The commutator subgroup of the general Λ -quadratic group $\mathbf{GQ}(A, \Lambda)$

岡山大学大学院自然科学研究科 松崎 勝彦 (Katsuhiko Matsuzaki)

The Graduate School of Natural Science and Technology, Okayama University

1. INTRODUCTION

Let A be a ring with the unity, $-:A\longrightarrow A$ an involution, $\lambda\in \operatorname{center}(A)$ a symmetry, and Λ a form parameter on A in the sense of [1,Section 1]. We refer to the tuple $(A,(-,\lambda),\Lambda)$ as a form ring. The general Λ -quadratic group $\operatorname{GQ}_{2n}(A,\Lambda)$ is defined to be the matrix group corresponding to the automorphism group on the Λ -hyperbolic module $\Lambda - H(A^n)$. The elementary Λ -quadratic group $\operatorname{EQ}_{2n}(A,\Lambda)$ is the subgroup of $\operatorname{GQ}_{2n}(A,\Lambda)$ generated by all elementary Λ -quadratic $2n\times 2n$ -matrices. If q is an involution invariant ideal of A, then the relative congruence subgroup $\operatorname{GQ}_{2n}(A,\Lambda,q)$ is defined to be

$$ker[GQ_{2n}(A, \Lambda) \longrightarrow GQ_{2n}(A/q, \Lambda/q)],$$

where

$$\Lambda/q = image[\Lambda \longrightarrow A/q],$$

and the relative elementary subgroup $\mathrm{EQ}_{2n}(A,\Lambda,q)$ is defined to be the normal subgroup of $\mathrm{EQ}_{2n}(A,\Lambda)$ generated by all elementary Λ -quadratic matrices belonging to $\mathrm{GQ}_{2n}(A,\Lambda,q)$. The groups $\mathrm{GQ}(A,\Lambda,q)$ and $\mathrm{EQ}(A,\Lambda,q)$ are defined to be the inductive limits of $\mathrm{GQ}_{2n}(A,\Lambda,q)$ and $\mathrm{EQ}_{2n}(A,\Lambda,q)$, respectively, as $n\to\infty$. It is evident that $\mathrm{EQ}_{2n}(A,\Lambda,q)$ is canonically embedden in $\mathrm{GQ}_{2n}(A,\Lambda,q)$ as a subgroup. The next result is given as [1, Corollary 3.9].

Theorem 1.1. The commutator subgroup $[GQ_{2n}(A, \Lambda, q), GQ_{2n}(A, \Lambda)]$ is equal to $EQ_{2n}(A, \Lambda, q)$.

The proof of the theorem in [1] uses the lemma:

Lemma 1.2. Let $G_{2n}=\mathrm{GQ}_{2n}((A,\Lambda)\ltimes q)$ and $E_{2n}=\mathrm{EQ}_{2n}((A,\Lambda)\ltimes q)$. Then

$$[G_{2n}, G_{2n}] \cong [\mathrm{GQ}_{2n}(A, \Lambda), \mathrm{GQ}_{2n}(A, \Lambda)] \ltimes [\mathrm{GQ}_{2n}(A, \Lambda), \mathrm{GQ}_{2n}(A, \Lambda, \boldsymbol{q})]$$

and

$$E_{2n} \cong \mathrm{EQ}_{2n}(A,\Lambda) \ltimes \mathrm{EQ}_{2n}(A,\Lambda,q).$$

In [1], isomorphisms above are obtained by implicitly identifying $GQ_{2n}(A, \Lambda, q)$ with

$$GQ_{2n}(A, \Lambda, q)' = ker[GQ_{2n}((A, \Lambda) \ltimes q) \longrightarrow GQ_{2n}(A, \Lambda)]$$

and $EQ_{2n}(A, \Lambda, q)$ with

$$\mathrm{EQ}_{2n}(A,\Lambda,q)' = ker[\mathrm{EQ}_{2n}((A,\Lambda) \ltimes q) \longrightarrow \mathrm{EQ}_{2n}(A,\Lambda)],$$

respectively.

The purpose of this paper is to prove the lemma in a precise formulation (Lemma 1.3 below) without employing the groups $GQ_{2n}(A, \Lambda, q)'$ and $EQ_{2n}(A, \Lambda, q)'$ so that we can clarify the proof of Theorem 1.1.

Lemma 1.3. Let $G_{2n} = GQ_{2n}((A, \Lambda) \ltimes q)$ and $E_{2n} = EQ_{2n}((A, \Lambda) \ltimes q)$. Then there is a canonical map

$$\psi: G_{2n} \longrightarrow \mathrm{GQ}_{2n}(A,\Lambda) \ltimes \mathrm{GQ}_{2n}(A,\Lambda,q)$$

such that the restrictions

$$\psi_{G_{2n}}:[G_{2n},G_{2n}]\longrightarrow [\mathrm{GQ}_{2n}(A,\Lambda),\mathrm{GQ}_{2n}(A,\Lambda)]\ltimes [\mathrm{GQ}_{2n}(A,\Lambda),\mathrm{GQ}_{2n}(A,\Lambda)]$$

and

$$\psi_{E_{2n}}: E_{2n} \longrightarrow \mathrm{EQ}_{2n}(A,\Lambda) \ltimes \mathrm{EQ}_{2n}(A,\Lambda,q)$$

are well-defined and isomorphisms.

2. SMASH PRODUCTS OF GROUPS AND OF RINGS, Λ -QUADRATIC ELEMENTARY MATRICES

In this section we define the *smash product* of groups, one of rings and elementary matrices. They will be used in the proof Lemma 1.3.

Definition 2.1. Let Γ be a group and H a subgroup of Γ . If G is a subgroup of $N_{\Gamma}(H)$, we define the smash product $G \ltimes H$ by

$$G \ltimes H = \{(\sigma, \rho) \mid \sigma \in G, \rho \in H\}$$

with multiplication

(2.1)
$$(\sigma', \rho') \cdot (\sigma, \rho) = (\sigma'\sigma, (\sigma^{-1}\rho'\sigma)\rho).$$

Let $(A, (-, \lambda), \Lambda)$ be a form ring and q an involution invariant ideal of A. A form ideal of level q of (A, Λ) is a pair (q, Λ_q) where Λ_q is an additive subgroup of A such that

(1)
$$\{q - \lambda \bar{q} \mid q \in q\} + \{\sum_{i} q_{i} \wedge \bar{q}_{i} \mid q_{i} \in q\} \subset \Lambda_{q} \subset q \cap \Lambda \text{ and }$$

(2)
$$a\Lambda_{\sigma}\bar{a}\subset\Lambda_{\sigma}\ (a\in A).$$

Definition 2.2. (a) Let A be a ring. If q is a both sides ideal of A, we define the smash product ring $A \ltimes q$ by

$$A \ltimes q = \{(a,q) \mid a \in A, q \in q\}$$

with addition: (a,q)+(a',q')=(a+a',q+q') and multiplication: (a,q)(a',q')=(aa',qa'+aq'+qq').

(b) If (q, Λ_q) is a form ideal of (A, Λ) , we define the smash product form ring

$$(A, \Lambda) \ltimes (q, \Lambda_q) = (A \ltimes q, \Lambda \ltimes \Lambda_q)$$

where the involution on $A \ltimes q$ is defined by $(a,q) \longmapsto (\bar{a},\bar{q})$, and $\Lambda \ltimes \Lambda_q = \{(a,q)|a \in \Lambda, q \in \Lambda_q\}$. If $\Lambda_q = q \cap \Lambda$, then we shall write $(A,\Lambda) \ltimes q$ instead of $(A,\Lambda) \ltimes (q,q \cap \Lambda)$.

We have the ring homomorphism

$$f: A \ltimes q \longrightarrow A; (a,q) \longmapsto a,$$

its splitting

$$i: A \longrightarrow (A \ltimes q); a \longmapsto (a, 0),$$

the form ring homomorphism

$$g:(A,\Lambda)\ltimes(\boldsymbol{q},\Lambda_{\boldsymbol{q}})\longrightarrow(A,\Lambda)$$

induced by f, and its splitting

$$j:(A,\Lambda)\longrightarrow (A,\Lambda)\ltimes (q,\Lambda_q)$$

induced by i.

Let $M_{n,n}(A)$ denote the set of all $n \times n$ -matrices with entries in A, and $M_{n,n}(q)$ the set of all $n \times n$ -matrices with entries in q. If $P = (p_{ij}) \in M_{n,n}(A)$ and $Q = (q_{ij}) \in M_{n,n}(q)$, then we have the $n \times n$ -matrix (r_{ij}) with entries $r_{ij} := (p_{ij}, q_{ij}) \in A \times q$. The correspondence $M_{n,n}(A) \times M_{n,n}(q) \longrightarrow M_{n,n}(A \times q)$; $((p_{ij}), (q_{ij})) \longmapsto (r_{ij})$, is clearly a bijection. Thus we abuse the notation (P, Q) for the assigned matrix (r_{ij}) in $M_{n,n}(A \times q)$. By definition, the formula of multiplication

$$(2.2) (P,Q)(P',Q') = (PP',PQ'+QP'+QQ')$$

holds for (P,Q) and $(P',Q') \in M_{n,n}(A \ltimes q)$.

Definition 2.3. A matrix having one form among the following $2n \times 2n$ -matrices is called a Λ -quadratic elementary matrix.

$$\begin{aligned} \mathbf{H}(\varepsilon_{i,j}(a)) \ (i \neq j, a \in A) : & \begin{cases} (k,k)\text{-entry} = 1 & (k=1,\ldots,2n), \\ (i,j)\text{-entry} = a, \\ (n+j,n+i)\text{-entry} = -\bar{a}, \\ all \ other \ entries = 0. \end{cases} \\ \varepsilon_{n+i,j}(a) \ (i \neq j, a \in A) : & \begin{cases} (k,k)\text{-entry} = 1 & (k=1,\ldots,2n), \\ (i,n+j)\text{-entry} = a, \\ (j,n+i)\text{-entry} = -\bar{\lambda}\bar{a}, \\ all \ other \ entries = 0. \end{cases} \end{aligned}$$

$$\varepsilon_{i,n+j}(a) \ (i \neq j, a \in A) : \begin{cases} (k,k)\text{-entry} = 1 & (k = 1, \dots, 2n), \\ (n+i,j)\text{-entry} = a, \\ (n+j,i)\text{-entry} = -\lambda \bar{a}, \\ all \ other \ entries = 0. \end{cases}$$

$$\varepsilon_{n+i,i}(a) \ (a \in \overline{\Lambda}) : \begin{cases} (k,k)\text{-entry} = 1 & (k = 1, \dots, 2n), \\ (i,n+i)\text{-entry} = a, \\ all \ other \ entries = 0. \end{cases}$$

$$\varepsilon_{i,n+i}(a) \ (a \in \Lambda) : \begin{cases} (k,k)\text{-entry} = 1 & (k = 1, \dots, 2n), \\ (i,n+i)\text{-entry} = a, \\ all \ other \ entries = 0. \end{cases}$$

Lemma 2.4 (A. Bak [1, Lemma 3.1]). Let $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL_{2n}(A)$ with $\alpha, \beta, \gamma, \delta \in M_{n,n}(A)$. Then

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{GQ}_{2n}(A, \Lambda) \Longleftrightarrow \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{-1} = \begin{pmatrix} \bar{\delta} & \lambda \bar{\beta} \\ \bar{\lambda} \bar{\gamma} & \bar{\alpha} \end{pmatrix}.$$

3. PROOF OF LEMMA 1.3

Throughout this section, let $P \in M_{2n,2n}(A)$ and $Q \in M_{2n,2n}(q)$ and therefore $(P,Q) \in M_{2n,2n}(A \ltimes q)$. Let I_{2n} (or I if the context is clear) denote the identity matrix in $M_{2n,2n}(A)$ and O_{2n} (or O if the context is clear) the null matrix in $M_{2n,2n}(A)$.

Lemma 3.1. The following (1) and (2) hold.

- (1) $P \in GL_{2n}(A)$ if and only if $(P, O_{2n}) \in GL_{2n}(A \ltimes q)$.
- (2) If $P \in GL_{2n}(A)$ and $(P,Q) \in GL_{2n}(A \ltimes q)$ then $(I_{2n}, P^{-1}Q) \in GL_{2n}(A \ltimes q)$.

Proof. Claim (1) is obvious. Suppose P and (P,Q) are as in (2). Then, since $(P,O)^{-1}=(P^{-1},O)$,

$$(3.1) (P,O)^{-1}(P,Q) = (P^{-1},O)(P,Q) = (I,P^{-1}Q).$$

By
$$(P^{-1}, O)$$
 and $(P, Q) \in GL_{2n}(A \ltimes q)$, $(I, P^{-1}Q) \in GL_{2n}(A \ltimes q)$.

Lemma 3.2. The following (1) and (2) hold.

(1)
$$P \in GQ_{2n}(A, \Lambda)$$
 if and only if $(P, O_{2n}) \in GQ_{2n}((A, \Lambda) \ltimes q)$.

(2) If $P \in \mathrm{GQ}_{2n}(A,\Lambda)$ and $(P,Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$ then $(I_{2n}, P^{-1}Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$.

Proof. We check $P \in \mathrm{GQ}_{2n}(A,\Lambda) \Rightarrow (P,O) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$. If $P = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ with $\alpha,\beta,\gamma,\delta \in \mathrm{M}_{n,n}(A)$, then $P^{-1} = \begin{pmatrix} \bar{\delta} & \lambda \bar{\beta} \\ \bar{\lambda} \bar{\gamma} & \bar{\alpha} \end{pmatrix}$ by Lemma 2.4. The equality

$$\begin{pmatrix} (\alpha,O) & (\beta,O) \\ (\gamma,O) & (\delta,O) \end{pmatrix} \begin{pmatrix} \overline{(\delta,O)} & \lambda \overline{(\beta,O)} \\ \overline{\lambda}\overline{(\gamma,O)} & \overline{(\alpha,O)} \end{pmatrix} = \begin{pmatrix} (I,O) & (O,O) \\ (O,O) & (I,O) \end{pmatrix}$$

clearly holds. Thus $(P,O) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$. The implication " $(P,O) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q) \Rightarrow P \in \mathrm{GQ}_{2n}(A,\Lambda)$ " is similarly checked. Suppose P and (P,Q) are as in (2). Then $(I,P^{-1}Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$ follows from (3.1) and $(P^{-1},O), (P,Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$.

Lemma 3.3. If $(I_{2n}, Q) \in GL_{2n}(A \ltimes q)$ then $I_{2n} + Q \in GL_{2n}(A)$.

Proof. For the inverse matrix (I, Q') of (I, Q),

$$(I,Q)(I,Q') = (I,Q+Q'+QQ') = (I,O).$$

Thus,

$$Q + Q' + QQ' = O.$$

This implies

$$(I+Q)(I+Q')=I$$

and hence

$$I+Q\in \mathrm{GL}_{2n}(A).$$

Lemma 3.4. If $(I_{2n}, Q) \in GQ_{2n}((A, \Lambda) \ltimes q)$ then $I_{2n} + Q \in GQ_{2n}(A, \Lambda)$.

Proof. Suppose $(I,Q) \in GQ_{2n}((A,\Lambda) \ltimes q)$. Writing $Q = \begin{pmatrix} x & y \\ u & v \end{pmatrix}$, with $x,y,u,v \in M_{n,n}(q)$, we have the equality

$$\begin{pmatrix} (I,x) & (O,y) \\ (O,u) & (I,v) \end{pmatrix} \begin{pmatrix} \overline{(I,v)} & \lambda \overline{(O,y)} \\ \overline{\lambda(O,u)} & \overline{(I,x)} \end{pmatrix} = \begin{pmatrix} (I,O) & (O,O) \\ (O,O) & (I,O) \end{pmatrix}.$$

This provides the equality

(3.2)
$$\begin{pmatrix} (I, \bar{v} + x + x\bar{v} + \bar{\lambda}y\bar{u}) & (O, \lambda\bar{y} + \lambda x\bar{y} + y + y\bar{x}) \\ (O, u + u\bar{v} + \bar{\lambda}\bar{u} + \bar{\lambda}v\bar{u}) & (I, \lambda u\bar{y} + \bar{x} + v + v\bar{x}) \end{pmatrix} \\ = \begin{pmatrix} (I, O) & (O, O) \\ (O, O) & (I, O) \end{pmatrix}.$$

On the other hand, we have

$$\begin{split} &\begin{pmatrix} I+x & y \\ u & I+v \end{pmatrix} \begin{pmatrix} \overline{I+v} & \lambda \bar{y} \\ \bar{\lambda}\bar{u} & \overline{I+x} \end{pmatrix} \\ &= \begin{pmatrix} I+\bar{v}+x+x\bar{v}+\bar{\lambda}y\bar{u} & \lambda \bar{y}+\lambda x\bar{y}+y+y\bar{x} \\ u+u\bar{v}+\bar{\lambda}\bar{u}+\bar{\lambda}v\bar{u} & I+\lambda u\bar{y}+\bar{x}+v+v\bar{x} \end{pmatrix} \\ &= \begin{pmatrix} I & O \\ O & I \end{pmatrix} \ \text{by (3.2)}. \end{split}$$

By Lemma 2.4,
$$I+Q=\begin{pmatrix}I+x&y\\u&I+v\end{pmatrix}$$
 lies in $\mathrm{GQ}_{2n}(A,\Lambda)$.

Lemma 3.5. If $(P,Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$, then $(P,I_{2n}+P^{-1}Q) \in \mathrm{GQ}_{2n}(A,\Lambda) \ltimes \mathrm{GQ}_{2n}(A,\Lambda,q)$.

Proof. If $(P,Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$, then $P \in \mathrm{GQ}_{2n}(A,\Lambda)$ clearly. By Lemma 3.2 (2), we obtain $(I,P^{-1}Q) \in \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q)$. Then by Lemma 3.4, $I+P^{-1}Q \in \mathrm{GQ}_{2n}(A,\Lambda,q)$.

We define the map

$$\psi: \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q) \longrightarrow \mathrm{GQ}_{2n}(A,\Lambda) \ltimes \mathrm{GQ}_{2n}(A,\Lambda,q);$$

$$(P,Q)\longmapsto (P,I+P^{-1}Q).$$

The well-definedness follows from Lemma 3.5.

Lemma 3.6. The map ψ is a homomorphism.

Proof. If (P,Q) and (P',Q') belong to $GQ_{2n}((A,\Lambda) \ltimes q)$, then by (2.2),

$$\psi((P,Q)(P',Q')) = (PP',I+P'^{-1}Q+P'^{-1}P^{-1}QP'+P'^{-1}P^{-1}QQ').$$

On the other hand,

$$\psi(P,Q)\psi(P',Q') = (P,I+P^{-1}Q) \cdot (P',I+P'^{-1}Q')$$

$$= (PP',P'^{-1}(I+P^{-1}Q)P'(I+P'^{-1}Q')) \text{ by } (2.1)$$

$$= (PP',I+P'^{-1}Q+P'^{-1}P^{-1}QP'+P'^{-1}P^{-1}QQ').$$

Thus
$$\psi((P, Q)(P', Q')) = \psi(P, Q)\psi(P', Q')$$
.

Lemma 3.7. If $A \in GQ_{2n}(A, \Lambda)$ and $B \in GQ_{2n}(A, \Lambda, q)$, then $(A, AB - A) \in GQ_{2n}((A, \Lambda) \ltimes q)$.

Proof. If $B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ with $\alpha, \beta, \gamma, \delta \in M_{n,n}(q)$, then the equality

$$\begin{pmatrix} (I, \alpha - I) & (O, \beta) \\ (O, \gamma) & (I, \delta - I) \end{pmatrix} \begin{pmatrix} \overline{(I, \delta - I)} & \overline{\lambda(O, \beta)} \\ \overline{\lambda(O, \gamma)} & \overline{(I, \alpha - I)} \end{pmatrix}$$

$$= \begin{pmatrix} (I, \alpha \bar{\delta} + \bar{\lambda} \beta \bar{\gamma} - I) & (O, \lambda \alpha \bar{\beta} + \beta \bar{\alpha}) \\ (O, \gamma \bar{\delta} + \bar{\lambda} \delta \bar{\gamma}) & (I, \lambda \gamma \bar{\beta} + \delta \bar{\alpha} - I) \end{pmatrix} = \begin{pmatrix} (I, O) & (O, O) \\ (O, O) & (I, O) \end{pmatrix}.$$

holds. By Lemma 2.4, $(I, B - I) \in GQ_{2n}((A, \Lambda) \ltimes q)$.

Next, if $A = \begin{pmatrix} x & y \\ u & v \end{pmatrix}$ with $x, y, u, v \in M_{n,n}(A)$, then (A, O) clearly belong to $GQ_{2n}((A, \Lambda) \ltimes q)$. Thus by (2.2),

$$(A,AB-A)=(A,O)(I,B-I)\in\mathrm{GQ}_{2n}((A,\Lambda)\ltimes\boldsymbol{q}).$$

We define the map

$$\phi: \mathrm{GQ}_{2n}(A,\Lambda) \ltimes \mathrm{GQ}_{2n}(A,\Lambda,q) \longrightarrow \mathrm{GQ}_{2n}((A,\Lambda) \ltimes q);$$

$$(A,B) \longmapsto (A,AB-A).$$

The well-definedness of the map follows from Lemma 3.7.

Lemma 3.8. The map ϕ is a homomorphism.

Proof. If
$$(A, B)$$
 and (A', B') belong to $GQ_{2n}(A, \Lambda) \ltimes GQ_{2n}(A, \Lambda, q)$, then by (2.1),
$$\phi((A, B) \cdot (A', B')) = \phi(AA', A'^{-1}BA'B') = (AA', \dot{A}BA'B' - AA').$$

On the other hand,

$$\phi(A, B)\phi(A', B')$$
= $(A, AB - A)(A', A'B' - A')$
= $(AA', A(A'B' - A') + (AB - A)A' + (AB - A)(A'B' - A'))$
= $(AA', AA'B' - AA' + ABA' - AA' + ABA'B' - ABA' - AA'B' + AA')$
= $(AA', ABA'B' - AA')$.

Thus
$$\phi((A,B)(A',B')) = \phi(A,B)\phi(A',B')$$
.

Lemma 3.9. The compositions $\psi \circ \phi$ and $\phi \circ \psi$ of the maps ψ and ϕ are the identity maps.

Proof. By deinition,
$$(\psi \circ \phi)(A, B) = \psi(A, AB - A) = (A, B)$$
 and
$$(\phi \circ \psi)(A, Q) = \phi(A, I - A^{-1}Q) = (A, Q).$$

We have shown

$$GQ_{2n}((A, \Lambda) \ltimes q) \cong GQ_{2n}(A, \Lambda) \ltimes GQ_{2n}(A, \Lambda, q)$$

We define the map

$$\psi_E : \mathrm{EQ}_{2n}((A,\Lambda) \ltimes q) \longrightarrow \mathrm{EQ}_{2n}(A,\Lambda) \ltimes \mathrm{EQ}_{2n}(A,\Lambda,q)$$

to be the restriction of ψ , and

$$\phi_E : \mathrm{EQ}_{2n}(A,\Lambda) \ltimes \mathrm{EQ}_{2n}(A,\Lambda,q) \longrightarrow \mathrm{EQ}_{2n}((A,\Lambda) \ltimes q)$$

to be restriction of ϕ .

The well-defindness of ψ_E is checked: for example in the case of

$$H(\varepsilon_{ij}(x)) = \begin{pmatrix} 1 & x_{ij} & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & -\bar{x}_{ji} & 1 \end{pmatrix} \in \mathrm{EQ}_{2n}((A,\Lambda) \ltimes q)$$

with $(x_{ij} = (a_{ij}, q_{ij}))$,

$$\psi_{E}(H(\varepsilon_{ij}(x)))$$

$$= \begin{pmatrix} \begin{pmatrix} 1 & a_{ij} & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & -\bar{a}_{ji} & 1 \end{pmatrix}, \begin{pmatrix} 1 & q_{ij} & & & \\ & \ddots & & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & -\bar{q}_{ji} & 1 \end{pmatrix} \end{pmatrix}$$

$$\in EQ_{2n}(A, \Lambda) \ltimes EQ_{2n}(A, \Lambda, \mathbf{q}).$$

The well-defindness of ϕ_E is checked as follows. For example in the case of

$$(H(\varepsilon_{ij}(a)), \varepsilon_{i,n+j}(q)) \in \mathrm{EQ}_{2n}(A, \Lambda) \ltimes \mathrm{EQ}_{2n}(A, \Lambda, q),$$

by (2.2), the equality

$$\begin{split} \phi_{E}(H(\varepsilon_{ij}(a)), & \varepsilon_{i,n+j}(q)) \\ &= \begin{pmatrix} \begin{pmatrix} I_n + (a_{ij}) & 0 \\ 0 & I_n + (-\bar{a}_{ji}) \end{pmatrix}, \begin{pmatrix} 0 & (q_{ij}) + (\lambda \bar{q}_{ji}) + (-\lambda a \bar{q}_{ii}) \\ 0 & 0 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} I_n + (a_{ij}) & 0 \\ 0 & I_n + (-\bar{a}_{ji}) \end{pmatrix}, O \end{pmatrix} \begin{pmatrix} I, \begin{pmatrix} 0 & (q_{ij}) + (-\lambda \bar{q}_{ji}) \\ 0 & 0 \end{pmatrix} \end{pmatrix} \end{split}$$

holds. Since these two matrices belong to $EQ_{2n}((A, \Lambda) \ltimes q)$,

$$\phi_E(H(\varepsilon_{ij}(a)), \varepsilon_{i,n+j}(q)) \in \mathrm{EQ}_{2n}((A,\Lambda) \ltimes q).$$

By Lemma 3.9, the compositions $\psi_E \circ \phi_E$ and $\phi_E \circ \psi_E$ of the maps ψ_E and ϕ_E are clearly the identity maps. Thus, we have shown

$$\mathrm{EQ}_{2n}((A,\Lambda)\ltimes q)\cong\mathrm{EQ}_{2n}(A,\Lambda)\ltimes\mathrm{EQ}_{2n}(A,\Lambda,q).$$

REFERENCES

[1] A. Bak, K-Theory of Forms, Princeton University Press, Princeton, 1981.