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ABSTRACT 1In this paper we introduce probabilistic OL-system in order to investigate de-
velopment of scale leaves of Japanese Cypress. We construct a special KOL-system to generate a
set of tree-like structures which have as the same variety as natural trees.

We make observation of development of Chamaecyparis Obtusa (Japanese Cypress). Then we
make probabilistic rewriting rules of KOL-system. The tree-like shapes produced by the rewriting
rules are displayed on a CRT display to examin the rules and we amend them in order to produce more
similar shapes to the observed trees. Finally we obtain a set of probabilistic rewriting rules which
produces similar tree-like shapes to the observed trees.

We extract some elementary statistical features of the branching pattern, i.e. the number of
symbols, the irregular branchings and the double branchings. The simulated trees have the same
tendency in these statistical features with the natural trees, including the varieties.

For the foundation of the simulation, we construct a basic theory of KOL-system. Some results
concerning the number of symbols in strings generated by KOL-system are obtained.

0. Introduction

In case of natural trees, it seems that individual trees belonging to a species
have their common shape. But, when we investigate them in detail, we find some
differences among them. This naturally occurs, even if we examine shapes of the
trees, which have exactly the same genetic substance i.e. belong to the same clone.
When the genomes are realized as phenotypes, morphological variety might occur
because of slight environmental changes or the like. Thus far the authors, Honda
(1971), Frijters & Lindenmayer (1974) and Hogeweg & Hespor (1974) and so on

* “KOL-system” is the abbreviation of Japanese word ‘“kakuritsuteki”” 0L-system, which means
“Probabilistic”’. Since P is already another standard abbreviation, we adopt K in this way.
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have used deterministic models for simulating morphological development and
drawing tree shapes by means of computers. We are interested in the contrast
between similarity and nonuniformity of nature, that is, ‘‘almost but not exactly the
same”, and so make a mathematical model which might simulate such phenomena.

As the theoretical tool we introduce here the probabilistic OL-system in order to
investigate development of scale leaves of Japanese Cypress. We construct a special
PKOL-system to generate a set of tree-like structures which have as the same variety
as natural trees. For references on OL-system and generally on Lindenmayer system,
see Herman & Rozenberg (1975).

For our purpose, we took the branching structure of apical parts (10-15 centi-
meters from the apex of each branch) among many possible materials. This is
because, especially for young trees, apical part determines the shape of the whole tree.

To describe development of tree we use a POL-system, which plays the role of
deterministic part in our model. Since we cannot decide precisely various environ-
mental effects on the apical parts, for example, of sun shine, water, temperature, CO,
and nutrients, we introduce the independent stochastic process in order to express the
variety of growths.

We selected Chamaecyparis Obtusa (Japanese Cypress) as the sample tree.
The reason is as follows:

(1) The apical part of cypress develops in a plane, so that we may avoid the
complexity of three dimensional branching structure.

(2) Since it develops by scale leaves, a symbol of OL-system naturally corre-
sponds to a scale leaf.

This paper contains the following parts:

(1) To culture young trees of Chamaecyparis Obtusa and make observation of
their development.

(2) To make rules of KOL-system.

(3) Simulation of the KOL-system on a computer.

(4) Comparison of the results of the simulation with data from the cultured
trees.

(5) Mathematical considerations of KOL-system.

(6) Discussion.

1. Observation of development of Japanese Cypress

The Cypress trees under the observation are shown in Figure la. These trees
were cultured at the Forest, Faculty of Agriculture, Kyoto University. These trees
are about 2-3 meters high. We set up eleven observing points on these trees. These
observing points are at apical parts of trunks or branches which emerge from trunks
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or from other branches. Heights of the observing points are about 1 meter from the
earth. A part of branch, which is mounted on the rectangular photographic stage of
14 x 13 centimeters is called an apical part.

We took the photographs of these observing points once a week from the tenth
of April till the thirteenth of July in 1978. Some of them are shown in Figure 1b, Ic,
Id and le. The observed trees began to grow early in April and continued to grow
till autumn. But during the summer they developed so greatly in length and width

Figure 1b. Photos of the observing point H-4.
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Figure Ic. Photos of the observing points H-5 and H-6.
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M

Figure 1d. Photos of the observing points H-7 and H-9.
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Figure le. Photos of the observing points H-10 and H-11.
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that they overscaled our photographic stage. An apex of a tree (observing point
H-4) grew by more than 20 centimeters in length during the observing period. Fur-
thermore H-4 grew in a different manner from the other observing points. So we
have not used the data of H-4.

The other observing points grew by about seven scale leaves or by 10-15 centi-
meters in the direction of central axis.

2. Rewriting rules

Formally KOL-system is a string generating system, where a string is a sequence
of symbols such as “ABC+DJA”. A KOL-system consists of a starting string called
the axiom and a set of rewriting rules. A KOL-system generates a new string by
rewriting the symbols of old string according to the rewriting rules. A string can be
interpreted as a tree-like structure. For example the string ‘““ABC+ D/A” represents
the branch shown in Figure 2. Our main work is to make the set of rewriting rules
of KOL-system which might represent the growth of our trees well.

A

C
B

A

Figure 2. The tree-like structure corresponds
to “ABC-+D/A”

We use the alphabet {A, B, C,..., Z} for expressing states of the scale leaf and
+, —, | for representing branching points. + represents the branching point of
right branch, — that of left branch and | the end point of a branch, respectively.

From the biological point of view the rewriting rules must satisfy the following
conditions;

1. Since only the apex develops, only the symbols corresponding to it should be
rewritten by two or more symbols.

2. No symbol disappears.

3. In principle, when we neglect the branching symbols, one symbol is rewritten with
at most two symbols.

4. The system to be established may generate indefinitely large simulated trees. The
trees generated by the KOL-system should match well with the real trees at early
simulation steps, though this is not required for later steps than a predetermined
step.

From the observation in section | we draw several growth diagrams shown in
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Figure 3. From the diagrams we can see that the apex of a branch can be rewritten
by one of the following rewriting rules in principle,

A - CB

B - DA

C > E+B/

D-E-—A/

E-E
Figure 4 shows the strings which are successively generated from A (the axiom of the
system is A) up to the eighth step using the rules of P1 and the tree-like structures
which correspond to them. These tree-like shapes are not necessarily similar to the
natural trees.

Pl
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Figure 3. One of the growth diagram, this shows the growth of H-3.
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Figure 4. Development of PI.
The strings for steps 5, 6, 7 and 8 are omitted because they are very long.
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In fact when they are compared with the natural trees, we find differences among
them in the speed of growth and the direction of branches. The speed of growth of
the observed trees are shown in Figures 5a, 5b and 5c. Where the branching level
for the main axis is 0 and the branching level for the other branches are obtained by
adding one to the value of its mother branch at the occasion of each branching.
The growth speed varies among the branching levels. Therefore, we must use the
other symbols to represent the side buds instead of A and B in the rules C—»E+B/
and D—-E—A/ in P1. We can adjust the average growth speed by introducing the
probability. That is, we consider the following rules,

A-CB p B-DA p
A—-A ¢ B—-B q
where p and g are the selecting probability and p+g=1.

Since the average length of the strings of k steps starting from an A is pk+1, we have

13 [ number of scale leaves

11 AR

- number of scale leaves 1n

» observed data

w mean of observed data * 9 £

exactly calculated means and

§ standard deviations

x observed data

% mean of observed data

o exactly calculated weans

1 week ='0.856 step 1T 1 week = 0.856 step

o 3 6 9 12 weeks 0 3 6 9 12 weeks

Figure 5a. The growth of branching level 0. Figure 5b. The growth of branching level 1.
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Figure 5c. The growth of branching level 2. 1 week=0.856
step

the growth speed of the natural trees shown in Figure 5a by putting p=0.61. The
exactly calculated means and standard deviations in Figures 5a, 5b and 5c are
obtained from the rewriting rules shown in Table 1 using the method of generating
function, which will be explained in section 5.

One can see that in the natural trees the basal parts of the branches with
branching level more than one are likely to branch toward the opposite direction to
their direction. These phenomena greatly affect the shapes of branches and perhaps
have physiological significance. We use several symbols to simulate these phenomena
well.  For example symbols L and P (M and Q) in Table I produce right (left)
branches only.

We again and again examined the rules by displaying the tree-like shapes pro-
duced with them on a CRT-display and amended the rules in order to produce more
realistic shapes. At the beginning we often added some new symbols and rules to
the set of rules, but at the end we could adjust the tree-like shapes only by changing
the probability. The final result of the procedure is shown in Table 1.
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Table 1.

- CB
— A
— DA
- B

H

s

3

[}

= E+F/,
- E-G/,

—-E

— WR
-> OR
-» R
- WS
- NS
- S
- W

- CB
- A
-» DA
- B

3

—E+F/,
- E—G/,

—E

— WR
— YR
—- R
— WS
— YS
-8
—- W
- Y

s

3

0.61
0.39
0.61
0.39
I
i
1

0.23
0.02
0.75
0.23
0.02
0.75

Rewriting rules.

F - JH ,
F - JF .
G ->KI R
G - KG s
H-JI R
I - KH s
J -V-L/ s
J - V-L/+M/,
K - V+4+M/ S
K-> V-L/+M/,
VoV s

0.7
0.3
0.7
0.3

1

1
0.99
0.01
0.99
0.01
1

The axiom (starting string) is ‘A’.

L —» NP .
L - NL s
M - OQ s
M- OM ,
N >N ,
N - V+R/ >
N - V-S/+R/,
O -0 s
0O ->V-5/ 5
O » V-—-S/+R/,
P -»P s
P - NT s
Q-Q ,
Q - 0U s
T ->T ,
T - NU ,
U->U s
U —-0T s

Table 2. Rewriting rules for calculation.

0.61
0.39
0.61
0.39
1
1
I

0.23
0.02
0.75
0.23
0.02
0.75

F - JH ,
F - JF s
G - KI s
G —» KG s
H - JI ,
I - KH s
J - V-1 s
J - V—L/+M/,
K - V+M/ s
K — V—~L/+M/j,
VoV s

0.7
0.3
0.7
0.3
1

1
0.99
0.01
0.99
0.01
1

L -» NP s
L - NL s
M - OQ y
M - OM R
N - N R
N —» X+R/ ,
N — X—S5/+R/s,
0O -0 ,
> X8/ ,
~ X—8/+R/s,
—-P ,
— NT ,
Q-Q ,
Q - 0U ,
T ->T s
T - NU s
U-U s
U - 0T ,
X -»X ,

e o]

0.6
04
0.6
04
0.6
0.39
0.01
0.6
0.39
0.01
0.5
0.5
0.5
0.5
0.65
0.35
0.65
0.35

0.6
0.4
0.6
0.4
0.6
0.39
0.01
0.6
0.39
0.01
0.5
0.5
0.5
0.5
0.65
0.35
0.65
0.35
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3. Simulations on a computer

Figure 6 shows the programs and flow of data with which the simulations are
performed. These programs ran on the FACOM M-190 and FACOM 230-48 at
the Data Processing Center, Kyoto University.

L/1
/" observed ‘*)[_‘\/Al
STATLS statistics ORTIAS
data figure

Tules i

i

observed
strings

plotter

P \

FORTRAN FORTRAN

GISCII

GISCIV

sinulated
strings

revriting
rules

KOLVOL2 plays the most important role of the simulation. KOLVOL2 reads
the rewriting rules and computes the probability distribution functions of these
rewriting rules. Then KOLVOL2 generates strings one after another starting from a
given axiom (initial string). For every symbols in the string of previous step
KOLVOL2 produces a random number x which is greater than 0 and less than 1,
and selects the rewriting rule which has x as the value of its distribution function,
then the symbol is rewritten with the selected rule. When all the symbols in a string
are rewritten in this way, a derivation of one step is finished and a string of the next
step is generated. A different initial value of the random number generator is given
at each time of simulation. The length of the string generated is less than 1200
symbols because of the limitation of memory capacity of the computer.

GIDAS interprets the strings and draws the tree-like shapes on CRT-display or
X-Y plotter. Every symbol has its basic figure and the relation between the symbol
and the basic figure is called the figure rule. GIDAS replaces the symbols with
figures according to the figure rule. Whenever it finds the branching symbols (+ or
—), GIDAS makes a right (+) or left (—) branch which has the angle calculated by
the following formula,

Figure 6. The programs and the data flow.



KOL-System Simulating Almost but not Exactly the Same Development 109

T . .
S (rad) where m is the branching level.

We explain STATIS in the next section. GISCIV, GISCII and ASTRES are
used for conversion of data-form in the computer. Therefore they do not participate
in the main body of simulation.

4. Comparison of simulation with observed trees

Figure 7 shows the tree-like shapes produced with the rules of Table 1 and Figure
8 the observed trees drawn by GIDAS using the same figure rules as in Figure 7.

As the examples of their statistical features, we count the number of symbols,
irregularities of branchings and double branchings (right and left branches attached
to the same point). These features are illustrated in Figure 9, 10 and 11. The
“‘exactly calculated means” in these figures are obtained by means of the averaged
growth matrix, which will be explained in section 5. The simple ‘‘means and standard
deviations” are calculated from the values of simulated trees and observed trees. It
is impossible to get the number of irregularities of branchings with the method of
averaged growth matrix. The program STATIS is used to extract these statistical
features.

The normalized number of symbols denotes the number of all symbols in each
branching level divided by the number of symbols in the main axis (i.e. the branch of
branching level 0), and are shown in Figure 9. We think that these values indicate
the width of a branch compared with the length and the density of the scale leaves.
A branch which spreads greatly toward right and left has a large value at the branching
level 1. A branch in which the scale leaves are dense has large value at the branching
level 2 and 3. From the Figure 9 we see that the simulated trees have the same
tendency as the natural trees.

In general, branches grow to the right and the left alternatively. But we some-
times observe irregular branchings. So we define here an index of irregularity. Let
Ir denote the number of irregularities of branchings. When we check an axis from
its base to its apex, we define the new value of Ir by the following formula whenever
we find a branching point,

Ir= {Ir-{—l if this branch has the same direction with the previous branch.
Ir if this branch has the opposite direction with the previous branch.

For example the irregularities of branchings for Figure 12 are 2. Figure 10 shows
the normalized values of number of irregularities of branchings, that is, the total
number of irregularities of branchings divided by the total number of branching
points at each branching level. The number of irregularities tells us whether the
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Figure 8a. The observed trees.
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shape of a branch is well-ordered or not. Of course, the less the irregularities, the
more the branch is well-ordered. From the Figure 10 we see that the values of
simulated trees are in the ranges of the standard deviations of the values of natural
trees. The natural trees have larger standard deviations than simulated trees because
the number of irregularities is “‘integrated” value. That is, since at the simulation
individual small branches grow independently and the integration of these small
branches is the number of irregularities of branchings for the tree, the varieties are
canceled. On the other hand the small branches in the natural trees have mutual
interactions. Therefore the branches on different trees have larger varieties than
simulated trees.

e
Figure 12. Example of the irregular Figure 13. Example of the double
branching. branchings.

When a pair of right and left branches are attached to the same branching point
as illustrated in Figure 13, we call this phenomenon a double branching. Figure 11
shows the total number of double branchings divided by the total number of branching
points at each branching level. These phenomena scarcely happen and affect the
shape of branches very little. So we consider this feature as the exceptional phe-
nomena. When we made the rewriting rules, we did not consider double branchings
so the simulated trees differ from the natural ones in this respect.

5. Definition and basic results of KOL-system

In this section we give the formal definition of KOL-system and some basic
results concerning with the number of symbols in strings generated by it. Thus far,
only Jiirgensen’s work (1975) has appeared as for the theory of probabilistic L-system.
He formulated a rather complicated Markovean model. But we need a simpler
formulation.

A KOL-system G is a triple G=<2Z, P, o> where X is a finite set of symbols
called the alphabet, P is a finite subset of X¥'x Z* x (0, 1] called the probabilistic re-
writing rule and w is a string in Z* called the axiom. (Z* is the set of all strings
made of the symbols from 2 including the null string 4, i.e. the string of length zero.)
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For each ¢ in X there exists at least a string x in 2* and a positive number « in (0, 1]
such that (o, x, @) is in P. For every fixed ¢, > a=1. For the convenience

(o,x,2)eP
we write o—(x, o) instead of (o, x, ®)€ P. Throughout this paper we assume X=
{04, 05,...,0,;. For every g; in Z we enumerate the rules such as o,—(x;;, %),
;= (X2, %ia)se .o, ;= (X Oim,) Where my is the number of rules which starts from o;.
mi
o;;) and let P;= \J P;;.
j=1

Let P;; denote the single rule o;—(x;;,

Similarly to the case of OL-system, we define the derivation :z}' in KOL-system
G=<Z, P, w>. That is, for two strings x=0;,0,,---0;, with ¢, €2 (1<k<) and
VY=ViijVirin Vi With yy € 2% (1< k<), we write x ==>y if 0, >(y; > %;,5) 18 In
P, (1<k<!). Fortwo strings x, y € 2* we write x::;}y, if there exist n+1 strings
X=Xg, X1, Xg,--05 X, =y (120) such that x;_,;===x; for 1<j<n. Let x=2>y bea
derivation in KOL-system, there can be several paths from x to y, that is, if x=
0,0, -0, and y has k different partitions y=y{1) y{1s ... p{1) =y{2) p2) ... p2) =...

=)y -y with yim e 2* and o, >y, oM Yin P, (1<r<1, 1 <m<k), then

the derivation x=>y has k paths. Let x=—=>y be a derivation described above,
the probability of the derivation p,, is defined by,

k l ()
pxy= Z H O‘iTjr- (])

m=1r=1

It is easily verified that for each string x € 2*,

=1. 2
forallyx?y e ( )

Now we consider sequence of probability spaces £,(G)<2*x[0,1]. For a
KOL-system G=<ZX, P, o> £,(G)’s are inductively defined as follows,

L,(G)=(w, 1) 3
Qn(G): {(X’ p) ! (Xla p/) € Qn— 1(G) and xl:?}x’ p=f e ’)plpx'x} .

orall(x’,p
Since for every (x, p) in £,(G) there are its some ancestors in £,_,(G) and for every

(x’, p") in 8,_(G) there are its some descendants in £,(G), the following equations
hold,

p= 2 > PP
(x,p)eLa(G) (x,p)e8n(G) (x",p' )L n-1(G)
= p’ px'x
(x,p)eLn-1(G) (x,P)eLn(G)
s.t.x =X
G
= 2. p. ©)]

(x”,p")e8n-1(G)
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Therefore, by induction £,(G)’s are really probabilistic spaces.

Here let us focus our attention on the number of symbols in strings generated
by G. For xeZ* and g,€ZX, #,x denotes the number of occurrences of o; in x.
(#,,x, #,,x,..., #, x) is called the Parikh vector of x and denoted by [x]. For every
P;=P (1<i<n) let us pick up one rewriting rule P;;, 0,—(x;;,, o;;,) in P;, then a tran-
sition of Parikh vector space is determined by the selected rules {P,;,, P;;,,..., Py;.}.
This transition is represented by an nxn matrix M(P,;,, P,;,,..., P,;) and defined
as follows,

njy

[xlj|]
M(Plj17 szz,..., P"j")= [x2:j2] . (5)
[xnj,,]

An i—k component a; of M(P,;,, P,j,..., P,;,) represents the number of ¢,’s pro-
duced by o; with a rewriting rule o;—(x;;, ;;,) where ¥, x;; =a,. Let .# denotes
the set of all such M(P,;, P,j,,..., Py;)’s. An element of .# will often be written
as M. Of course, the cardinality of .# is ﬁ m; where m; is the cardinality of P,
=1

For a derivation x=2>y there are some M’s in .# such that [y]=[x]M. For
every M in .#, let M be obtained from the set of rules o, —(x,;,, o;;,), 62—=(X2,, %25,),
..., and 6,—(x,;, «,; ). Then the selection probability f(M) is defined by,

nin
S(M)= iLIlaij,-' 6)
Now we consider,

fy= 3 fon= ¥

g1 (x1j1,@14;) in Py g2 (x2j5,225,) in P2

H

H“ij;' (7

Gn=(Xnjnrdnj,) in P, i=1

Since the summation ranges over all the rules in P; (1 <i<n), the summation can be
exchanged with the multiplication. Thus we have f(.#)=1 and (4, f) is a prob-
ability space. Now we have the averaged growth matrix M= ¥ f(M)M. For a
KOL-system G= <X, P, w> =n denotes the initial vector thatMiesln=[w:[. For a
sequence of probability spaces 2,(G), [x],’s denote the mean Parikh vector of £,(G).
Theorem 1 Let G=<Z, P, o> be a KOL-system and M the averaged growth
matrix for G, then,

[x],=nM". ®

Proof Let (x, p) be in £,(G), for a fixed derivation s, from w to x which has n+1



116 Taishin NisHiDA

strings w=2Xxq, Xp,..., X,=x with x;€ £(G) and x;,_;==>x; (1<i<n) A (s,) denotes
the set of all M such that [x;]=[x;,_,JM (1<i<n). Let M,;e.#(s,), then

p= ¥ T TIAMY. ©)
* Mie.#i(sy) i=1
all sy of 0=x
G
The second summation ranges over all sequences M, M,,..., M, with M, e .#(s,).
Hence,
plxl= X 2 M) n,. (10)

* Miedi(sx) i=1
all sy of w?x ! 1{5x)

Thus we obtain,

xI,= X plx]

(x,p)efn(G)

n

=n 3 )3 > T/, (11
(x:P)ELA(G) all sx of w%x Mieti(sx) i=1

Since the triple summations ranges over all possible sequences of M in .# with
length n,

T, =m( X S(M)My =xl" >
Corollary 2 Let n be an n-dimensional column vector with n=(1, 1,..., 1)!, then
the mean length of strings in 2,(G) is given by,

m{k)=nM*y. 12) p»

Since the definition of M (M= Y f(M)M) is not suitable for the calculation, let us
Me.#

consider another formulation. That is, for every P,cP (1<i<n) the averaged
Parikh vector [x;] produced by o; is defined by,

m= > . aijg[xiji]' (13)
o= {(xij,2ij) in Py
[x]
Then one can easily see M= | [X] J .
[x.]

When we use the method of generating function, we can calculate the higher
moments, though the calculation is very cumbersome. p%) . .. denotes the



KOL-System Simulating Almost but not Exactly the Same Development 117

probability of production with which iy, iy,..., and i, of ¢,, 0,,..., and o, are produced
from one o; respectively. Pi{(s,, s5,..., s,) denotes the generating function of the
number of ¢4, 0,,..., g, which are produced from one ¢; through k step derivation.
Especially we write P((s,, s,,..., s,) instead of P{I(s,, s,,..., s,). Clearly P{(s,, s,,
cees Sy} =S,

o o 0
. . i) PR in
P(l)(sla SZa“'a Sn)'— z Z z p<lihi2,,“yi“>sllls,l22”'Sl‘l *
i1=0 i,=0 in=0

Let x be a string in 2*, P¥(s;, $3,.-., S,) denotes the generating function of k step
starting from x.

Lemma 3 Pi(s,, $5,..., S,) is given by

n

Pi(sla S25ees Sn)z I—Ij(chi)(Sl’ S25000 s"))”aix. (14)

Proof Clear. S

Theorem 4 The generating functions P{(s,, s4,..., s,) (i=1, 2,..., n, k>0) are ob-
tained by the following recurrence formula,

chi)(s.h Sza"" Sn)
=PO(PL, (51, Sareeer $p)s PRI Saveeey S)sevnr PSSy 5,)) -

(15)

Proof Let i, iy,..., i, of 0y, 64,..., 6, be produced by the first step of derivation.

n

From lemma 3 the generating function starting from iy, i5,..., i, of ¢, 0,,..., 0, is
n . . . . .
_Hl(Pﬁ’_)l(sl, S25--s $))H. Multiply p& ... and sum over all first step deriva-
j=

tions. Thus the proof has been completed. b

Let P¢(sy, $5,..., 5,) be the generating function of k step starting from the axiom
w and E¢(a;), Varg(s,), Cov{(s;, 0;) denote the mean, the variance and the covariance
of the numbers of o; and o; respectively. Then the following equations hold;

0 /
Eﬁ')(ai)=” Pllt','\sls SZ:"” Su)ls;,sz,...,sn=l

as;
, 0? 2
Varg(e) = -2y PR(s1, S250v0s S0l sumr + ER(00) = (BR(0)
b
0? ,
Cov§(o;, O'j) = m P(sy, 52,0, Su)‘sl,sz,.‘.,sn'-‘-l ‘“Eﬁ)(ai)Ef’\O'j)-

(16)

Further the mean m(k) and the variance g2(k) of the number of all the symbols are
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given by,

m(l)= 3. Eg(a)
=1 a7
a(k)= fjl Varg(o;)+2 g Covg(o;, ;)
i= i<j
The other questions concerning KOL-systems are much more difficult. For
example, are there any (x, p) € £,(G) with p>¢ for fixed ¢>0 when n—o0?
Before the end of this section we show some examples of calculation of the
mean and the variance using the method mentioned above.

Example | In case of our simulation, we modify the rules of Table 1 and obtain
Table 2, in order to discriminate the symbols for different branching levels. That is,
X is in place of the symbol V which appears, at branching level 2 and never changes,
Y is introduced as the symbol which may produce higher branching level than 2,
instead of the symbols O and S in the rewriting rules R—OR and S—NS of Table 1.
Then we can see the number of symbols of each branching level from the mean Parikh
vector.

The averaged growth matrix M is shown in Table 3a, in which rows and columns
are named by adequate symbols. Since the axiom is A, we only need the first row of
M15. The first row of M5 obtained by multiplying M 15 times is shown in Table 3b.

Example 2 To calculate the growth of length of branches we restrict the rewriting
rules as Table 4a—4¢. In this case the side branches on an axis have to be neglected.
Therefore we can consider each branching level independently. The generating
functions of Table 4a (branching level 0) and Table 4b (branching level 1) are easily
obtained and are s,(ps, +¢)* and s,s% respectively. From Table 4c, we have

PW =pi5,s,+q,:554
P@ =p,sis,+¢5s
25384 T 425> (18)

P3)=p3s35,+q35;

From the last equation P{*=s, clearly holds for all k>0. From theorem 4 the
following recurrence equations hold;
P£I)=P1S4P(Z)1 +q,5,.P{Y
P(z) —p284P(3)1 +q2p(2) (19)
(3) _(P334+‘13)P(3)1~

These equations are solved and the generating functions are,
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A 0.390.610.61
B 0.610.39
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0.01

0.01

O

I 0.01

l

OOWEUOT = Md> A2 Z00OHDXEnZE ™+ | oo

Table 3a.
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<
— X
(o]
o
s ©

1

The averaged growth matrix; M.

1

A 05

B 05

C 031

D 031

E 8.54
F 0.44
G 0.44
H 4.04
I 362
J 375
K 4.8

V 47.58
L 597
M 5.67
N 22.89
0 2293
P 5.69
Q 581

T 1249
U 1243
X 6277
R 33.60
S 30.74
W 33.50
Y 291

+ 61.56
— 59.37
| 118.89
[, 0.48

[, 157
Table 3b.

1st row of A's,
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PV =g rk+ P1854852(q3—r3) +p2853543 5 —q8) _ pipasssi(ri—rh)

(ri—q23(gz—r3) (ri—r3){qz—rs3)
P2 = k q’z"—"lgﬁ_ (20
K S245 tP28384 =5 )
q2—73
PP =5k where ry =¢84, ry=p3s5,+9;.

Table 4a. Growth of branching level 0.

Su A, Sy C
A—-CA, p C—-¢C, 1
A—A g (pt+g=1)

Table 4b. Growth of branching level 1.

S;; H, S:; K
H—-KH, 1
K-K , 1

Table 4c.  Growth of branching level 2.

Su M, 85 Q, S;U, S0
M-0Q, p U—-0U, p,
M- OM, ¢ U-U , ¢,
Q—-0U, p 0-0 , |
Q—-Q , q (pitgi=1, i=1,2,3)

Since the starting symbol is M (corresponds to s,), the mean and the variance
are obtained from the partial derivatives of P{". The mean length of branching
level 2 at k step m(k) and the variance of the branching level 2 at k step ¢%(k) are,

_ - +pp3—p2 . Pi{ps— gk —4q5)
mik)=1+kps+{(gh—1) P3P1—P1P2 2 + 3 1 2
3T PiP2 p2(g1—q2)

oHk)=4—4k+ gt +4kp;— kp?
4 P1Bp2=2p3){p3(q,~q2) +P2q:} gt —gb)
27 — 2
P3q,—q2)
4 P1ps—p2){QCk + 1)t —q5}

p2{q:—q2)
INIVEXead 2C P ) YRR IGY PO VT
PPz
+p, Kt = (k4 Daoqi+qs™ ) (k+2)qi—2q}
! (g, —42)* oo

2

i3 Lpip2r3(q1—p3)
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+{p1ps—Pa(q1 — )} 21 (gh — 1) — (g — 1)2 A21P3 = P2 (q = p3)}

J492
_ pips—p)* gt —q5)? _ 2kpips(pa—py) q5—q5
3 —q.)* P> 9:—q2
+2 (p3—p2) {Plpsz"l’z(%“}’s)} (gk—1) gi—g5 (21)

P3 91—q2

6. Discussions

Our KOL-system simulates well the development of tree-like shapes including the
feature “‘almost but not exactly the same”. Moreover, continuous quantities such as
growth speed can be discussed with discrete system.

However, we find a few problems of the simulation. First, there are limitations
in length and width of branches simulated by the KOL-system. Branches of only
15 centimeters long and wide could be produced. Simulated trees much differ from
the natural trees at later simulation steps. We may resolve these problems by using
appropriate special rewriting rules for large branches.

Secondly, when we compare simulated trees with observed ones carefully, we see
that the simulated trees are ‘‘rugged”. Especially, the length of the branches at
branching level 2 are very uneven. This problem is due to the interactionless L-
system. When we introduce interactions among branches, we might solve this
problem.
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