2-ELEMENTS OUTSIDE OF THE DRESS SUBGROUP OF TYPE 2

TOSHIO SUMI (KYUSHU UNIVERSITY)

1. Introduction

Let G be a finite group. We denote by $\pi(G)$ the set of prime divisors of the order of G. For a prime p, we denote by the symbol $O^p(G)$, called the Dress subgroup of G of type p, the smallest normal subgroup of G such that $\pi(G/O^p(G)) \subseteq \{p\}$. We denote by $\mathcal{P}(G)$ the set of subgroups P of G of prime power order, possibly 1 and by $\mathcal{L}(G)$ the set of subgroups H of G containing the Dress subgroup $O^p(G)$ of type p for some prime p.

We say that a G-module V is $\mathcal{L}(G)$-free if $\dim V^{O^p(G)} = 0$ holds for any prime p. Here a G-module means a $\mathbb{R}[G]$-module which is finite dimensional over \mathbb{R}. We denote by $\mathcal{D}(G)$ the set of all pairs (P, H) of subgroups of G such that $P < H \leq G$ and P is of prime power order. A G-module V is called a gap G-module if V is $\mathcal{L}(G)$-free and the number

$$\dim V^P - 2 \dim V^H$$

is positive for any pair $(P, H) \in \mathcal{D}(G)$. A finite group G is called a gap group if there exists a gap G-module and is called a nongap group otherwise.

A finite group G is an Oliver group, if G has no isthmus series of subgroups of the form

$$P < H < G$$

where $|\pi(P)| \leq 1$, $|\pi(G/H)| \leq 1$ and H/P is cyclic. A finite group G has a fixed point free smooth action on a disk if and only if G is an Oliver group ([5]). Furthermore, Oliver has completely decided which a smooth compact manifold is the fixed point set of a smooth action on a disk ([6]). On the other hand, Laitinen and Morimoto ([2]) has shown that a finite group G has a smooth one fixed point action of a sphere

2000 Mathematics Subject Classification. 57S17, 20C15.

Key words and phrases. gap group, gap module, representation.

This research was partially supported by Grand-in-Aid for Scientific Research (C) (2) (No. 14540084) of the Japan Society for the Promotion of Science.
if and only if \(G \) is an Oliver group. We do not know which a smooth manifold of positive dimension is the fixed point set of a smooth action on a sphere. For an Oliver group \(G \) which is a gap group, one can apply equivariant surgery to convert an appropriate smooth action of \(G \) on a disk \(D \) into a smooth action of \(G \) on a sphere \(S \) with \(S^G = M = D^G \), where \(\dim M > 0 \) (cf. [3, Corollary 0.3]). Thus it is important to ask whether a given group \(G \) is a gap group.

2. Centralizers of 2-elements outside of the Dress subgroup of type 2

Let \(G \) be a finite group. An element \(x \) of \(G \) is a 2-element if the order of \(x \) is a power of 2 or equals to 1. Let \(K \) be a normal subgroup of \(G \) with \(K \geq O^2(G) \).

For an element \(x \) of \(G \), we denote by \(\psi(x) \) the set of odd primes \(q \) such that there exists a subgroup \(N \) of \(G \) satisfying \(x \in N \) and \(O^q(N) \neq N \). We define a subset \(E_2(G, K) \) of \(G \setminus K \) as the set of involutions (elements of order 2) \(x \) such that either \(|\psi(x)| > 1 \) or \(|\pi(C_G(x))| = |\pi(O^2(C_G(x)))| = 2 \) holds, and define \(E_4(G, K) \) as the subset of 2-elements \(x \) of \(G \setminus K \) of order \(\geq 4 \) with \(|\psi(x)| > 0 \). Set \(E(G, K) = E_2(G, K) \cup E_4(G, K) \) (cf. [8]). Note that \(E_2(G, K) = \emptyset \) if \(K \neq O^2(G) \). We define sets \(E_2^g(G, K) \), \(E_4^g(G, K) \) and \(E^g(G, K) \) as follows. The set \(E_2^g(G, K) \) consists of 2-elements \(x \) of \(G \setminus K \) of order \(> 2 \) such that \(C_G(x) \) is not a 2-group. The set \(E_4^g(G, K) \) consists of involutions \(x \) of \(G \setminus K \) such that \(|\pi(O^2(C_G(x)))| \geq 2 \) holds. Set \(E^g(G, K) = E_2^g(G, K) \cup E_4^g(G, K) \). Note that the sets \(E_2^g(G, K) \), \(E_4^g(G, K) \) and \(E^g(G, K) \) are subsets of \(E_2(G, K) \), \(E_4(G, K) \) and \(E(G, K) \) respectively.

We set

\[
\mathcal{D}^2(G) = \left\{ (P, H) \in \mathcal{D}(G) \mid [H : P] = [O^2(G)H : O^2(G)P] = 2 \text{ and } O^q(G)P = G \text{ for all odd primes } q \right\}.
\]

(cf. [4]) and set

\[
\mathcal{D}^2(G, K) = \left\{ (P, H) \in \mathcal{D}^2(G) \mid H \not\leq K \right\}.
\]

According to Laitinen and Morimoto [2], we denote by \(V(G) \) the \(G \)-module

\[
(\mathbb{R}[G] - \mathbb{R}) - \bigoplus_{p \in \pi(G)} (\mathbb{R}[G/O^p(G)] - \mathbb{R}).
\]
If G is a group of prime power order, then $V(G) = \{0\}$ holds. Laitinen and Morimoto [2, Theorems 2.3 and B] have shown that $V(G)$ is an $\mathcal{L}(G)$-free G-module such that
\[\dim V(G)^P - 2 \dim V(G)^H \]
is nonnegative for any pair $(P, H) \in \mathcal{D}(G)$ and is zero only if either $(P, H) \in \mathcal{D}^2(G, \emptyset)$ or $P \in \mathcal{L}(G)$. Note that $P \notin \mathcal{L}(G)$ for $(P, H) \in \mathcal{D}(G)$ if $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint.

Theorem 1. Let G be a finite group such that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. Let K be a subgroup of G with index 2. Then the following claims are equivalent.

1. $E^g(G, K)$ is empty.
2. $E(G, K)$ is empty.
3. There exist pairs $(P_j, H_j) \in \mathcal{D}^2(G, K)$ such that
\[\sum_j \left(\dim V^{P_j} - 2 \dim V^{H_j} \right) = 0 \]
for any $\mathcal{L}(G)$-free G-module V.

Corollary 2. If $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint, then either sets $E(G, O^2(G))$ and $E^g(G, O^2(G))$ are both empty or both nonempty.

3. Nongap groups

Let G be a finite group such that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. The group G is a gap group if and only if any subgroup K of G with $K > O^2(G)$ is a gap group. Therefore it is easy to see the following result by Theorem 1.

Theorem 3. Let G be a finite group and let K be a gap subgroup of G with index 2. Then the following claims are equivalent.

1. $E^g(G, K)$ is empty.
2. $E(G, K)$ is empty.
3. G is a nongap group.

Now, assume that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. Recall that if $\mathcal{P}(G) \cap \mathcal{L}(G) \neq \emptyset$, then G is a nongap group.
Proposition 4. Let G be a finite group such that $O^2(G) \neq G$ and $P(G) \cap L(G) = \emptyset$, and let K be a subgroup of G such that $[G, K] = 2$. Suppose that $E^2(G, K) = \emptyset$. Let G_2 be a Sylow 2-subgroup of G. Then it holds the followings.

1. If two elements x and y of G_2 outside of K are conjugate in G, then they are conjugate in G_2.

2. \[
\sum_{(x)_{G}} \frac{2}{|C_G(x)|} = 1, \text{ where } (x)_G \text{ runs over conjugacy classes in } G \text{ represented by elements of } G_2 \text{ outside of } K.
\]

3. \[
\sum_{(C)_{G}} \frac{|C|}{|N_G(C)|} = 1, \text{ where } (C)_G \text{ runs over conjugacy classes in } G \text{ represented by cyclic groups } C \text{ of } G_2 \text{ with } CK = G.
\]

Proof. For an element x of $G \setminus K$, we denote by x_2 the involution of the cyclic subgroup generated by x. As $E^2_2(G)$ is empty, x_2 is an element outside of K. Recall that if two elements x and y of $G \setminus K$ are conjugate in G, namely $x = g^{-1}yg$, for some $g \in G$, then $x_2 = g^{-1}y_2g$ and thus $g \in C_G(x_2)$. Since $E^2_2(G, K)$ is empty and

\[
\sum_{(x)_{G \setminus G \setminus K}} \frac{|G|}{|C_G(x)|} = |G| - |K| = \frac{|G|}{2},
\]

we have

\[
1 = \sum_{(x)_{G \setminus G \setminus K}} \frac{2}{|C_G(x)|} = \left(\sum_{(x)_{G \setminus G \setminus K}} \right) \frac{2}{|C_G(x)|} + \left(\sum_{(x)_{G \setminus G \setminus K}} \right) \frac{2}{|C_G(x)|} + \left(\sum_{(x)_{G \setminus G \setminus K}} \right) \frac{2}{|C_G(x)|}
\]

\[
= \sum_{(x)_{G \setminus G \setminus K}} \left(\frac{2}{|C_G(y)|} + \sum_{\substack{(x)_{G \setminus G \setminus K} \in (x)_{G \setminus G \setminus K} \setminus \{x\} \setminus \{y\}}} \frac{2}{|C_G(x)|} \right) + \sum_{(x)_{G \setminus G \setminus K}} \frac{2}{|C_G(x)|}
\]

\[
= \sum_{(x)_{G \setminus G \setminus K}} \sum_{\substack{(x)_{G \setminus G \setminus K} \in (x)_{G \setminus G \setminus K} \setminus \{x\} \setminus \{y\}}} \frac{2}{|C_G(y)(x)|} + \sum_{(x)_{G \setminus G \setminus K}} \frac{2}{|C_G(x)|}.
\]

Set $L(y) = O^2(C_G(y))(y) \cong O^2(C_G(y)) \times \langle y \rangle$. Let $B(y)$ (resp. $C(y)$) be the set of conjugacy classes in $C_G(y)$ which are represented by elements of $L(y) \setminus O^2(C_G(y))$ (resp. $O^2(C_G(y))$). Note that if two elements x and x' of G outside of K with $x_2 = x'_2$
are conjugate in G, then they are conjugate in $C_{G}(x_2)$. Therefore we obtain that

$$1 = \sum_{y \in G} \sum_{z \in G} \frac{2}{|C_{G}(y)(x)|} + \sum_{y \in G} \frac{2}{|C_{G}(x)|}$$

$$= \sum_{y \in G} \sum_{z \in G} \frac{2}{|C_{G}(y)(x^2)|} + \sum_{y \in G} \frac{2}{|C_{G}(x)|}$$

(5)

$$= \sum_{y \in G} \sum_{z \in G} \frac{2}{|C_{G}(y)(z)|} + \sum_{y \in G} \frac{2}{|C_{G}(x)|}.$$

Let A be the set of conjugacy classes $(x)_{G_2}$ in G_2 represented by elements of $G_2 \setminus (G_2 \cap K)$. As $E_4^2(G, K)$ is empty, we have $C_{G}(x)$ for $x \in G \setminus K$ with $|x| = 2^r > 2$ is a 2-group. Furthermore by using the assumption that $E_2^2(G, K)$ is empty again, the last number at (5) equals to

$$\sum_{y \in G} \frac{2|O^2(C_{G}(y))|}{|C_{G}(y)|} + \sum_{y \in G} \frac{2}{|C_{G}(x)|}$$

(6)

$$= \sum_{y \in G} \frac{2}{|C_{G}(y)|} + \sum_{y \in G} \frac{2}{|C_{G}(x)|} \leq \sum_{y \in G} \frac{2}{|C_{G}(y)|} = 1,$$

where $C_{G}(x)$ (resp. $C_{G}(y)$) is a Sylow 2-subgroup of $C_{G}(x)$ (resp. $C_{G}(y)$). Therefore any inequality or equality in (6) must be equality and thus if $x, y \in G_2$ are conjugate in G, then they are conjugate in G_2.

Theorem 7. Let G be a nongap group satisfying that $P(G) \cap L(G) = \emptyset$ and that $[G : O^2(G)] = 2$. Let G_2 be a Sylow 2-subgroup of G. Suppose the order of G is divisible by 4. Then it holds the followings.

1. If x and y are involutions of $G_2 \setminus K$, then $xy \in [G_2, G_2]$.
2. There exists an element x of $G_2 \setminus K$ such that $|x| > 2$.
3. The group generated by all involutions of G_2 outside of K is a proper subgroup of G_2.

Theorem 8. Let G be a finite group satisfying that $P(G) \cap L(G) = \emptyset$ and that $G/[G, G]$ is not a 2-group. If G is a nongap group, then $O^2(G)$ is of odd order.

Proof. If G is perfect, then G is a gap group. Suppose that $G/[G, G]$ is of even order. Let K be a subgroup of G such that $K > O^2(G)$, $[K : O^2(G)] = 2$ and $O^2(K/O^2(K))$ is isomorphic to $O^2(G/O^2(G))$. If G is a nongap group, then K is
also a nongap group. There exist no 2-elements, not involutions, of \(K \) outside of \(O^2(K) \). If there might exist such an element \(x \), then \(x \) lies in \(E(K, O^2(K)) \) which implies that \(K \) is a gap group by Theorem 1. Therefore, the group generated by all involutions of \(K_2 \) outside of \(K \) is just \(K_2 \), where \(K_2 \) is a Sylow 2-subgroup of \(K \). By Theorem 7 (3), the order of \(K \) is not divisible by 4. Since \([K : O^2(K)] = 2\), the order of \(O^2(K) = O^2(G) \) is odd. □

Corollary 9. Let \(G \) be a finite group satisfying that \(\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset \) and that \(G/[G, G] \) is not a 2-group. If \(G \) is a nongap group, then \(G \) is solvable.

Proof. By Theorem 8, the Dress group \(O^2(G) \) of type 2 is of odd order. Recall that \(G/O^2(G) \) is a 2-group. By Burnside's theorem, \(O^2(G) \) and \(G/O^2(G) \) are both solvable. Thus \(G \) is solvable. □

Note that a finite group \(G \) such that \(\mathcal{P}(G) \cap \mathcal{L}(G) \neq \emptyset \) is solvable.

4. Direct product

Lemma 10. Let \(G \) be a finite group such that \(O^2(G) \neq G \) and \(\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset \), and let \(K \) be a subgroup of \(G \) such that \([G, K] = 2\). If all elements of \(H \) outside of \(K \) are 2-elements, then

\[
\sum_{(C)_{G}} |N_{G}(C)/C|^{-1} |(H \setminus G)^C| = 1
\]

where \((C)_{G}\) runs over conjugacy classes in \(G \) represented by cyclic groups \(C \) of \(G \) with \(CK = G \).

We define \(E^d(G, K) \) as the set of 2-elements \(x \) of \(G \) outside of \(K \) such that \(C_G(x) \) is not a 2-group. Note that \(E^d(G, K) \) is a subset of \(E^d(G, K) \). There exist finite groups \(G \) so that \([G : O^2(G)] = 2\) and \(E^d(G, O^2(G)) \) is empty. A solvable group SmallGroup(1920, 239651) and a nonsolvable group SmallGroup(1344, 11427) both satisfy such conditions. (cf. [1])

Proposition 11. Let \(G \) be a finite group such that \(O^2(G) \neq G \) and \(\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset \), and let \(K \) be a subgroup of \(G \) such that \([G, K] = 2\). Suppose that \(E^d(G, K) = \emptyset \). Let \(G_2 \) be a Sylow 2-subgroup of \(G \) and let \(C \) be a cyclic subgroup of \(G \) with \(CK = G \). Then it holds the followings.
(1) If a subgroup of G_2 intersects with any conjugacy class $(x)_G$ represented by elements of G_2 outside of K, then it is just G_2.

(2) $|(G_2 \backslash G)/N_G(C)| = 1$ holds. In particular, $(G_2 \backslash G)^C = G_2 \backslash G N_G(C)$, if $C < G_2$.

Proof. Let C be a cyclic subgroup of G with $CK = G$. By assumption, $(H \backslash G)^C$ is nonempty. By Proposition 4 (3), we obtain that

$$\sum_{(C)_G} |N_G(C)/C|^{-1} |(H \backslash G)^C| \geq \sum_{(C)_G} \frac{|C|}{|N_G(C)|} = 1,$$

where $(C)_G$ runs over conjugacy classes in G represented by cyclic groups C of G_2 with $CK = G$. Furthermore as C is a 2-group, we obtain that

$$\sum_{(C)_G} |N_G(C)/C|^{-1} |(H \backslash G)^C| = \sum_{(C)_G} \frac{|C|}{|N_G(C)|} = 1$$

by Lemma 10 and thus

$$|(H \backslash G)^C| = 1.$$

Take an element $a \in G$ such that $aCa^{-1} \leq H$. Then we have

$$(H \backslash G)^C \supseteq H \backslash N_G(H)a.$$

Supposing that $H \neq G_2$, it holds $N_G(H) \neq H$, which implies $|(H \backslash G)^C| \geq 2$. □

Theorem 12. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint, $|O^2(G)|$ is even and $G/O^2(G)$ is cyclic. Let K be a subgroup of G with index 2. Then the following claims are equivalent.

1. $E^d(G, K)$ is nonempty.
2. $G \times G$ is a gap group.
3. $G^k = \underbrace{G \times \cdots \times G}_{k \text{ times}}$ is a gap group for $k \geq 2$.

Note that G^k is a nongap group for any $k \geq 1$ if $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are not disjoint, since $\mathcal{P}(G^k)$ and $\mathcal{L}(G^k)$ are not disjoint. The assumption that $|O^2(G)|$ is even is need.

Remark 13. Let p, q and r be odd primes with $p \neq q$. Let $G = D_{2pq} \times C_r$ be the direct product group of a dihedral group D_{2pq} of order $2pq$ and a cyclic group C_r of order r. Then it holds that $E^d(G, O^2(G))$ is nonempty, $O^2(G)$ is of order odd and G^k is a nongap group for any $k \geq 1$.

Corollary 14. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$, $|O^2(G)|$ is even and $[G : O^2(G)] = 2$. Let $k > 1$ be an integer. Then we have the following claims:

1. G and G^k are gap groups $\iff E^d(G, O^2(G)) \neq \emptyset$.
2. G^k is a gap group and G is a nongap group $\iff E^d(G, O^2(G)) = \emptyset$.
3. G^k (and G) are nongap groups $\iff E^d(G, O^2(G)) = \emptyset$.

5. Wreath product

Let K and L be finite groups. We denote by $K \int L$ the semidirect product group $K^{[L]} \rtimes L$ such that L acts on $K^{[L]}$ by permutation:

$$1 \rightarrow K^{[L]} \rightarrow K \int L \rightarrow L \rightarrow 1$$

Proposition 15. Let G be a finite group satisfying that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and that $G/O^2(G)$ is cyclic. Let K be a subgroup of G with index 2. If $G \int C_n$ is a gap group for a 2-power integer n, then $E^d(G, K)$ is nonempty, where C_n is a cyclic group of order n.

Let $G = \text{SmallGroup}(1344, 11427)$. It is a nonsolvable group satisfying that $[G : O^2(G)] = 2$ and $E^d(G, O^2(G)) = \emptyset$. By Corollary 9, $G \int C_n$ is a gap group for any integer $n > 1$, not a 2-power.

Theorem 16. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint. For any subgroup K, $O^2(G) \triangleleft K \leq G$, possessing a cyclic quotient $K/O^2(G)$, the set $E(K, K_0)$ is nonempty, if and only if G is a gap group, where K_0 is a subgroup of K with index 2.

Corollary 17. Let G be a finite group satisfying that $\mathcal{P}(G)$ and $\mathcal{L}(G)$ are disjoint and $[G : O^2(G)] = 2$. The set $E(G, O^2(G))$ is nonempty if and only if G is a gap group.

Before closing this section, we show the following theorem:
Theorem 18. Let G be a finite group satisfying that $G/O^2(G)$ is cyclic, $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$, $E^d(G,K) \neq \emptyset$ and that $O^2(G)$ is of even order, where K is a subgroup of G with index 2. For any nontrivial finite group L, the wreath product group $G \wr L$ is a gap group.

First we show the assertion in the case where $L = C_2$:

Lemma 19. Let G and K be finite groups as in Theorem 18. For a cyclic subgroup $C = C_2$ of order 2, the wreath product group $G \wr C$ is a gap group.

Proof. Let $\pi: G \rightarrow (G \wr C)/O^2(G \wr C) \cong (G/O^2(G)) \wr C$ be an epimorphism. If $\pi^{-1}(\pi(\langle x \rangle))$ is a gap group for any nontrivial 2-element x of $(G/O^2(G)) \wr C$, then $G \wr C$ is a gap group. Note that $O^2(G \wr C) = O^2(G)^2 = O^2(G) \times O^2(G)$. Let f be a generator of C. Let h be a 2-element of G outside of K such that $C_G(h)$ is not a 2-group. Recall that $G \times G$ is a gap group by Theorem 12. It suffices to show that

$$N := \langle O^2(G)^2, (h_1, h_2)f \rangle$$

is a gap group for any elements h_1 and h_2 of $\langle h \rangle$. Note that

$$(h_1, h_2)f^2 = (h_1h_2, h_2h_1).$$

We obtain that

$$C_{G_2}((h_1, h_2)f) = \left\langle (h_1, h_2)f, (a, h_1^{-1}ah_1) \mid a \in C_{O^2(G)}(h_1h_2) \right\rangle.$$

As $[G : O^2(G)] = 2$, the group $C_{O^2(G)}(h)$ is not a 2-group. Thus $C_{G_2}((h_1, h_2)f)$ is not a 2-group by $C_{O^2(G)}(h_1h_2) \geq C_{O^2(G)}(h)$. Let

$$N_0 := \langle O^2(G)^2, (h_1, h_2, h_2h_1) \rangle$$

be a subgroup of N with index 2. We show that $E^d(N, N_0)$ is nonempty. If $(h_1, h_2)f$ is an involution, then $(h_1, h_2)f$ lies in $E^d_2(N, N_0)$. Suppose that $(h_1, h_2)f$ is a 2-group by $C_{O^2(G)}(h_1h_2) \geq C_{O^2(G)}(h)$. Let

$$N_0 := \langle O^2(G)^2, (h_1h_2, h_2h_1) \rangle$$

be a subgroup of N with index 2. We show that $E^d(N, N_0)$ is nonempty. If $(h_1, h_2)f$ is not an involution, then $(h_1, h_2)f$ lies in $E^d_2(N, N_0)$. Suppose that $(h_1, h_2)f$ is an involution.

Then it follows $h_1 = h_2$ which is an involution. In this case, $C_{G_2}((h_1, h_2)f)$ is isomorphic to $O^2(G)$ and thus $(h_1, h_2)f$ lies in $E^d_2(N, N_0)$. Therefore $E^d(N, N_0)$ is nonempty. Since N_0 is a subgroup of $G \times G$ with 2-power index, N_0 is a gap group. Then N is a gap group by combining Theorems 1 and 16. □

Proof of Theorem 18. Let $\pi: G \rightarrow L$ be an epimorphism. If $\pi^{-1}(\pi(\langle x \rangle))$ is a gap group for any 2-element x of $G \wr L$ outside of $O^2(G \wr L)$, then $G \wr L$ is a gap group.
group. As $G^{(U)}$ is a gap group by Theorem 12, it suffices to show that $\pi^{-1}(C)$ is a gap group for any nontrivial cyclic group C. Let $C = C_n$ be a cyclic subgroup of L of order $n > 1$. Note that $|O^2(G \int C)|$ is even and $\mathcal{P}(G \int C) \cap \mathcal{L}(G \int C) = \emptyset$ since there is a subgroup of $G \int C$ isomorphic to G. Thus if n is not a 2-power integer, then $G \int C$ is a gap group by Corollary 9.

Assume that n is a 2-power integer, say 2^k. We show that $G \int C$ is a gap group by induction on k. In the case where $n = 2$, the assertion follows from Lemma 19. Let $m = 2^{k-1} \geq 2$ and let C_m be a cyclic subgroup of C with index 2.

Suppose that $G \int C_m$ is a gap group for any G as in Theorem 18. Note that $\rho^{-1}(C_m) = G^2 \int C_m$, where $\rho: G \int C \to C$ is an epimorphism. $\rho^{-1}(C_m)$ is isomorphic to a subgroup of the gap group $(G \int C_m)^2$ with 2-power index and thus is a gap group.

Let h be a 2-element of G outside of K such that $C_G(h)$ is not a 2-group. Let h_j be an element of $\langle h \rangle$ for each $j = 1, \ldots, n$ and let f be a generator of C. Consider the subgroup

$$N := \langle O^2(G)^n, (h_1, \ldots, h_n)f \rangle.$$

Let N_0 be a subgroup of N with index 2. As N_0 is a subgroup of $\rho^{-1}(C_m)$ with 2-power index, it is a gap group. Thus it suffices to show that $E^2(N, N_0)$ is nonempty. We show that $(h_1, \ldots, h_n)f$ lies in $E^2(N, N_0)$. We have

$$C_{O^2(G)}((h_1, \ldots, h_n)f)$$

$$= \langle (a, h_1^{-1}ah_1, (h_1h_2)^{-1}a(h_1h_2), \ldots, (h_1 \ldots h_{n-1})^{-1}a(h_1 \ldots h_{n-1}))$$

$$\mid a \in C_{O^2(G)}(h_1h_2 \ldots h_n) \rangle.$$

The group $C_{O^2(G)}(h_1h_2 \ldots h_n)$ contains the group $C_{O^2(G)}(h)$ and thus it is not a 2-group. As the element $(h_1, \ldots, h_n)f$ is not an involution, it lies in $E^2(N, N_0)$ and then N is a gap group.

The group $G \int C$ is a gap group, since any subgroup N, $O^2(G)^n \triangleleft N \leq G \int C$, possessing a cyclic quotient $N/O^2(G)^n$ is a gap group.

\[\square\]

References

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan

E-mail address: sumi@design.kyushu-u.ac.jp