ICe, I
=2 14=2%>2

where Cg(x), (resp. Cs(y),) is a Sylow 2-subgroup of Cg(x) (resp. Cg(y)). There-
fore any inequality or equality in (6) must be equality and thus if x,y € G, are

conjugate in G, then they are conjugate in G,. W

Theorem 7. Let G be a nongap group satisfying that P(G) N L(G) = @ and that
[G : O%G)] = 2. Let G, be a Sylow 2-subgroup of G. Suppose the order of G is
divisible by 4. Then it holds the followings.
(1) If x and y are involutions of G, \ K, then xy € [G,, G,].
(2) There exists an element x of G, \ K such that |x| > 2.
(3) The group generated by all involutions of G, outside of K is a proper sub-
group of G,. |

Theorem 8. Let G be a finite group satisfying that P(G) N L(G) = @ and that
G/[G, G} is not a 2-group. If G is a nongap group, then 0*(G) is of odd order.

Proof. If G is perfect, then G is a gap group. Suppose that G/[G, G] is of even
order. Let K be a subgroup of G such that K > 0*(G), [K : O*G)] = 2 and
0?*(K/O*(K)) is isomorphic to 0*(G/O*(G)). If G is a nongap group, then K is
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also a nongap group. There exist no 2-elements, not involutions, of K outside of
O*(K). If there might exist such an element x, then x lies in E(K, 0%(K)) which
implies that K is a gap group by Theorem 1. Therefore, the group generated by all
involutions of K outside of X is just K3, where K is a Sylow 2-subgroup of K. By
Theorem 7 (3), the order of K is not divisible by 4. Since [K : 0*(K)] = 2, the order
of O*(K) = O*(G) is odd. ‘ w]

Corollary 9. Let G be a finite group satisfying that P(G) N L(G) = @ and that
G/[G,G] is not a 2-group. If G is a nongap group, then G is solvable.

Proof. By Theorem 8, the Dress group O*(G) of type 2 is of odd order. Recall
that G/0?*(G) is a 2-group. By Burnside’s theorem, 0*(G) and G/0*G) are both
solvable. Thus G is solvable. o

Note that a finite group G such that P(G) N £L(G) # @ is solvable.

4. Direct product

Lemma 10. Let G be a finite group such that 0O*(G) # G and P(G) N L(G) = @,
and let K be a subgroup of G such that [G, K] = 2. If all elements of H outside of
K are 2-elements, then

D INe(C)/CI |(H\G)| = 1
©)x

where (C)¢ runs over conjugacy classes in G represented by cyclic groups C of G
with CK = G.

We define E4(G, K) as the set of 2-elements x of G outside of K such that Cg(x)
is not a 2-group, Note that E8(G,K) is a subset of E4(G,K). There exist finite
groups G so that [G : O*G)] = 2 and E%(G, O%G)) is empty. A solvable group
SmallGroup(1920,239651) and a nonsolvable group SmallGroup(1344, 11427)
bothA satisfy such conditions. (cf. [1])

Proposition 11. Let G be a finite group such that 0*(G) # G and P(G)N L(G) = @,
and let K be a subgroup of G such that [G, K] = 2. Suppose that E*(G,K) = @. Let
G, be a Sylow 2-subgroup of G and let C be a cyclic subgroup of G with CK = G.
Then it holds the followings. ’



(1) If a subgroup of G, intersects with any conjugacy class (x)c represented by
elements of G, outside of K, then it is just G,. .

) |(G2\G)°ING(C)| = 1 holds. In particular, (G:\G)® = G2\G2Ng(C), if
C< Gz.

Proof. Let C be a cyclic subgroup of G with CK = G. By assumption, (H\G)C is
nonempty. By Proposition 4 (3), we obtain that

y c i _
D INg(©)/Cl I(H\G)'Z(CZ)GWG,(C)I 1,

)
where (C)g runs over conjugacy classes in G represented by cyclic groups C of G,

with CK = G. Furthermore as C is a 2-group, we obtain that
IC|

IN(C)/CI™ |(H\G)| = =1
ch (Z—,: ING, ()|

by Lemma 10 and thus

[(E\G| = 1.
Take an element a € G such that aCa™! < H. Then we have
(H\G)® 2 H\Ng(H)a.
Supposing that H # G,, it holds Ng(H) # H, which implies I(H\G)Cl > 2. a

Theorem 12. Let G be a finite group satisfying that P(G) and L(G) are disjoint,
|0*(G)| is even and G/ O*(G) is cyclic. Let K be a subgroup of G with index 2. Then
the following claims are equivalent.

(1) E4(G, K) is nonempty.

(2) GxGisagap group.

(3) G*=Gx---x G isagap group fork > 2.

k times
Note that G* is a nongap group for any k > 1 if P(G) and .L(G) are not disjoint,

since P(G*) and L(G*) are not disjoint. The assumption that |0*(G)| is even is need.

Remark 13. Let p, g and r be odd primes with p # ¢. Let G = Dypq X C, be the -

direct product group of a dihedral group D, of order 2pq and a cyclic group C, of
order r. Then it holds that E4(G, 0*(G)) is nonempty, O*(G) is of order odd and G*

is a nongap group for any k > 1.
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Corollary 14. Let G be a finite group satisfying that P(G) N L(G) = @, |0*(G)| is
even and [G : O%(G)] = 2. Let k > 1 be an integer. Then we have the following
claims:
(1) G and G* are gap groups & E%(G, 0*(G)) # @.
(2) G* is a gap group and G is a nongap group < E%(G,0*G)) = @ and
EYG,0%G)) + @.
(3) G* (and G) are nongap groups < E*(G, 0*(G)) = @.

5. Wreath product

Let X and L be finite groups. We denote by K f L the semidirect product group
K" > L such that L acts on K'Y by permutation:

1—>K‘”-—>KfL-—oL—-»1

Proposition 15. Let G be a finite group satisfying that P(G) N L(G) = @ and that
G/OXG) is cyclic. Let K be a subgroup of G with index 2. If G [ C, is a gap group
for a 2-power integer n, then E*(G, K) is nonempty, where C, is a cyclic group of

order n.

Let G = SmallGroup(1344,11427). It is a nonsolvable group satisfying that
[G : 0%G)] = 2 and E%(G, 0%(G)) = @. By Corollary 9, G [ C, is a gap group for

any integer n > 1, not a 2-power.

Theorem 16. Let G be a finite group satisfying that P(G) and L(G) are disjoint.
For any subgroup K, O*(G) <K < G, possessing a cyclic quotient K/ O*(G), the set
E(K, Ky) is nonempty, if and only if G is a gap group, where K, is a subgroup of K
with index 2.

Corollary 17. Let G be a finite group satisfying that P(G) and L(G) are disjoint
and [G : 0O%(G)] = 2. The set E(G,0%G)) is nonempty if and only if G is a gap
group.

Before closing this section, we show the following theorem:



Theorem 18. Let G be a finite group satisfying that G/OX(G) is cyclic, P(G) N
L(G) = @, E%G, K) # @ and that O*(G) is of even order, where K is a subgroup of
G with index 2. For any nontrivial finite group L, the wreath product group G f L
is a gap group.

First we show the assertion in the case where L = C,:

Lemma 19. Let G and K be finite groups as in Theorem 18. For a cyclic subgroup
C = C, of order 2, the wreath product group G f C is a gap group.

Proof. Letn: G [C — (G fC) / 0%G [C) = (G/0%G))  C be an epimorphism.
If 7~ (m({x))) is a gap group for any nontrivial 2-element x of (G/ 0%(G)) f C, then
G [ C is a gap group. Note that 0%(G [ C) = 0*(G)? = 0%(G) x O*(G). Let f be
a generator of C. Let h be a 2-element of G outside of X such that Cg(h) is not a
2-group. Recall that G X G is a gap group by Theorem 12. It suffices to show that

N :=(0%G, (h, m)f )
is a gap group for any elements h; and A, of (k). Note that

((h1, h2) ) = (Bihg, hohy).
We obtain that

Co, ((hi, b)) = (i, ) f, (a,h7'ahy) | a € Coua(huhy) ).
As [G : O%(G)] = 2, the group Cgz)(h) is not a 2-group. Thus Cg, ((h1, k) f) is not
a 2-group by Co2(g)(h1hy) = Cory(h). Let
Ny := (OYGY, (hiha, hah) )

be a subgroup of N with index 2. We show that E8(N, Np) is nonempty. If (A1, h2) f
is not an involution, then (hy, h2) f lies in ES(N, Np). Suppose that (h,, hy) f is an in-
volution. Then it follows A, = h, which is an involution. In this case, Cg, ((h, h2)f)
is isomorphic to O*(G) and thus (&, 4)f lies in Eg(N, Np). Therefore E8(N, Np) is
nonempty. Since N, is a subgroup of G X G with 2-power index, Nj is a gap group.

Then N is a gap group by combining Theorems 1 and 16. o

Proof of Theorem 18. Letn: G [ L — L be an epimorphism. If 77! (x((x))) is a
gap group for any 2-element x of G [ L outside of O*(G [ L), then G [ L is a gap
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group. As G'! is a gap group by Theorem 12, it suffices to show that 771(C) is a
gap group for any nontrivial cyclic group C. Let C = C, be a cyclic subgroup of L
of order n > 1. Note that |0%(G [ C)} is even and P(G [ C) N L(G [ C) = @ since
there is a subgroup of G f C isomorphic to G. Thus if » is not a 2-power integer,
then G [ C is a gap group by Corollary 9.

Assume that n is a 2-power integer, say 2*. We show that G f C is a gap group by
induction on k. In the case where n = 2, the assertion follows from Lemma 19. Let
m = 2% > 2 and let C,, be a cyclic subgroup of C with index 2.

Suppose that G f C,, is a gap group for any G as in Theorem 18. Note that
pCy) = G? fC,,,, where p: G f C — C is an epimorphism. p~!(C,,) is isomor-
phic to a subgroup of the gap group (G f C.)* with 2-power index and thus is a gap

group.
Let h be a 2-element of G outside of K such that Cg(h) is not a 2-group. Let h;

“be an element of (h) for each j = 1,...,n and let f be a generator of C. Consider

the subgroup
N = (0*G)", (hi,.... kS ).

Let Ny be a subgroup of N with index 2. As N, is a subgroup of p~!(C,,) with 2-
power index, it is a gap group. Thus it suffices to show that E#(N, Np) is nonempty.
We show that (hy, ..., h,)f lies in E4(N, N;). We have
Corgy((hi, ..., ha)f)
= (@ hi'ahy, (b alhiba), ..., (b . hcr) Ry . Bac)
| a € Couqy(iha ... 1))

The group Cpz)y(h1hz ... h,) contains the group Cp2(g)(h) and thus it is not a 2-
group. As the element (h,,...,h,)f is not an involution, it lies in E£(N, Ny) and

then N is a gap group.
The group G f C is a gap group, since any subgroup N, O*(G)" <N < G f C,
possessing a cyclic quotient N/O*(G)" is a gap group. o
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