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ABSTRACT The stability criteria of the linearized dynamical system for the multispecies
community with prey-predator interactions are investigated. Using the method of Lyapunov
function, a generalization of the “qualitative stability criteria” given by Quirk and Ruppert, and
May is developed. The stability condition for the community system which has more realistic
type of the food web structure is discussed comparing with those of the probabilistic approach
developed by Gardner and Ashby, and May.

Introduction

In 1958, Elton declared that generally the species population becomes more stable
in structurally complex communities. Since then many ecologists have debated the
relationship between the stability and complexity of food webs.

Gardner and Ashby (1970) and May (1972) have investigated this problem
using the probabilistic approach. They considered a linearized dynamical system of
n-species community £= AL, where each non-zero element of matrix A, i.e. ai; is
chosen from the random distribution with the mean values zere for i#j and -1 for
i=4, and the variance s* for all { and j. Using the theory of random matrix and
also the computor simulation, it was shown that, as the connectance defined by the
ratio of the number of non-zero non-diagonal elements increases, the real parts of
the eigenvalues of the random matrix 4 tend to become larger.

On the other hand, the stability conditions of the community systems have been
also examined using the analytical investigations of the linearized dynamical systems.
The stability criteria which are usefull especially for the biological community

systems were proposed by Quirk and Ruppert (1965) and May (1973), but it can

* Tansky is the acronym for a group composed of the individuals Ei Teramoto, Hiroshi
Ashida, Hisao Nakajima, Nanako Shigesada, Kohkichi Kawasaki, and Norio Yamamura.
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be applied only to the systems with restricted simple structures.
Here we shall present a generalized stability criteria which can be applied for
the community systems with prey-predator interactions and it will be shown that the

present analysis gives consistent results with those of the probabilistic approaches.

Stability Condition of Food Web System with Branched Chain Structure

Here we consider a multispecies community composed of s species. If we
denote the population or the biomass of the i-th species by x;, the process can be

described by a set of equations of the form
%i=Fi(%1, %00, 2s), i=1,2,...,s (1)

The function F'; represents the growth rate of the i-th species and is generally
given by some non-linear function of ¥y, ¥, ..., xs. We assume that the equations
(1) have equilibrium points in the first orthant and let one of these points be

x0=(x}, x3, ..., x8).
Then, using the variable &;=ux;—x}, we have a linearized system
g=A¢, (2)

where & represents a vector of s compornents &i’s, and the elements of matrix A4
are given by a;j= (dF:i/0x;)s0. This equilibrium point is locally stable when the real
parts of all eigenvalues of the matrix A are negative.

The matrix element a;; (i=j) represents the effect of species j on species 7 and
if the species ¢ is the prey of the predator j, then we can expect (Tansky 1976) ;

ai;<0, a;i>0 i%] (3)

Therefore in the community in which the inter-species interactions are only of the

prey-predator type, we can assume the relations
aija; <0, L] (4)

where the equality holds when there is no interaction between the i-th and j-th
species. If other inter-species interactions such as competition and symbiosis are
taken into account, the relation (4) does not necessarily hold. However, in this
paper we consider the system with this relation (4), though the sings of ai's are
not a priori restricted.

For the linearized dynamical system (2) we can construct a corresponding
food web diagram as shown in Figure 1. Each point represents a species in the

community and for each non-zero matrix element 4;;, the points of species i and j
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are connected by a directed line segment from i to j if ;<0 and vice-versa if
a;;>>0. This direction actually shows the direction of energy flow in the real system.
All of the species in the food web diagram can be classified into two sub-groups
referred to as “loop structure group” (LSG) and “branched chain structure group”
(BSG) defined as follows.

Definition: A loop structure group is composed of those species which are
interconnected by line segments in such a way that, starting from any one of the
species in the group, we can return back to that point along the way of connecting
line segments (without regard to the direction of line segment) under the condition
that each line segment is passed only once. If there exist more than one such
round pathways, all species involved in them are included in the same LSG. A
branched chain structure group is composed of those species which are mutually
connected by line segments in a branched chain form without constructing any
loop structure. These definitions are independent of the direction of energy flow
and are concerned only with the connections in the food web diagram.

The usefull stability conditions for the food web diagram which does not contain
any LSG, referred to as the “qualitative stability criteria”, have been proposed by
Quirk and Ruppert (1965) and May (1973), and then Jeffries (1974) has pointed out
that the criteria are incomplete and discussed the correct version of those criteria.
However, in the following discussions, we do not need the detail of this criticism.

The criteria may be essentially summarized as follows:

When only the signs (+, —, or 0) of the individual matrix elements a;; are
known, the sufficient conditions that the real parts of all eigenvalues of the matrix
A are nonpositive (Re ;<0 for all ©) independent of the actual magnitude of the
non-zero elements are

i) ;i <0 for all 1

i) @ija;<0 for all 17 (5)
iii) for any sequence of 3 or more indices ¢, j, k, ..., ¢, r

(all different), the product ajjajm. . .aqrari=0

These conditions are less restrictive than those given in the original criteria, which
are presented for the case that the real parts of eigenvalues are all strictly negative,
i. e. Re 4;<C0.

Among the conditions (5), ii) is just our conditions (4) assumed as the prey-
predator interactions and iii) represents the condition that the food web diagram
does not contain any LSG. Therefore, in this case we can see that Re ;<0 for
all i if the diagonal elements a;; of A are non-positive for all i. Furthermore,
when the condition i) is released, we have the following theorem.

Theorem : If the matrix A satisfies the conditions ii) and iii) in (5), then
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Re 4« where r is the maximum value of diagonal elements of A.
Proof: Let us consider a matrix defined by B=A—«I where we put r=max; a;;
and I is the identity matrix. The eigenvalue equation of A can be written as

|A—il=|A—rl—Q—r)I|=|B-XI]
where

{B}ij=bij=aj for i+jJ

=daii—k for i=j
The eigenvalues of B are given by
A= 2.

Obviously the matrix B satisfies the conditions (5), therefore Re 1<{0 and we can
conclude that Re 2;<r. Q. E. D.
This theorem yet allows the case that even if some species have intrinsically
unstable properties (i.e. @;;>0 for some i), there is the possibility that the system
hecomes stable under some suitable connections of prey-predator interactions.

Stability Conditions for General Food Web Structure

Now we shall consider a food web diagram which contains LSG’s. The species
in the food web diagram can be uniquely divided into a number of LSG’s and
BSG’s, There may exist some neighbouring LSG’s which are connected by a single
line segment as the group L, in Fig. 1. If we regard such a cluster of LSG’s as a
single LSG, then the food web diagram consists of LSG’s and BSG’s which are
alternately connected with each other. We shall label the LSG’s as Ly, L, ..., Ly
and the BSG’s as B;, B, ..., By. Furthermore if we replace each LSG by a single
decorated representative point, the food web diagram can be reduced to a form of
BSG as shown in Fig. 1.

Let us assume that Ly and Bs consists of nx and my species (k=1, 2,..., N;
h=1, 2,..., M) respectively and we shall rearrange the variables & of equation (2)
into N--M groups corresponding the groups L;, Ly ..., Ly and By, B,, ..., By If

we denote the variable of the i-th species in the Ly by 7% and that of the j-th
species in the B, by C;‘, then we can rewrite the equation (2) as

g M omy

sk ke & < kh h

7= 2 a5 05 20 25 UG
= = =

B

. N Y3 "t
k. k 1l
C?:hgl .16?,- 7}1'7"‘;141}{’ i (6)

i=



Stability of Multispecies Prey-predator System 91

h k

where ¢} is the matrix element of A in equation (2) corresponding the coefficient

which relate the i-th species in Lz to the j-th species in B, and a[ff, Z)k" and d}}

are defined in the same way. The matrix of the linear system (6) is given in a

form
A0 L. 0  B“ B® | Bix
0 A% ... 0 Bu Bm . B
0 0 ..... ANN Bl BN BHx
L= oo Cw DUy L. 0 (0
cmoc o cwwo 0 pmo..... 0
Cwicw . cux o o ... pux

where matrix elements A, B*, Ct and D# themselves are matrices whose (i)
’,‘;", bf]", f’]k and d"", respectively.

Now we shall try to find a Lyapunov function for this system which asserts the
stability of the dynamical system (LaSalle and Lefshetz, 1961). Let us consider the

function

elements are a

M omy

H=y 5 Bat L5 B (8)

fF=liml

then we can show the followings :
Lemma 1: 1f there exist the positive constants of and g% which satisfy the
equations
&
a?bkh+ﬁj ;’x_' )
‘Bh dltlz+/3h dhh ’ Zi] ( g9 )

a¥=a* (a constant independent of i),

the function H defined by (8) becomes Lyapunov function, under the conditions
i) the diagonal elements of D** are all negative,

d¥<0 for all j and 7 (10)
ii) the quadratic form of A* are negative definite,

5"‘ 7k <0 k=12, ..., N (11

Proof: Since af and [;’;‘ are positive constants for all 7, j, & and &, the function
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H satisfies the relation H>>0 and the equality holds only when all variables 3% and
(¥s are zero. Using the equations (6) and (9), the time derivative of H is obtained

as

H= ZZa’f f‘fv"nf+ZL22(a BiE 4 ety it
M

. ;L‘Bh dkh Iz +2 E (,Bh dhh—f—ﬁj dhh)ch Clz

ny
2 a?‘/: 77;’: 7]’;4‘22/3” dhh h (12)

i

»Mz

Thus, under the conditions (10) and (11), we have the relation H<0. Q. E. D.
Lemma 2: I the matrix elements satisfy the condition,

bkh ik <0

ij 11

dlkait <o i+j (13)

We can find the positive constants afi‘ and ﬁ;’ which satisfy the equation (9).

Relation (13) always holds when the inter-species interaction is only of the
prey-predator type, as previously noted in the discussion of relation (4).

Proof: First, let us choose one of the LSG’s, for example L, and put all the
values of &} (i=1, 2,..., ny) in L, equal to a positive constant denoted by «'. We
shall consider the case in which the p-th species in L, is directly connected with
the g-th species in the neighbouring BSG, denoted by Bj. It can be seen that any
species in By can be reached from the p-th species in L, along a uniquely dster-
mined linear chain of line segments. The series of species along the pathway from

the p-th species in L, to the u-th species in B; can be represented schmatically as
pLy) —q(By)—- -+ —1(Bs) —u(Bay).

Fig. 2 shows a part of diagram in our consideration. In order to determine the
constant 8 associated to the u-th species in Bj, we can use the relations (9) itera-

tively and we obtain

o () ()

ut ap

which has apparently positive value due to the condition (13). In the same way,
we can uniquely determine all of [o’? (=1, 2,..., my) in B as positive constants.
Furthermore, if a species at another terminal in B, is connected with a speciesin a
neighbouring LSG, for instance the species »(Lp) in Ly af can be also determined
as a positive constant by using the first equation of (9). Then we can put all of

the remaining values of a? (=1, 2..... n) in Lg to be equal to o which can be
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denoted as a* Repeating these procedures for neighbouring groups successively,

we can determine «f and ;9;‘ for all 7, j, k and h as positive constants. Q. E. D.
Thus combining the results, we have
Theorem: The sufficient conditions for stability of the dynamical system (6)

are given by

1) bkh chk <0’ d?;; dngz <O l:fL—]

ij “ji

i) d<0

"k
& bk k
i) D) yias; 77<0
o

Finally, as for the condition of the quadratic form 337 ;7iai;jy; for a LSG, we have
the following theorem.
Theorem: When the conditions

a::<0
Vaiaj; >\L;

- |aij+aji .
~>1~_”'%«~]'J i, j=1,2,..,n (14

are satisfied, where /; is the number of species which are connected directly with
i~th species by line segments, then

2365 78 @i 150

Proof : Instead of taking the summation about all species in a LSG, we shall
take the summation about pairs of species in the following manner. If we regard a
term aiinias the product of I; and (1/l)aiin% and take into account that the i-th
species is associated with /; pairs, the quadratic form can be rewritten as

- Qii 3, 4 2 I S
2y miaini= 25| | mt +(aij+aji) 9iy;
Y {im i j
where T(;; denotes the summation over all connected pairs. When a0 for all i,
the equation becomes
N TP 2 2
dii{ L@t ag) } 7 {‘Zuan 1 z}]
SR g N L S LA B Lo i +aig 3
(;)[ 1 i 2 nji 2 - i t( ij i)
Therefore, it is clear that the relations (14) become the sufficient conditions.
‘ Q. E. D.

Hence, the system will be stable if the geometric average of any pair ai; and
aj;, which indicate a measure of selfstabilization, is larger than the product of Viil;
and the absolute value of arithmetic average of the pair of nondiagonal elements

ai; and aj;, which indicate a measure of the prey-predator interactions. The value
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>3 1i/2 is the total number of line segments in a LSG. Thus it can be seen that
the selfstabilization of each species gives again the stabilizing effect to the system
containing LSG’s and also the increase of the connection in LSG’s generally makes
the system unstable. This result is consistent with the conclusion of the probabilistic
approach given by Gardner and Ashby, and May. Furthermore, in the special case
;<0 and |aij--ajil =0, the stability conditions (14) are always satisfied. This
corresponds to the linearized Volterra system with negative diagonal elements, and
its stability has been already proved by Goel, Maitra and Montroll (1971).
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