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   ABSTRACT ln this paper we introduce probabitistic OL-system in order to investigate de-
velopment of scale ieaves of Japanese Cypress. We construct a special KOL-system to generate a
set of tree-like structures which have as the same variety as natural trees.

   We make observation of development of Chamaecyparis Obtusa (Japanese Cypress). Then we
make probabilistic rewriting rules of KeL-system. The tree-like sliapes produced by the rewriting
rules are displayed on a CRT dfsplay to examin the rules and we amend them in order to produce more
similar shapes to {he observed trees. Finally we obtain a set of probabilistic rewriting rules which
produces similar tree-like shapes to the observed trees.

   We extract some elementary statistical features of the branching pattern, i.e. the number of
symbols, the irregular branchings and the double branchings. The simulated trees have the same
tendency in these statistical features with the natural trees, including the varieties.

   For the foundation ofthe simulation, we constructa basic theory of KOL-system. Seme resutts
concerning the number of symbols in strings generated by KOL-system are obtained.

e. Introduction

    In case of natural trees, it seems that individual trees belonging to a species

have their common shape. But, when we investigate them in detail, we fiRd some
differences among them. This naturally occurs, even if we examine shapes of the
trees, which have exactly the same genetic substance i.e. belong to the same clone.

When the genomes are realized as phenotypes, morphological variety might occur
because of siight environmental changes or the like. Thus far the authors, Honda

(1971), Frijters & Lindenmayer (1974) and Hogeweg & Hespor (1974) and so on

* "KOL-system" is the abbreviation of Japanese word "kakuritsuteki" OL-system, which means
 "Probabilistic". SinÅëe P is already another standard abbreyiation, we adopt K in this way.



98 Taishin NfsHiDA

have used deterministic models for simulating morphological development and
drawing tree shapes by means of computers. We are interested in the contrast
between similarity afid nonuniformity of nature, that is, "alrnost but not exactly the

same", and so make a mathematical model which might simulate such phenomena.
   As the theoretical tool we introduce here the probabilistic OL-system ifi order to

investigate development of scale leaves of Japanese Cypress. We construct a special

PKOL-•system to generate a set of tree-lil<e structures which have as the same variety

as natural trees. For references on OL-system and generally on Mndenmayer system,

see Herman & Rozenberg (1975).
    For our purpose, we took the branching structure of apical parts (10-l5 centi-

meters from the apex of each branch) among many possible materials. This is
because, especially for young trees, apical part determines the shape of the whole tree.

   To describe development of tree we use a POL-system, which plays the role of
deterministic part in our model. SiRce we cannot decide precisely various environ-

mental effects on the apical parts, for exarnple, of sun shine, water, temperature, C02

and nutrients, we introduce the independent stochastic process in order to express the

variety of growths.

    We selected Chamaecyparis Obtusa (Japanese Cypress) as the sample tree.
The reason is as follows:

    (1) The apical part of cypress develops in a plane, so that we may avoid the
complexity of three dimensional branching structure.

    (2) Since it develops by scale leaves, a symbol of OL-system Raturally corre-
sponds to a scale Ieaf.

    This paper contains the following parts:

    (1) To culture young trees of Chamaecyparis Obtusa and make observation of
their development.

    (2) To rnake rules of KOL-system.
    (3) Simulation of the KOL-system on a computer.
    (4) Comparison of the results of the simulation with data from the cultured
trees.

    (5) Mathematicai considerations of KOL-system.
    (6) Discussion.

             1. ebseryatien of deyelopment of Japanese Cypress

   The Cypress trees uRder the observation are shown in Figure la. These trees
were cultured at the Forest, Faculty of Agriculture, Kyoto University. These trees

are about 2-3 meters high. We set up eleven observing points on these trees. These

observing points are at apical parts of trunks or branches which emerge from trunks
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or from other branches. Heights of the observing points are about 1 meter from the

earth. A part of branch, which is mounted on the rectangular photographic stage of

14Å~ 13 centimeters is called an apical part.

   We took the photographs of these observing points once a week from the tenth
of April till the thirteenth of July in 1978. Some of them are shown in Figure lb, lc,

ld and le. The observed trees began to grow early in April and continued to grow

till autumn. But during the summer they developed so greatly in length and width
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Figure la. The Cypress trees under the observation and the author.
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Figure lb. Photos of the observing point H-4.
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that they overscaled otir photographic stage. An apex of a tree (observing
l{-4) grew by more than 20 centimeters in leRgth during the observing period.

thermore H-4 grew in a different manner from the otlier observing points.

have not used the data of H-4.

   The other observing points grew by about seven scaie leaves or by 10-15
meters in the direction of central axis.
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                          2. Resyriting rules

   Formally KOL-system is a string geRerating system, where a string is a sequence

of syinbols such as "ABC+DIA". A KOL-system consists of a starting string called

the axiom and a set of rewriting rules. A KOL-system generates a new str,ing by
rewriting the symbols of old string accordiRg to the rewriting rules. A string can be

interpreted as a tree-like structure. For example the string "ABC+DIA" represents

the branch shown in Figure 2. 0ur main work is to make the set of rewriting rules
of KOL-system which inight represent the growtla of our trees well.

                                 Al .

F
                  Figure 2. The tree-like structure corresponds

                          to "ABC-l-DIA"

   We use the alphabet {A, B, C,..., Z} for expressing states of the scale leaf and

+, -,1 for representing branching points. + represents the branching point of
right branch, - that of left braBch and 1 the eRd point of a branch, respectively.

    From the biological point of view the rewriting rules must satisfy the following

conditions '
        '
1. Since only the apex develops, only the symbols corresponding to it should be
   rewritten by two or more syrnbols.

2. No symbol disappears.
3. In principle, when we neglect the branching symbols, one syrnbol is rewritten with

   at most two symbols.
4. The system to be established may gefierate indefinitely large simulated trees. The

   trees generated by the KOL-system should match well with the real trees at early

   simulation steps, though this is not required for later steps than a predetermined

   step.
   From the observation in section 1 we draw several growth diagrams shown in
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Figure 3. From the diagrams we can see that the apex of a branch can be rewritten
by one of the following rewriting rules in principle,

        A-CB
        B-DA
        C.E+Bl Pl
        D-E-Al
        E-E
Figure 4 shows the strings which are successively generated from A (the axiom of the

system is A) up to the eighth step using the rules of Pl and the tree--like structures

which correspond to them. These tree-like shapes are not necessarily similar to the

natural trees.

                            [ ] The seale teaf appeared befo:e 512

                            g The scale leaves appeared before
                               s/s             •illis ,. ' Iraifee The scale leaves appeated before
                               5/16                            tecffee The seale leaves appeared before
                               5X23                            ws The seale leaves appeared before
                               5130

          Figure 3. 0ne of the growth diagram, this shows the growth of H-3.
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              Figure4. DevelopmentofPl.
The strings for steps 5, 6, 7 and 8 are omitted because they are very long.
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   In fact when they are compared with the natural trees, we find differences among

them in the speed of growth and the direction of branches. The speed of growth of
the observed trees are shown in Figures 5a, 5b and 5c. Where the branching level
for the raain axis is e and the branching level for the other branches are obtained by

adding one to the value of its mother branch at the occasion of each branching.
The growth speed varies among the branching levels. Therefore, we must use the
other syrnbols to represent the side buds instead of A and B in the rules C.E+Bl

and D-E-Al in Pl. We can adjust the average growth speed by introducing the
probability. That is, we consider the following rules,

        A.CB p BoDA p
        A-A q B.B q
                     where p and q are the selecting probability and p+q=1.

Since the average length of the strings of lc steps starting from an A is plc + 1, we have

o1

ii

.number of scale leave.s

  x ohserved data

  " rnean of observed data

   exaetly calculated means andE
   standard dL?viations

:ccill

{
pt)bc

xi'

i.A

xXx

.SLN

1 week ='O.856 step

weeks

li

iii

 e3Figure 5a.
      6 9 12
Tke growth of branching level O.

numher of scale leaves

ue

xv

x

v

x

xts

tzaxx

"

x observedi

l mean of
o C'xactly

di

,vpt

x

data

observea data
calcu:Latedi means

1 week = e.aS6

 e
Figure 5b. 3 69 12The growth of branching ievei i.

 steP

weeks



106

o1

il

         Taishin NisH!DA

t number of sca!e leaves
J

  Xobserved data
  - mean oÅí observed aata

   exactly ealculatedi meens and  es standiard devSations

                     s

x

IXX

v

nyx

[

t

x

i

                                  i                     O 3 6 9 12 weeks
             Figure 5c. The growth of branching level 2. I week==O.856
                                                   step

the growth speed of the Ratural trees shown in Figure 5a by putting p =O.61. The

exactly calculated means and standard deviations in Figures 5a, 5b and 5c are
obtained from the rewriting rules shown in Table 1 using the method of generating
function, which will be explained in section 5.

    One can see that in the natural trees the basal parts of the branches with
branching level more than one are likely to branch toward the opposite direction to

their direction. These phenomena greatly affect the shapes of branches and perhaps

have physiological significance. We use seyeral symbols to simulate these phenomena

well. For example symbols L and P (M and Q) in Table 1 produce right (left)
branches only.

    We again and again examined the rules by displaying the tree-Iike shapes pro-

duced with them on a CRT-display and amended the rules in order to produce more
realistic shapes. At the beginning we often added some new symbols and rules to
the set of rules, but at the end we could adjust the tree-like shapes only by changing

the probability. The final result of the procedure is shown in Table 1.
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  Table l. Rewriting rules. The axiom (starting string) is tA'.

A -> CB O.61 F---> JH O.7 L.NP . O.6
A-A O.39 F->JF e.3 L-->NL O.4            ee   'B-DA , O.61 G-> KI , O.7 M--" OQ , e.6
B->B O.39 G-KG O.3 M->OM O.4            ))   'C "-'> EHr F/,1 H--) JI ,l N.N , O.6
D - E-G/, l I . KH , 1 N - V+Rl , 039
E ->E ,1 J -> V- L/ , O.99 N -> V-Sl+Rl, O.Ol
       J -> V- Ll+Mf, O.Ol O.O , O.6
R. WR , O.23 K-> V+ M/ , O.99 O -> V-Sl , O.39
R--)oR , o.o2 K-v-yÅÄM/, o.el o.v-sl+R/, o.ol
R--"R ,O.75 V.V ,1 P--e-P ,O.5
S-> WS ,O.23 P--) NT ,e.5S--) NS ,O.02 Q->Q ,O.5S---S ,O.75 Q-->OU ,O.5W->W 1 T-T O.65               T -e- NU O.35                    '               U->U , O.65               U-OT O.35                    '
     Table 2. Rewriting rules for calculation.

A. CB O.61 F-> JH e.7 L-> NP O.6            J7   ,A-A O.39 F-> JF O.3 L-> NL eA            :7   'B ---> DA , O.61 G--) KI , O.7 M-> OQ , O.6
B -->B , O.39 G- KG , O.3 M-> OM , O.4
C-> E+ Fl,1 He JI ,1 N-N , O.6
D ---> E-G/, 1 I -> KH ,l N -> X+R/ , O.39
E -,E ,1 J -> V- Ll , O.99 N.X-S/+R/,, e.Ol
       J.V-L!+M!,, O.Ol O.O ,O.6
R -> WR , O.23 K--> V+ M/ , O.99 O --> X-S/ , O.39
R-YR , O.e2 K->V-Ll+Ml. O.Ol O-•X-Sl+Rl,, O.Ol
R->R ,e.75 V->V ,1 P.P ,O.5S-WS ,O.23 P-eF NT ,O.5s.ys ,o.o2 Q--eFQ ,o.sS.S ,O.75 Q-)OU ,O.5W.W ,1 T-->T ,O.65Y->Y ,1 T-->NU ,O.35               U-U , O.65               U-OT , O.35               X-->X ,l

107
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                     3. Simulatiens on a cemputer

   Figure 6 shows tlie programs and fiow of data with which the simuiations are

performed. These programs ran on the FACOM M-190 and FACOM 230-48 at
the Data Processing Center, Kyoto University.

obse:ved

 data

PLfll

 sTATrs stattsttcs
fl:;:: l il

?L/r

ASTRES o:::ixg:

}'OR'IP=S:'

FORTYAI;•

grl)AS

CRT displ#}

 :-Y
 piotter

CTSCXV

FO}tTkN,Y

rn ;'i,l:ii,g

1)L/r

KOLVO;.2 "e:•L'2::.:.d

GISCIII
stt r::egs

                   Figure 6. The programs and the data flow.

   KOLVOL2 plays the most important role of the simulation. KeLVOL2 reads
the rewriting rules and computes the probability distribution functions of these

rewriting rules, Then KOLVOL2 generates strings one after another starting from a

given axiom (initial string). For every symbols in the string of previous step
KOLVOL2 produces a randorn number x which is greater than O and less than 1,
and selects the rewriting rule which has x as the value of its distribution function,

then the symbol is rewritten with the selected rule. When all the symbols in a string

are rewritten in this way, a derivation of one step is finished and a string of the next

step is generated. A different initial value of the random number generator is given

at each time of simulation. The length of the string generated is less than 1200

symbols because of the limitation of memory capacity of the computer.

    GIDAS interprets the strings and draws the tree-like shapes on CRT-display or
X-Y plotter. Every symbol has its basic figure and the relatiofi between the symbol

and the basic figure is called the figure rule. GIDAS replaces the symbols with
figures according to the figure rule. Whenever it finds the branching symbols (+ or

-), GIDAS makes a right (+) or left (-) branch which has the angle calculated by

the following formula,
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        --2 +Z m- (rad) where m is the branching level.

   We explain STATIS in the next section. GISCIV, GISCII and ASTRES are
used for conversion ef data-form in the cemputer. Therefore they do not participate

in tlie main body' of simulation.

              4. Comparisen ef simniation syith obseryed trees

   Figure 7 shows the tree-like shapes produced with the rules of Table 1 and Figure

8 the observed trees drawn by GIDAS using the same figure rules as in Figure 7.

   As the examples of their statistical features, we count the number of symbols,
irregularities of branchings and double branchings (right and left branches attached

to the same point). These features are illustrated in Figure 9, IO and 11. The
"exactly calculated means" in these figures are obtained by means of the averaged
growth matrix, which will be explained in section 5. The sirnple "rneans afid standard

devjations" are calculated from the values of simulated trees aRd observed trees. It

is impossible to get the number of irregularities of branchings with the method of

averaged growth matrix. The program STATIS is used to extract these statistical
features.

   The normalized nuinber of symbols denotes the number of all symbols in each
branching level divided by the number of symbols in the main axis (i.e. the branch of

branching Ievel O), and are shown in Figure 9. We think that these values indicate

the width of a branch compared with the length and the density of the scale leaves.

A branch which spreads greatly toward right and left has a large value at the branching

level 1. A branch in which the scale leaves are dense has large value at the branching

level 2 and 3. Frorn the Figure 9 we see that the simuiated trees have the same
tendency as the natural trees.

    In general, branches grow to the right and the left alternatively. But we some-

times observe irregular branchings. So we define here an index of irregularity. Let

Ir denote the number of irregularities of branchings. When we check an axis from
its base to its apex, we define the new value of Ir by the following formula whenever

we find a brafiching point,

    i,..{:+i ;f ::l.: B::g: ::: ::g g$m,g,g.:'ge&Sigs,,gA"h.`,P,e 9,2e/j,l",i•.kr8",::h,,.

For exarnple the irregularities of branchings for Figure 12 are 2. Figure le shows

the normalized values of number of irregularities of branchings, that is, the total

number of irregularities of branchings divided by the total number of branching
points at each branching level. The number of irregularities tells us whether the
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shape of a branch is well-ordered or not. Of course, the less the irregularities, the

more the branch is well-ordered. From the Figure 10 we see that the values of
simulated trees are in the ranges of the standard deviations of the values of natural

trees. The natural trees have larger standard deviations than simulated trees because

the number of irregularities is "integrated" value. That is, since at the simulation

individual small branches grow independently and the integration of these small
branches is the number of irregularities of branchings for the tree, the varieties are

canceled. On the other hand the small braRches in the natural trees have mutual
interactions. Therefore the branches on different trees have Iarger varieties than

simulated trees.

Figurel2. Exampleoftheirregular
        branching.

Figure 13. Example ofthe double
        branchings,

   When a pair of right and left branches are attached to the same branching point

as illustrated in Figure l3, we call this phenomenon a double branching. Figure 11

shows the total nurnber of double branchings divided by the total number of branching

points at each branching level. These phenomena scarcely happen and affect the
shape of branches very Iittle. So we consider this feature as the exceptional phe-

nomena. When we made the rewriting rules, we did not consider double branchings
so the simulated trees differ from the natural ones in this respect.

               5. Definitien and basic results of KeL-system

   In this section we give the formal definition of KOL-system and some basic
results conceming with the number of symbols in strings generated by it. Thus far,

only JUrgensen's work (1975) has appeared as for the theory of probabilistic L-system.

He formulated a rather complicated Markovean model. But we need a simpler
formulation.

   A KOL-system G is a triple G=<X, P, tu> where X is a finite set of symbols
called the alphabet, P is a finite subset of ZÅ~X" Å~(O, 1] called the probabilistic re-

writing rule and ca is a string in X* called the axiom. (X* is the set of all strings

made of the symbols from X including the null string 2, i.e. the string of Iength zero.)
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For each a in X there exists at least a string x in X" and a positive number ct in (e, 1]

such that (o, x, ct) is in P. For every fixed a, Åí ct=1 For the convenience
                                     (a,x,a)EP
we write cr-(x, ct) instead of (a, x, ct)GP. Throughout this paper we assume X =
{ai, ff2,..., ff,}. For every ffi in Z we enumerate the ru}es such as ai-(xii, ctii),

ffi-(Xi2, cti2),•••, ffi-(xin,,, ctim,) where mi is the number of rules which starts from ai.

                                          ntiLet Pi,- denote the single rule oi-(xij, ctiJ•) and let Pi=: V Pij.

                                         J`--1   Similarly to the case of OL-system, we define the derivation : {iF> in KeL-system

G=<X, P, co>. That is, for two strings x=ai,ai,•••ai, with ai.eX(l f{k:{; l) and
y== yi,J•,yi,h•••yi,j, with yi.J-.eX* (1 f{;kf{;l l), we write x :GEI=>y if ai.-(yi.j., cti,j,) is in

Pi. (1:{!kSl). Fortwo strings x, y6X" we write xO: y, if there exist n+1 strings

)c ==xo, xi, x2,..., x.=y (n }I O) such that )cj-i ==Gi=>x,• for 1 E{;j<rmn. Let x#G y be a

derivation in KOL-system, there caR be several paths from x to y, that is, if x=
ai,oi,•••ai, and y has k different partitions y==y[•B,ySll-,•••yS•l3,=y[•?J)•,yS•i},'''y{-?J)•,='''

== IYS'5J'`,YS'S}','''Y[•f,)•, With y[•P'})•. e 2E]* an(l oi.-(y[• '})., cti•7}•).) in Pi.(1 s{; rs{; l, 1 sg m E{: k), then

the derivation x==Gi=>y has k paths. Let xnG y be a derivation described above,
the probability of the derivation p., is defined by,

             kl        Pxy=2 I-I ctS';'S'.' (l)
            m=1r=1
It is easily verified that for each string x e X",

           Z Pxy == 1' (2)        foraI1yx=>•y              G
   Now we consider sequence of probability spaces Åí.(G)c=E"Å~[O, 1]. For a
KOL-system G = <Z, P, tu> 2.(G)'s are inductively defined as follows,

        2,(G)-(co, l) (3)
        2.(G) == {(x, p) I (x', P')e 2n-1(G) and X'" :GE=>"X' P"=f.,.lil(l.,,,,)P'P"'"} '

Since for every (x, p) i'n 2.(G) there are its some ancestors in Åí."i(G) and for every

(x', p') in Åí,-i(G) there are its some descendants in 2.(G), the following equations

hold,

           2 p== Z Z p'p.•.
        (x,p)ffBn<G) (x,p)eBn(G) (x',p')eSn-1(G)

                x 2 p' 2 Px'x
                  (x',p')E9n-t(G) (x,P)eÅín(G)
                              s.Lx'"x                                 G

                =: 2 p'. (4)                  (x',p')ffÅín--1(G)
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Therefore, by induction Åít.(G)'s are really probabilistic spaces.

    Here let us focus our attention on the number of symbols in strings generated

by G. For xGX* and aieZ, #.,x denotes the number of occurrences of ffi in x.
(#a,X, #c,X,•••, #..x) is called the Parikh vector of x and denoted by [x]. For every

Pic P (1 f{; im< n) let us pick up oRe rewriting rule Pi,•, ffi-(xij,, ctij,) in Pi, then a tran-

sition of Parikh vector space js determined by the selected rules {Pih, P2h,•••, Pnj.}•

This transitien is represented by an nÅ~ n matrix M(Pij,, P2j,,..., P,j.) aAd defined

as follows,

                              [Xljl]

        M(Piji, P2j2,''', Pnj.)= [XZi2] • (5)
                              [Xli' J' n]

An i-k component aik of M(Pij,, P2h,..., P.j.) represents the number of ak's pro--
duced by ai with a rewriting rule ai-->(xij,, ctiJ-,) where #.,xiJ•,=:aik. Let a/l denotes

the set of all such M(Pitv P2h,..., P,j.)'s. An element of ,.d(t will often be written

                                    nas M. Of course, the cardinality of .t(l is Hmi where mi is the cardinality of Pi.
                                   i :1
For a derivation x#G y there are some M's in .t/t such that [y]==[x]M. For
eyery M in Xl, let M be obtained from the set of ruleS ffi-(XiJ•,, ctij,), a2mnt)'(X2h, ct2h),

•••
, and a.-(x,j., ct,j.). Then the selection probability f(M) is defined by,

               tl        f(M)- Il[ ct,j,. (6)              i==1

Now we consider,

        f("l)-2f(M)- 2 2 •••              MEvte al-+(XIJ'1,ctljl) in Pl a2M,(X2j2,a2j2) in P2

                      tl                     Z fi ct,,•,• (7)
                             i=1               an-(Xnj.,anj.) in Pn

Since the summation ranges over all the rules in Pi (1 sis n), the sumrnation can be

exchanged with the multiplication. Thus we have f(../l)=1, and (.a(Y,f) is a prob-

ability space. Now we have the averaged growth matrix M = : f(M)M. For a
                                                    MG.e
KOL-system G=:<Z, P, co> n denotes the initial vector that is z=[tu]. For a
sequence of probability spaces 2.(G), [x],'s denote the mean Parikh vector of 2.(G).

Theoreml Let G==<E, P, to> be a KOL-system and M the averaged growth
matrix for G, then,

        [x], == nM". (8)
Prooj' Let (x, p) be in Åí.(6), for a fixed derivation s. from tu to x which has n+1
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striRgs co=xo, )ci,..., x.=x with xiE2i(G) and xi-i=:Gi=>xi (1 f{i<- n) .d(li(s.) denotes

the set of all M such that [xi]= [x,.-,]M (1gi<rm n). Let Mie.v/li(s.), then

                             ll        p-= 2 2 af(M,). (9)                  * MiE.ei(s.N-) i=1
           aH s.x ef tu =>x
                  G
The second summation ranges over all sequences Mi, M2,..., M. with MiE-d/li(s.)•

Hence,

                                ll        p[x]== Z 2 llf(M,)aMi. (IO)                     * MiE-"i(sx) i=1              a11 sx of (o =>x
                     G
Thus we obtain,

         [xll,: Z p[-x]
              (x,p)eÅín(G)

                                          n            -=a Z 2 2 nf(Mi)Mi. (ll)
                               * MiEvei(sx) iml               (x,p)EÅín(G)                        a11 sx of co =>x
                               G

Since the triple summations ranges over all possible sequences of M in vt(l with
length n,

        [x].an(Zf(M)M)" == aMn. >               ME-nt

Corollary 2 Let n be an n-dimensional column vector with ij=(i., 1,..., 1)t, then
the mean lengtla of strings in 2,(G) is given by,

        m(k)=nMkn. (12)>
Since the definition of M (M== 2 f(M)M) is not suitable for the calculation, let us
                         ME.a
consider another formulation. That is, for every PicP(lsi.gn) the averaged
Parikh vector [x,] produced by oi is defined by,

        [xi]: Z. ct,,•,[x,,i,]. (13)
                     i)ln                        Pi             ai-'(xiJ'i,crij

                         [Xi])

Then one can easily see MMm- [{2] i•

                         [xn] 1

   When we use the method of generating function, we can calculate the higher
moments, though the calculation is yery cumbersorne. pti)i,,i,,...,i.> denotes the
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probability ofproduction with which ii, i2,..., and i. ofai, a2,..., and a. are produced

from one ai respectively. Pli)(si, s2,..., s,) denotes the geRerating function of the

number of ai, a2,..., a. which are produced from one oi through k step derivation.
Especially we write P(i)(si, s2,..., s.) instead of Pgi)(si, s2,..., s,). Clearly P8i)(si, s2,

•••
, Sn) =Si,

                        co co oo        P(')(Si, S2,•••, Sn)=: ]IEI) 2 ''' 2 Pti)i,,i,,.",i.>Si'SS2'''Si"•

                               i,1=O                       il "O                          i2=O

    Let x be a string in E*, ]Pkr(si, s2,..., s,,) denotes the generating function of Ic step

starting from x.

Lemma 3 Pl(si, s2,..., s.) is given by

                       n        Pi(si, s2,•••, s,)=:n(Pki)(si, s2,..., s.))`ctix. (14)
                      i--l

Theorem 4 The geBerating functions Pki)(si, s2,..., s.) (i-- l, 2,..., n, k>O) are ob-

tained by the following recurrence formula,

        P2i)(si, s2,.••, s,)

          == P(i)(PÅí1-)1(Si, S2,•••, Sn), PÅí22i(S1, S2,•••, Sn),•••, Pk'l)1(Si, S2,•••, Sn))'

                                                            (l 5)

Prooj' Let ii, i2,..•, i, of ffi, ff2,..., ff, be produced by the first step of derivation.

From lemma 3 the generating function starting from ii, i2,..., i. Of ai, a2,•••, a. iS

 nI[(PÅí'l)i(si,s2,...,s.))ij. Multiply pti)i,,i,...,i.. and sum over all first step deriva-
J'Ml

tions. Thus the proofhas been completed. >
   Let PW(si, s2,..., s.) be the generating function of k step starting from the axiom

ca and Eff(ffi), Var2(ai), Covff(ai, aj) denote the mean, the variance and tlae covariance

of the numbers of ai and aj respectively. Then the following equations hold;

                 e        Ek"(ffi) == -asi PW<Si, S2,''', Sn)lsi,s2,".,sn"i

        Varff•'(ai) :-aa-s22,r Pktu(si, s2,•••, s.)[,,,.",,.==i+Eff(oi) -(Ew(ai))2

                       02        COVff(ffi, aP = osiosj' Pkto(Si, S2,•••, Sn)]si,s2,-.,s.= i-Eff(ai)Ere(aj)•

                                                           (16)

Further the mean m(k) and the yariance a2(I<) of the number of all the symbols are
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given by,

               tl        m(lc) -= 2 Erv(ai)
              i=1                                                           (17)
               tl        a2(l<)= Åí Varw(a,)+2 2 Covre(ai, a.i) •

              i--1 i<j
    The other questions concerning KOL-systems are much more diMcult. For
example, are there any (x, p) E 2.(G) with p>s for fixed 6>O when n-, oo?

    Before the end of this section we show some examples of calculation of tke
mean and the variance using the method mentioned above.

Example l In case of our simulation, we modify the rules of Table 1 aRd obtaiR
Table 2, in order to discriminate the symbols for different branching Ievels. That is,

X is in place of the symbol V which appears, at branching level 2 afid never changes,

Y is introduced as the symbol which may produce higher branching level than 2,
instead of the symbols O and S in the rewriting rules R-->OR and S-->NS of Table l.

Then we can see the number of symbols of each branching level from the mean Parikh

vector,

   The averaged growth matrix M is shown in Table 3a, in which rows and columns
are named by adequate symbols. Since the axiom is A, we only need the first row of

Mi5. The first row of M'5 obtained by multiplying M 15 times is shown in Table 3b.

Example 2 To calculate the growth of length of branches we restrict the rewritiRg
rules as Table 4a-4c. In this case the side branches on an axis have to be neglected.

Therefore we can consider each branching level independently. The generating
functions of Table 4a (branching level O) and Table 4b (branching level 1) are easily

obtained and are si(ps2+q)k and s,s5 respectively. From Table 4c, we have

        P(l)= PIS2S4+qlSIS4

        P(2)=:P2S3S4+q2S2
                                                           (1 8)
        P(3) == P3S3S4 + q3S3

        P(4) = s4.

From the last equation PÅí4)=s4 clearly holds for all lc>O. From theorem 4 the

following recurrence equations hold;

        PÅíi ) == p,s4P22")i + q i s4PÅí'.)i

        P12)=p2s4PÅí3m)i+q,PÅí2m), (l9)
        PÅí3) == (p,s. + q3)PÅí3-)i •

These equations are soived and the generating functions are,
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       p(,') == s,rf + PiS`{S2({;im";),,i(gP,2S3.S,`)} ("i nd qS) m {;ekS.3,Si(i,k'i.'i)-)

       pÅí2)=s2eS+p2s3s4 qS tu"E- (2o)
                     q2 tu r3
       p13)=s3rk3 where rl =qls4, l"3 :p3s4+G3•

                 Table 4a. Growth of branching level O.

               S,; A, S,,;C
               A -. CA, p C---) C, 1
               A --.A q, (p+e-nv}>

                 Table 4b. Growth of branching level 1.

               S,;H, S,;K
               H - KH 1                     '               K--K 1                     ,
                 Table 4c. Growth of branching level 2.

               S,; M, S,; Q, S,; U, S,;O
               M-OQ, p, U-OU, p,
               M->OM, qi U-U,q3
               Q--.OU,p, O-,O,l
               Q --ÅÄQ , q2 (pi+qint-1, i--l,2, 3)

   Since the starting symbol is M (corresponds to si), the mean and the variance
are obtained from the partial derivatives of P(ki). The mean length of branching

level 2 at lc step m(lc) and the variance of the branching level 2 at i< step a2(k) are,

       m(k) == 1 + kp3 + (q? - l ) -P;-Pi Me- 'S? p+,P2P3 MP2 • + -P-iK PI ,rm/qP,21(-g-k/>TnvqwwS.2mm

       a2(k) -= 4-4(k + l)qf +4kp3- kpg
            +..P.i(3P2.M2P3){Pi3((qqi,--qq2,))S.P2q.i.wu}.K,.Cl..S..:..9...S..}-

            + -ei (p3 rm pi) ({,(,2k S,- li )qf rm qS}

            +.iellP3:.rP-,(aj.=.unP3) {(2kq,+2)qf-2}

                   PIP2
                                      (lc + 2)qf - 2qS            +,, kgf'i-[i'-i,),q)?2ofÅ}grmk2! -Pium q,rmi2umlm-

               7            -7t,--p3[PiP2P3(9i-p3)
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+ {PiP3 -P2 (qi -p3)}2] (qf

- p?(p3-p2)2(ef-eS)2 -

-l)-(gf-1)2

2kpiP3(P3-P2)

{PiP3 -P2 (e i -P3)}2
ipip

Sqf9

+2•

  Pi(qi-g2)2
(PS -iP2) {Pi iP3 MP2 (9i -P3)}

P2

(qf-I) f

1

znd

91

ip

-q2
qS
 ttttuzt   .q2

(2l)

                             6. Discussions

    Our KOL-system simulates well the developrRent of tree--like shapes inciuding the

feature "almost but not exactly the same". Moreover, continuous quantities such as

growth speed can be discussed witla discrete systein.

    .However, we fifid a few problems of the simulation. First, there are limitations

in Iength and width of branches simulated by the KOL-system. Branches of only
15 centimeters long and wide could be produced. Simulated trees much differ from

the natural trees at Iater simulation steps. We may resolve these problems by using

appropriate special rewriting rules for Iarge branches.

    Secondly, when we compare simulated trees with observed ones carefully, we see

that the simulated trees are ``rugged". Especially, the leRgth of the branches at

branching level 2 are very uReven. This problem is due to the interactionless L-

system. When we introduce {nteractions among branches, we might solve this
problem.
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