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1. INTRODUCTION

Let A be a ring with the unity, — : A — A an involution, A € center(A) a
symmetry, and A a form parameter on A in the sense of [1,Section 1]. We refer to
the tuple (A4, (—, ), A) as a form ring. The general A-quadratic group GQ,, (4, A)
is defined to be the matrix group corresponding to the automorphism group on the
A-hyperbolic module A — H(A™). The elementary A-quadratic group EQ,,, (4, A)
is the subgroup of GQ,, (4, A) generated by all elementary A-quadratic 2n x 2n-
matrices. If ¢ is an involution invariant ideal of A, then the relative congruence

subgroup GQ,,(A, A, q) is defined to be
ker[GQZ‘n(Ar A) — GQ%(A/q1 A/Q)])
where
A/q = image[A — A/q],

and the relative elementary subgroup EQ,,(A, A,q) is defined to be the normal
subgroup of EQ,, (4, A) generated by all elementary A-quadratic matrices belong-

ing to GQ,, (A, A,q). The groups GQ(A4, A,q) and EQ(A, A, q) are defined to be
the inductive limits of GQ,, (A, A, ¢) and EQ,,(A4, A, q) , respectively, as n — co.
It is evident that EQ,,(A, A,q) is canonically embedden in GQ,,(4,A,q) as a
subgroup. The next result is given as [1, Corollary 3.9].

Theorem 1.1. The commutator subgroup [GQ,, (A4, A,q),GQ,,. (A, A)] is equal
to EQ,,(A4,A,q).

The proof of the theorem in [1] uses the lemma:
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Lemma 1.2. Let Gay = GQ,, (A, A) x q) and Ean = EQ,, (A, A)  q). Then
[Gan, Gan] 2 [GQyn (A, A), GQ2q (4, A)] X [GQan (A4, A), GQpq(4, A, q)]
and
Enn & EQuu(A, A) x EQgn(4, A, q).

In [1], isomorphisms above-are obtained by implicitly identifying GQ,, (4, A, g)

with
GQ2n(Aa Aa Q), = ker[Gan((A, A) X Q) — GQ2n(A’ A)]
and EQ,,(4, A, g) with

EQ2n(A1 A’ Q)I = kET[Ean((A, A) X q) — EQZn(A’ A)]v

respectively.
The purpose of this paper is to prove the lemma in a’precise formulation
(Lemma 1.3 below) without employing the groups GQ,, (A4, A, ¢)’ and EQ,,(A4, A, q)’

so that we can clarify the proof of Theorem 1.1.

Lemma 1.3. Let Gy = GQon((A,A) X @) and Ez, = EQ,,((A,A) % q). Then

there is a canonical map
¥ : Gan — GQyn(A4,A) X GQz,(4,A,9)
such that the restrictions
Y3, : [Gns Gan] —+ [GQun(4, A), GQuu (4, 1)] ¢ [GQzn (4, 4), GQu (4, A, 0)]

and
'¢'Eg,. : By — EQ2n(A’ A) X EQ2n(A1 A,Q)

are well-defined and isomorphisms.
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2. SMASH PRODUCTS OF GROUPS AND OF RINGS,
A-QUADRATIC ELEMENTARY MATRICES

In this section we define the smash product of groups, one of rings and elemen-

tary matrices. They will be used in the proof Lemma 1.3.

Definition 2.1. Let I" be a group and H a subgroup of I'. If G is a subgroup of
Nr(H), we define the smash product G x H by

Gx H={(o,p)|c€G,pe H}
with multiplication
(2.1) (0", 0') < (0,p) = (d'0, (67 '7)p).

Let (A,(—,A),A) be a form ring and ¢ an involution invariant ideal of A. A
form ideal of level q of (A, A) is a pair (g, A;) where A4 is an additive subgroup
of A such that

(1) {g-2glq€a}+{D aAd|a €} CA CaNA and
(2) aAg@a C Ay (a € A). ‘

Definition 2.2. (a) Let Abe a fing. If q is a both sides ideal of A, we define the
smash product ring A x q by '

Axg={(a,q) |ac A qeqg}
with addition : (a,q)+(a’,¢') = (a+a’,g+¢') and multipliéa.tion : (a,q)(d,¢') =
(ad',qa’ + a¢’ + q4').
(b) If (g, Aq) is a form ideal of (A, A), we define the smash product form ring
(4,4) % (g, Aq) = (A g, A x A,)

where the involution on A x ¢ is defined by (a,q) — (G,7), and A x A, =
{(a,q)|la € A,g € Ag}. If Ag = gN A, then we shall write (4, A) x ¢ instead of
(4, 4) % (g.40A). '



We have the ring homomorphism

f:Axqg— 4;(a,q) — a,
its splitting

i:A— (Axq);a+— (a,0),
the form ring homomorphism

9:(4,A) x (g,4q) — (4,4)
induced by f, and its splitting

J:(A,A) — (A,A) x (g,Ag)

induced by 1.

Let M, »(A) denote the set of all n x n-matrices with entries in A, and My »(g)
the set of all n x n-matrices with entries in ¢. If P = (p;;) € M, n(A) and Q =
(i) € Mpn(g), then we have the n x n-matrix (r;;) with entries r;; := (ij, ¢ij) €
A x q. The correspondence M, ;,(A4) X M, »(q) — Mpn(4 % q); ((pij), (¢:5)) —
(i), is clearly a bijection. Thus we abuse the notation (P, Q) for the assigned

matrix (7i;) in Mpn(A % ¢). By definition, the formula of multiplication
(2.2) (P,Q)(F',Q) = (PP, PQ + QP+ QQ)

holds for (P, Q) and (P',Q') € Mp (4 x q).

Definition 2.3. A matrix having one form among the following 2n x 2n-matrices

is called a A-quadratic elementary matriz.

((k,k)-entry =1 (k=1,...,2n),
(z,7)-entry = a,
(n + j,n + i)-entry = —a,
| all other entries = 0.
((k,k)-entry =1 (k=1,...,2n),
(i,n + j)-entry = a,
(j, n + i)-entry = g,
| all other entries = 0.

H(ei5(0)) (i # j,a € A)

envig(@) (i £ja€A): |
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(k,k)-entry=1 (k=1,...,2n),

(n+1,j)-entry = q,

(n + j,)-entry = —\a,

all other entries = 0.

(k,k)-entry =1 (k=1,...,2n),
€nsii(a) (@ €A): { (i,n+i)-entry = a,

i all other entries = 0.

(k,k)-entry=1 (k=1,...,2n),

Einti(a) (@ € A): (n + i,i)-entry = a,

| all other entries = 0.

Eintj(a) (i #j,a € A):

Lemma 2.4 (A. Bak [1, Lemma 3.1] ). Let (: g) € GLon(A) with o, B,7,6 €
Mnn(A). Then

(G §)ecman =5 -(5 %)

3. PROOF OF LEMMA 1.3

Throughout this section, let P € Manan(A4) and Q € Mag,2n(g) and therefore
(P,Q) € Man2n(A x q). Let Ip, (or I if the context is clear) denote the identity
matrix in Mas 2n(A) and O, (or O if the context is clear) the null matrix in
M2n,2n(A)'

Lemma 3.1. The following (1) and (2) hold.

(1) P € GLan(A) if and only if (P,0a,) € GLgn(A x ¢).
(2) If P € GLan(A) and (P,Q) € GLan(AXq) then (Irn, P7'Q) € GLon(AXq).

Proof. Claim (1) is obvious. Suppose P and (P,Q) are as in (2). Then, since
(P,O)™ =(P1,0),

(3.1) (P,O)™(P,Q) = (P71,0)(P,Q) = (I, PT'Q).
By (P~1,0) and (P,Q) € GL2,(A x q), (I, P71Q) € GLya(A X gq). O
Lemma 3.2. The following (1) and (2) hold.

(1) P € GQ,, (A, A) if and only if (P, Oan) € GQpn((A, A) X g).



(2) If P € GQp,(A,A) and (P,Q) € GQuu((4,A) x q) then (I, P7'Q) €
GQszn((4,4) x g)-

Proof. We check P € GQy,(A4,A) = (P,0) € GQan((A,A) x g). If P = (: ?)

with «, 8,7,0 € M (A), then P71 = (;\5’7 )f ) by Lemma 2.4. The equality
((a, 0) (®, 0)) (_(a, 0) B, 0)) _ ((1,0> ©, 0))
(1,0) (6,0))\)(,0) (a,0) (0,0) (1,0)

clearly holds. Thus (P,0) € GQ,,((A4,A) x ¢). The implication “(P,0) €
GQ,,((A,A) x @) = P € GQ,,(A,A)” is similarly checked. Suppose P and
(P,Q) are as in (2). Then (I, P71Q) € GQ,,((4,A) x g) follows from (3.1) and
(P7,0), (P,Q) € GQz,((A,A) x g). 0

Lemma 3.3. If (Ion, Q) € GL2s(A x q) then I, + @ € GLg,(A).
Proof. For the inverse matrix (I,Q’) of (I, Q),
(1,QI,Q)=(I1,Q+Q +QQ) = (1,0).
Thus,
Q+Q +QQ' =0.
This implies
I+QU+Q)=1I

and hence

I+ Q € GL2,(A).

Lemma 3.4. If (I3,,Q) € GQ,,((4,A) % q) then L, + Q € GQy, (A, A).

Proof. Suppose (I,Q) € GQ,,((A,A) x g). Writing Q= (: g), with z,y,u,v €
Mn.n(g), we have the equality
((I,x) (O,y))( (Z,v) A(O,y)) _ ((1,0) (0,0))_

(O,u) (I,v) ) \XO,w) (Lz)) \(0,0) (I1,0)
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This provides the equality
(I,5+z+z0+Aya) (O,\§+ Az§ +y + yi)
(O,u+uv+ A+ i) (I, uf+zZ+v+vT)

(63 €9)

(3.2)

On the other hand, we have

I+z y I+v Ay
u I+v A I+z

_(T+T+z+20+ Xy M+ Az +y+yI
T\ utub+ A+ wE T+ Muf+IT+uv+E

- (é ?) by (3.2).

By Lemma 2.4, I +Q = (I -:; z I :J_ v) lies in GQ,, (A4, A).

a

Lemma 3.5. If (P,Q) € GQ,,((4,A)xq), then (P, I1n+P~'Q) € GQy,(4,A) x

GQ2n (Av A, q) -

Proof. If (P, Q) € GQ,,((4, A) xq), then P € GQ,,(A, A) clearly. By Lemma 3.2
(2), we obtain (I, P71Q) € GQq,((A4,A) X g). Then by Lemma 3.4, I + P7'Q €

GQz.(4,A.9)-
We define the map
% : GQan((4, A) X @) —> GQun(4, A) x GQpn(4, A, 9);
(P,Q) — (P,I + P71Q).

The well-definedness follows from Lemma 3.5.

Lemma 3.6. The map ¢ is a homomorphism.

Proof. If (P, Q) and (P, Q') belong to GQ,,((A4, A) x q), then by (2.2),

Y((P,Q)(P, Q) = (PP, I+ P7'Q+ P 'P'QP + P'P71QQ).

a



On the other hand,
Y(P,QY(P,Q)=(PI+P'Q) (P, I+P Q)
= (PP, P71+ P'QP'(I+P7'Q)) by (21)
= (PP, I+P7'Q+ P 'PT'IQP' + PT'P71QQ).
Thus Tﬁ((P, Q)(PI, QI)) = ¢(P’ Q)'ﬁ(P', Q’) ’ O

Lemma 3.7. If A € GQ,,(A,A) and B € GQ,,(A,A,q), then (A,AB — A) €
GQgzn((4,A) x q). '

Proof. If B = (: ?) with a, 8,7,6 € M, »(q), then the equality

((I,a—I) (O,ﬁ))((f,c?—f) A(O,ﬁ))
O, €,d-D)\ XO0,y) UTa-1)

_ ((1, o +A8y—1) (0, af + B&) ) _ ((1, 0) (O, 0)).

(0,6 +X267) (I, »B+déa-1)) ~ \(0,0) (1,0)
holds. By Lemma 2.4, (I, B — I) € GQ,,((4, A) x g).

Next, if A = (Z g) with z,y,u,v € Mpa(A), then (A4, O) clearly belong to
GQ,,.((A,A) x ). Thus by (2.2),

(A,AB — A) = (A,0)(I,B - I) € GQy,((4,A) x g).

We define the map
¢ : GQgn (A, A) X GQun(As A, q) — GQy((4, A) x g);
(4, B)— (A, AB — A).
The well-definedness of the map follows from Lemma 3.7.

Lemma 3.8. The map ¢ is a homomorphism.
Proof. If (A, B) and (A', B') belong to GQ,, (4, A) x GQ,, (4, A,q), then by (2.1),

#((A,B) - (A", B")) = ¢(AA', A'BA'B') = (AA, ABA'B' — AA").
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On the other hand,

¢(A, B)¢(4', B')

= (A,AB - A)(A",A'B' - A')

= (AA',A(A'B' — A') + (AB - A)A' + (AB - A)(A'B' - A"))

= (AA',AA'B' — AA' + ABA' - AA'+ ABA'B' — ABA' — AA'B' + AA')

= (AA',ABA'B' — AA').
Thus ¢((4, B)(A4', B')) = ¢(A, B)¢(A', B'). a
Lemma 3.9. The compositions 9 o ¢ and ¢ o ¢ of thé maps ¥ and ¢ are the

identity maps.

Proof. By deinition, (v o #)(A, B) = %(A, AB — A) = (A, B) and
(po¥)(A4,Q) =8(A, - A7'Q) = (4,Q). O

We have shown
GQzn((4,A) X q) = GQyn(4, A) x Géz,.(A,A,q)-
We define the map
¥E : EQan((4,A) X g) — EQp, (4, A) X EQ,a(4, A, q)
to be the restriction of 9, and
¢ : EQpn(4, A) X EQpn(4, A, q) —> EQpn((4,A) X g)

to be restriction of ¢.

The well-defindness of ¥ is checked: for example in the case of
( 1 z,-,- \

Hey(z)) = R € EQuu((4,4) x q)

\ =Zji 1 )

with (zi; = (ai;, ¢i5)) »




Ye(H (si5(2)))
( (1 ‘ Q4 \ 1 ' gij \ \

\\ —a; 1/ —Gji 1/ /
€ EQ,, (A, A) X EQqn(4, A, Q).
The well-defindness of ¢ is checked as follows. For example in the case of

(H(ij(a)), €in+5(0)) € EQqu(A4, A) x EQyu(4,A,q),

by (2.2), the equality
¢e(H(eij(a)) ; €in+5(2)

= ((I,, +0(a=‘j) - ?_aﬁ)) , (g (¢:5) + (z\ciﬁg + (—f\aiii)))
- ((In +°(aij) I,.+(()—&j,~)) ’ 0) (I' (g ) +(§—,\qji)))

holds. Since these two matrices belong to EQ,,((4, A) % q),

¢u(H (£i(0); €in+i(9)) € EQan((4,A) x q).

By Lemma 3.9, the compositions g o ¢ and ¢g o Yg of the maps ¥ and ¢g

are clearly the identity maps. Thus, we have shown

EQZn((A') A) X q) = EQZn(AvA) X EQ2n(A’A’q)' )
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