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    ABSTR/ICT The stability criteria of the linearized dynamical system for the multispecies
community with prey-predator interactions are investigated. Using the method of Lyapunov
function, a generalization of the "qualitative stability criteria" given by Quirk and Ruppert, and

May is developed. The stability condition for the community system which has more realistic
type of the food web structure is discussed comparing with those of the probabilistic approach

developed by Gardner and Ashby, and May. '

                                 Introduction.

    In 1958, Elton declared that generaHy the species population becomes more stable

in structurally complex communities. Since then many ecologists have debated the

relationship between the stability and complexity of foocl webs.

    Gardner and Ashby (1970) and iMay (1972) have investigated this problem
using the probabiiistic approach. They considered a linearized dynamicai system of
                    .n-specles community e=:Ae, where each non-zero element of matrix A, i. e. aij• is

chosen from the random distribution with the mean values zere for im-L'tr7' and -1 for

i--i and the variance s2 for all iandi Using the theory of random matrix ancl
also the computor simulation, it was shown that, as the connectance defined by the

ratio of the number of non-zero non-diagonal elements increases, the real parts of

the eigenvalues of the random matrix A tend to become larger.

    On the other hand, the stability conditions of the community systems have been

also examined using the analytical investigations of the linearized dynamical systems.

The stability criteria which are usefull especially for the biological community

systems were proposed by Qu{rk and Ruppert (1965) and May (1973), but it can
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be applied only to the systems with restricted simple structures.

    Here we shall present a generalized stability criteria which can be applied for

the community systems with prey--predator interactions and it will be shown that the

present analysis gives consistent results with those of the probabilistic approaches.

   Stability Condition of Food Web System with Branched Chain Structure

    Here we consider a multispecies community cornposed of s species. If we
denote the population or the biomass of the i-th species by xi, the process can be

described by a set of equations of the form

         2i=Fi(xi, x2,..., xs), ind-1, 2,...,s (1)

The function Fi represents the growth rate of the i-th species and is generally

given by some non-linear function of xi, x2,..., xs. We assume that the equations

(1) have equilibrium points in the first orthant and let one of these points be

         .e==-, (x?, xs, ..., xg).

Then, using the variable 8i--xi-xOi, we have a Iinearized system

         4-A6, (2)
where 8 represents a vector of s compornents 6i's, and the elements of matrix A
are given by aij="(OFilexj)xo. This equilibrium point is locally stable when the real

parts of all eigenvalues of the matrix A are negative.

    The matrix element ai7• (itj) represents the effect of species j' on speciesiand

if the species i is the prey of the predator i then we can expect (Tansky 1976);

         ai,•<O, aji>O i---,E-7` (3)
Therefore in the community in which the inter-speeies interactions are only of the

prey-predator type, we can assume the relations

         aija;•i<AO, i',,ft7' (4)
where the equality holds when there is no interaction between the il-th and ith

species. If other inter-species interactions such as competition and symbiosis are

taken into account, the relation (4) does not necessarily ho}d. However, in this
paper we consider the system with this relation (4), though the sings of aii's are

not a priori restricted.

    For the Iinearized dynamical system (2) we can construct a corresponding
food web diagram as shown in Figure 1. Each point represents a species in the
community and for each non-zero matrix elemeRt aif, the poiRts of species i and ]'
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are connected by a directed Iine segment from i to j' if aii<e and vice-versa if
ai]•>O. This direction actually shovvs the direction of energy flow in the real system.

All of the species in the food web diagram can be classified into two sub-groups

referred to as "loop structure group" (LSG) and "branched chain structure group"
(BSG) defined as fo}}ows.

    Definiiion: A loop structure group is composed of those species which are
interconnected by line segments in such a way that, starting from any one of the

species in the group, we can return bacl< te that point along the way of connecting

line segments (without regard to the direction of line segment) under the condition

that each line segment is passed only once. If there exist more than one such
round pathways, ail species involved in them are included in the same LSG. A
branched chain structure group is composed of those species which are mutually
connected by line segments in a branched chain form without constructing any
loop structure. These definitions are independent of the direction of energy fiow

and are concerned only with the connections in the food web diag}'am.

    The usefull stability conditions for the food web diagram which cloes not contain

any LSG, referred to as the "qualitative stability criteria", have been proposed by

Quirl< and Ruppert (1965) and May (1973), and then Jeffries (1974) has pointed out

that the criteria are incomplete and discussed the correct version of tltose criteria.

Mowever, in the following discussions, we do not need the detail of this criticism.

    The criteria may be essentially summarized as follows:

    When only the signs (+, -,or O) of the individua} matrix elements aiJ- are
known, the sufficient conditions that the real parts of all eigenvalues of the matrix

A are nonpositive (Re k•<AO for alH) independent of the actuai magnitude of the

non-zero elements are

    i) aii t(.O fDr all i

    ii) ai,•a,•it<O for all i',7kjr' (5)
    iii) for any $equence of 3 or more indices i, .i le,..., q, r

         (aH different), the product aiiajh...aqrari--O

These conditions are less restrictive than those given in the original criteria, which

are presented for the case that the real parts of eigenvalues are all strictly negative,

i. e. Re 2i<O•

    Among the conditions (5), ii) is just our conditions (4) assumed as the prey-

predator interactions and iii) represents the condition that the food web cliagram

does not contain any LSG. Therefore, in this case we can see that Re 2i/.Å~.O for

all i. if the diagonal elements aii of A are non-positive for all i. Furthermore,

when the condition i) is releasecl, we have the following theorem.

    Theorem: If the matrix A satisfies the conditions ii) and iii) in (5), then
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Re 2i-<src' where h' is the maximum value of diagonal elements of A.

    Proof: Let us consider a matrix defined by Bpt=A-rcI where we put rc=T-maxiaii

and I is the identity matrix. The eigenvalue equation of A can be written as

          lA-7,II == IA-rcl- (2-lt-)Il =- lB-2,Ii

where

         {B}ii as bi]' =pt aiJ" for iv'ij'

                  "' aii-h- for it=j

The eigenvalues of B are given by

          7, ;• -- 2i- lt-.

Obviously the matrix B satisfies the conditions (5), therefore Re 21•<O and we can

conclude that Re 2i/-x.L'. Q. E. D.
    This theorem yet allows the case that even if some species have intrinsicaily

unstable properties (i. e. aii>O for some i), there is the possibility that the system

becomes stable under some suitable connections of prey-predator interactions.

            Stability Cenditions fer General Food Web Strueture

    Now we shall consider a food web diagram which contains LSG's. The species

in the food web diagram can be uniquely divided inte a number of LSG's and
BSG's. There may exist some neighbouring LSG's which are connected by a single

line segment as the group Li in Fig. 1. If we regard such a cluster of LSG's as a

single LSG, then the food web diagram consists of LSG's and BSG's which are
alternately connected with each other. We shall label the LSG's as Li, L2,..., LN

and the BSG's as Bi, B2,..., BM. Furthermore if we replace each LSG by a single

decorated representative point, the food web diagram ean be reduced to a form of

BSG as shown in Fig. I.

    Let us assume that Lh and Bh consists of nh and mh species (le==1, 2,..., Aff;

lz==1, 2,..., IM) respective}y and we shall rearrange the variables 6 of equation (2)

into N+M groups corresponding the groups Li, L2,..., LN and B!, B2,..., BM. If
we denote the variable of the i-th species in the Lk by oe• and that of the ith

species in the Bh by CSf, then we can rewrite the equation (2) as

             nk M         if• == 1.iii. , a?•?• vs• -t- 2Irl-'ll= , tV. , be;e c;f,

         . N zak         <?- 2I-lll=,i..,cif• rf• i- i.ill..l, d9St 4{•t, (6)
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where ct,B is the matrix element of A in equation (2) corresponding the coeMcient

which relate the i-th species in Lk to the ]'-th species in Bh, and a6•S•, bevh• and dtl,t'

are defined in the same way. The matrix of the linear system (6) is given in a

form

                A" O .....O BII Bi2 ..... Blac
                O A22 ..... O B21 B22 ..... B2U

                --------l---- - --i}------t-- -
                ---l--------- - ------------- -
                O O ..... ANN BNIBN2..... BNM
         cJY= c. c,2 ..... ciN D,,o .....o (7)
                C21 C22 ..... C2N O D22 ..... O

                ----------i-- - -'-}--i---i-- -
                ----i-------- - --------t---- -
                CAfiCAr2.,... Cntrv' O O ..,.. DMaf

where matrix elements Akk, Bkh, Chk and Dhh themselves are matrices whose (i.i)
elements are ae•ik•, be•ih•, ciiiik• and dll;`, respectively•.

    Now we shall try to find a Lyapunov function for this system which asserts the

stability of the dynamica} system (LaSalle and Lefshetz, 1961). Let us consider the

functlon

         Ef !- -i--,ÅíN\, i.,,ae- ne2-t- -S--,;i:, tlli/2h,pijc;f2 (s)

        '
then we can show the followings:
    f.emma 1: If there exist the positive constants a'ki and P? which satisfy the

equatlons

         .I bf,h. t- p? cs!,e - o,

                                 '         pl.;d?i-l-p?dg.e•-o, i-.-]' (g)
         af.=exk (a constant independent of i),

the function ll defined by (8) becomes Lyapunov function, under the conditions

  i) the diagonal elements of Dhh are al} negative,

         dS!;Z<O for all l' andh (10)
  ii) the quadratic form of Akk are negative definite,

         tlgi. lje• ae•,k. lje-<.O k-=1, 2, ..., N (11)
         t's
    l)roof: Since ae• and P? are positive constants for all zl, i le and h, the function
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U satisfies the relatlon H>/O and the equality holds only when all variables rf- and

C;l's are zero. Using the equations (6) and (9), the time derivative of N' is obtained

as

         A == Sl] i, }, ,crfae•?• lje• rps• + SII :Ili] il.i ]ll.S (cre be•s•t +p?c?fr• ) ty?cg•

               bl mk 2 M mb             -- ]:I] :Ii.I] P? d?? < i -t- \ ,l ., (pfi df•/f; + pe• d9•f•;)c{i c?

           == Åíi ,cre• ae•e• ve• ve•+lill] il.S p? de;•t c?2 a2)

Thus, under the conditlons (10) and (11), we have the relation I-l' <xO. Q. E. D.
    .Lemma 2: If the matrix elements satisfy the condition,

         be. ;.t c;. e. <o

         dli,ti d;ISt <O it7' (13)
We can find the positive constants cre• and P? which satisfy the equation (9).

    Relation (13) always holds when the inter-species interaction is only of the
prey-predator type, as previously noted in the discussion of relation (4).

    Proof: First, let us choose one of the LSG's, for example Li. and put all the

values of crl• (i==1, 2,..., ni) in Li equal to a positive constant deRoted by ai. We

shall consider the case in which the P-th species in L! is directly connected with

the q-th species in the neighbouring BSG, denoted by Bh. It can be seen that any

species in Bh can be reached from the P-th species in Li along a uniquely deter-

mined linear chain of line segments. The series of species along the pathway from

the p-th species in Li to the u-th species in Bh can be represented schmatically as

         P(Li)-e(Bh)-•••-t(Bh)-u(Blt).

Fig. 2 shows a part of diagram in our consideration. In order to determine the
constant Pi.' associated to the u-th species in Bh, we can use the relations (9) itera-

tively and we obtain

         pt' -= (--Sli.ft,i/, )•••••• (- b,i•3t-) cr'

which has apparently positive va}ue due to the condition (13). In the same way,
vLre can uniquely determine all ef B? (1'--1, 2,..., mh) in Bh as positive constants.

Furthermore, if a species at another terminal in Bh is connected with a species in a

neighbouring LSG, for instance the species v(Lk) in Lk, ak. can be also determined

as a positive constant by using the first equation of (9). Then we can put all of
the remaining va!ues of ev9- (j'--1, 2,..., 7zh) in Lk to be equa} to eve which can be
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denoted as crk. Repeating these procedures for neighbouring groups successively,
we can determine cre• and P;t for all i, i le and h as positive constants. Q. E. D.

Thus combining the results, we have

    Theorem: The sufacient conditions for stability of the dynamical system (6)

are given by

  i) be•9c?i<o, d?;d;t.l.;<o i#j
  li) dlit<O
  iii) $I. ve• ae• f• rps• <o

      i-t

  Finally, as for the condition of the quadratic form ÅíI',jviaiirpj- for a LSG, we have

the following theorem.

    Theorem: When the conditions

         aii<O .         va';','.-,ii'>/vi',:'z';--I--tt•ii-/tl-:-a•itl•- i, i' -- i, 2, ..,n (i4)

are satisfied, where li is the number of species which are connected directly with

i-th species by line segments, then

         Zi, j ?i ai]' qj <xO

    Proof: Instead of taking the summation about all species in a LSG, we shall

take the summation about pairs of species in the following manner. If we regard a

term aiiq?•as the product of li and (1/li)aiiq?•, and tal<e into account that the i-th

species is assoeiated with li pairs, the quadratic form can be rewritten as

         ].III], qiaii oJ- = {X,,} [(-ait,i- n: +-4-7i.'i rp,2•] -i- (aii -- aji) ?i vi]

where ]!i]{iJ•} denotes the summation over all connected pairs. When aii"O for all i,

the equation becomes

         ,?.?,, C-aii,i- ( rp, -F EL( e-ii.t6z,ai-i-) - v,] 2 -t- sfl? ( -a-{iifl.g?: - -i i,(a,,• + a,,)2i ].

Therefore, it is clear that the relations (14) become the sufllcient conditions.

                                                                  Q. E. D.
    Hence, the system will be stable if the geometric average of any pair aii and
ajj, which indicate a measure of selfstabilization, is larger than the product of VjJIJ•

and the absolute value of arithmetic average of the pair of nondiagonal eiements
aiJ- and aJ•i, which indicate a measure of the prey-predator interactions. The value
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Xi li/2 is the total number of Iine segments in a LSG. Thus it can be seen that
the selfstabilization of each species gives again the stabilizing effect to the system

containing LSG's and also the increase of the connection in LSG's generally makes
the system unstable. This result is consistent with the conclusion of the probabilistic

approach given by Gardner and Ashby, ane May. Furthermore, in the speciai case
aii<O and laii-i-a]•il=e, the stability conditions (14) are always satisfied. This
corresponds to the linearized Volterra system with Regative diagona} elements, and

its stability has been already proved by Goel, Maitra and Montroll (1971)•
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