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Abstract The dependence of growth of a plant population on the circulation of a
mineral nutrient is analyzed by means of a mathematical model which consists of four first
order noRlinear differential equations. Three of them describe the nutrient fiow between
the nutrient pool, the plant population itself, and its litter. The remaining equation
describes the plant grewth. Michaelis-Menten kinetics is used to represent the material
flow from the nutrient pool to the plant population, and the growth of the plant is
described by a generalized logistic equation. A comprehensive anaiysis of the plant
growth and its dependency on the system parameters is given.

                              INTROBUCTION

    The material circulatioR in ecosystems, along with the energy fiow, is a principal
problem of systems ecology and environmeRtal sciences, aRd various theoretical inves-
tigatioRs have been developed. Waide et al. (1974) studied the calcium circillation iR a

forested watershed ecosystem by means of a linear system analysis. They analyzed the
response of the system to a calcium input as well as the stability of circulation. Further,

the nutfient uptake and the growth respoRse of plants have been widely investigated as
fundamental problems of plant production (e.g. Nye et al., 1975). It is clear that these

two problems are closely related, and specifically the nonlinear respoRse of plant growth

is thoughtto play an important role in regulating nutrieRt cycle. The main objective of
this paper is the interplay betweeR plant growth aRd Rutrient cycle with focus on the
effects of nonliRear respoRse of the former on the latter by usiRg a sirnple rnodel

ecosystem.
    We coRsider the cyclic flow of a mineral nutrient in a closed ecosystem consisting of
three compartments: an available nutrieRt pool, a population of a siRgle plant species
and organic materials in the litter including decomposer organisrns (Fig. 1). In the
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present model, iRput and output fiow rates are assumed to be negligible compareq, with
the intemal fiow rates of the nutrient. The nonliRear response of plant growÅíh is taken

into account by introduciRg the carrying capacity of the plant population, which depends

on the concektration of the incorporated nutrient. Connecting this plant growth
response with the cyclic fiow of nutrient, we analyze the stability condition of nutrient

cycle in the Åíhree compartment system.

                             THE MODEL

   The mechanism of nutrient cycle is highly iRtricate even in a simple ecosystem (see
for example Epstein, 1972), and we cannot give here a sweepiRg description of the
circulation processes.

   The plant takes up nutrients from the soil mainly through its roots and the absorbed
RutrieRts cooperate with other factors in the process of plant growth. WheA a part of a
plant such as withered leaves and branches, or a whole plant falls on the ground, the
incorporated Rutrients are released from the plaRt and becorne a part of the litter. There

may also be a srnall contribuÅíioR due to secretions aRd excretions. The rnineral nutrients

contained in organic materials of the litter are decomposed by the decomposers in the
litter or leached by the physical environmeRtal conditions, and released into tke nutrient

pool. Thus, the system repeats this cyclic process.
   The above sirnplified picture serves as the basis of a model that deals with a mineral

nutrient and a single plaRt species in a closed ecosystem. To specify a model we make
further assumptions as follows:
(1) Environmental conditions of the plant such as temperature, humidity and light
   intensity are optimal.
(2) The nutrient is supposed to affecÅí the growth rate of the plant oRly after it is

   absorbed.
(3) The response of the plant to the incorporated nutrient is immediate and has no time

   delay in the time scale of our dynamical model.
(4) The available nutrient pool and the litter are homogeneous.
(5) All the plants are of the same genotype.

   Suppose the following four variables:
x, y and z: the total amounts of the nutrient contained at time t in the available
   nutrient pool, in the plaRts and the litter, respectively,

w: the pure dry weight of the plant attime t, where we define
(pure dry weight)=:(total dry weight)-(mineral nutrients)

   Thelt, a dynamical model of the nutrient cycle caR be given by the set of differential

equatlons:

                          dx Axw                          dt=rm x+K+LY+DZ (1.1.a)
                          dy                                        Axw                                                                 (1.1.b)                             =-Ly-My+                          dt                                        x+K
                          dz                          dt == rmDz+My (1.1.c)
                          dw                          dt =R[F(c)-w]w (1.1.d)
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where c is the conceRtration of the nutrieRt in the dry matter of the plant:

                                    y                               c==                                  w+y
   Note that the nutrient cycle giveR by (1.1.a)-(1.1.c) is coupled with the growth
equation of the plaRt govemed by (1.1.d) througk the term of uptake rate which appears
iR (1.1.a) and (1.1.b), and the function F(c).

   The first term of (1.1.a) represeRts the uptake rate of a plant, which is assumed to
follow a Michaelis-MeRtefl type kinetics. The constaAt A gives the maximum uptake
rate. The absorption capacity of the plaRt, K, is a half-saturation coRstant, wkich
corresponds to the amount of available nutrient x at which the uptake rate becomes a
half of the maximum, and it is related to absorbing ability of the plant at a low
concentration nutrient pool. It is also assumed as a first approximation that the uptake
rate is proportional to the plaRt size, which is, in turn, proportioRal to the pure dfy
weight w. The second term Ly expresses a loss oÅí the nutrienÅí Åíroin the plan{ through
leaching, secretions and excretions. These processes are physiologically important ifl the

plant growth proccss, but in many cases the rates are relatively small (Parker, 1983).

The third term Dz stands for the infiow from the litter, which ought to be the
decomposition rate of organic matter in the litter, and the amount of the decomposers is

assumed to be proportioBal to that of the Rutrient coRtaiRed in the litter. This
assumption is made here for the sake of model simplicity, but it may be applicable to
some cases (Heath et al., 1966).
   The second terrn My of equation (1.1.b) staRds for tke loss of the incorporated
nutrieRt from the plant due to the death and withering processes.
   The last equatioA (1.1.d) represents the growth rate of plant in terms of the pure dry

weight, where tke carrying capacity F(c) of plant biomass (pure dry weight) is assumed

to depend oR the concentration of the absorbed nutrient. It is known that per capita dry
matter productioR of plant, RF(c), generally depends oR the conceRtration of Rutrient in
plant as shown in Fig. 2 (Larcher, 198e). This figure shows that tkere are basically three

nutrient states in terms of F(c): deficieficy, adequate supply aRd toxic excess. It can be
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Fig. 2. Dry matter as a function of the absorbed nutrient (After Larcher, 198e).
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seen Åíhat both, nutrient shortage and overabundance give the same suppressive effect on
the plant production.

                         STATIONARY STATES

   IR the system (1.1) all the parameters are assumed to be nonnegative, i.e., A, D, K,
R>O, L, M}rO and L+M>e. SiRce we consider a closed sysÅíem, the total arnouRt of
nutrient x+y+z = m is conserved and only three of the equations (1.1) afe independent.
Therefore, we caR obtain stationary points by solving the equatioRs.

                     dx Axw                     dt =- x+K+Ly+D(m-x-y) =e (3.i.a)
                     dy                               Axw                     dt =-BY+.+K ==O (3.1.b)
                     dw                        =R[F(c)-w]w=O (3.l.c)                     dt

                    z=m-x-y (3.1.d)
where B =L+M and

                             yc                        C=w+y or y=lmcw (3.2.a)
From (3.1.a) and (3.1.b), we have

                                   M+D                                        y (3.2.b)                            x=m-                                     D

and also from (3.1.b), (3.2.a) and (3.2.b)

                                BKc                                                                 (3.2.c)                         x==                             A-(A+B)c
                         y=D +DM [m- A. &Ki B),] (3.2.d)

Equation (3.2.d), combined with (3.2.a) aRd F(c)=va gives the relation

                     cD                                           BKc                        F(c) ==                                   [m-                                                  ] (3.3)                                       A-(A+B)c                             M+D                    1-c

When (3.3) has a solution c* we have, froTn Eqs. (3.1.c), (3.1.d), (3.2.a) and (3.2.c) the

following stationary point:

                     . BKc* . c"                                             . F(c*)                   x=                                   ,y=                    ,.,,. iD3I-(iAmmc;l,-B, }C(*,,), uf .l,lll(C,,) (3 4)

The coRdition fer this statioRary point to be positive is

                                     A                             O<c*<                                    A+B
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Equation (3.1.c) involves another case, wrm-O, which generates out of Eqs. (3.1.a) and
(3.1.b) another stationary point:

                         x'=m, y*=zti:=:w"=O. (3.5)
   We now investigate equation (3.3) which determiRes tke stationary value c". The
right hand side of (3.3)

                      h(c)= MD+D [m- A- :Kf B),l (3.6)

is decreasing as the functioR of c in the range O<c<A/(A+B) with an asymptote at its
boundary c==Al(A +B), as shown iR Fig. 3.a. The other braRch of the hyperbola for c>
Al(A+B) is irrelevant to the present discussion. The left hand side of (3.3) (see Fig.
3.b)
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Fig. 3.

                                   c                             f(c) =                                      F(c) (3.7)                                  1-c

is a function F(c) of the type shown in Fig.2 reduced by the factor c/(l-c); note that
c/(1-c)<1 because nutrienÅí coRcentration c is srnaller thaR 1!2 in any real system.

   As typical situafions, we can consider two cases depending upon the parameter
values of the system (3.1) and the fuRctional form of F(c).
   (i) Single iRtersection (Fig. 4)
   IR this case, the curve h(c) has a single intersection vvith the curve f(c) in the raRge

O<c<A/(A+B), and it is the single solution c* of tke equation (3.3) which gives a
positive statioRary point (3.4). This situatioR will be expected to appear when the value

of parameter K, BIA or m is large, provided that the curve f(c) does Rot drop down very
rapidly in this range.

   (ii) Triple intersections (Fig. 5)

   On the contrary, wheR the value of parameter K or A/B is relatively small, the
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Fig. 4. Singie intersection-one stationary point. (a) the point determined by c* is asimptotically
stable; (b) the point determined by c* is asimptotically stable if R is sufficiently small, otherwise

unstable.
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Fig.5. Triple intersections-three stationary points. ci" determines an asimptotically stable
stationary point; c2* determines an unstable stationary point; c3' determines a point whose
stability character depends on R: the point is asimptotically stab}e for any sufficiently small R,
otherwise unstable.

curve h(c) has possibly three intersections with the curve f(c) at ci, c2* aRd c3' as shown

in Fig. 5. Thus, in this case we have three positive stationary points.

         '
                            STABILITY ANALYSIS

    In the present model, the total arnount of nutrient m==x+y+z is conserved aRd the
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growth of plant is also lirnited. Therefore, it can be seen that all trajectories of system
(1.1) are bounded in the nonnegative domain of a four dimensioRal space (x, y, z, w). In

order to study asymptotical behavior of the system, we summafize in this section the
results of stability analysis of the stationary points, which have been obtained in the
previous section. The mathematical details of calculatioR are giveR in AppeRdix.
   (i) WheR there is only one iRtersectioR of the two curves, h(c) and f(c), the system
asymptotically approaches either this stationary point or a limit cycle.

   First, it can be proved that if the value c" of intersection lies in such a region tkat

                          ddf, == i(,[i{l, F(c)]}ie (4.i)

the stationary poiRt given by (3.4) is stable and the system asympÅíotically approaches
tkis stationary state.

   Even if dfldc<e at c", as loRg as its absolute value Idfldcl is smaller than some
critical value, the stability can be secured; otherwise the statioRary point given by c*

becomes unstable and the system approaches a limit cycle surrounding this unstable
stationary point. It caR also be seen that a larger value of the parameter R reduces this
critical value aRd the instability of tke stationary poiRt occurs at rather small values of

Idf/dcl. Thls iRstability rnay possibly occur in a part of the desceRding regioR of the

curve f(c), and generally, c* gives a stable stationary state on both sides of this region.

   When F(c) gives such severe coRdition that F(c) ==O in some part of the deficiency or
toxic regions of the nutrient conceRtration (Fig. 2) and if c" lies on that regioR, i.e.,

F(c*)=O, the system approaches the state x"=m, y"=z* = w"==e, aRd kence the plaRts
completely die out.
   (ii) We kext consider the case in which the two curves h(c) aRd f(c) have three
intersections at ci c2* and c3* as shown in Fig. 5. In most cases the condition (4.1) holds

at the point ci" and even if ci lies ifl the regioR such that dfldc<O, we can expect the
value ci* to give a stable stationary poiRt. At the value c2' the relation ldfldc1>ldhldcl

always holds, which implies that the statioRary point given by c2* if always unstable. The

point c3", which appears in the region df!dc<O, mostly gives a stable stationary point
provided that jdfldcl does not exceed the critical value; otherwise a limit cycle takes

place.

   Therefore, in this case, depending upon aR initial condition, the system asymptoti-
cally approaches either of the stable stationary states given by ci' aRd c3", including a
possibility of a limit cycle.

PARAMETER DEPENDENCE
   Since the behavior of the present model depeRds on many parameter values, it
would appear difficult to get a coRcise grasp of the characteristic properties of the system

from the mathematical results obtained in tke last section. However, assuming that the
carrying capacity of plaRt F(c) has the nutrient concentration dependence of the type

given by Fig. 2, it is possible to develop a perspective oR the properties of stationary
states by paying attention to the two intercepts of the curve y=h(c) (see Fig. 3):

                     D Am A              h(O) == D+MM and Co== (A +B)m+ KB < A+B
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    As we have already discussed in the previous sectioRs, the statioRary states of our
system are given by iRtersections of two curves h(c) aRd f(c). The parameter dependence

of curve•h(c) is schematically shovvn in Fig. 3.a.

    Tke following is a summary of the parameters that characterize the properties of the

system.
    (l) BIA==(L+M)IA. This is the ratio of the coefficients of the loss and uptake
rates of the plant and it determines the position of asympto{e c==Al(A +B) of curve h(c).
If the value BIA becomes larger, the range of curve h(c) is compresssed, which shifts ce

to a smaller value of c, and thus the value c' for the s{ationary point, at which the curve

h(c) intersects with f(c) also moves from the adequate nutrjent region to the deficiency

region where the plants are stunted. On the contrary, a smaller value of BIA moves the
stationary point to tke right and in the toxic region the plant may possibly be damaged

by poisonous effects of the nutrient.
    (ii) K. Half saturation constaRt K is a measure of the absorbing ability of the
plant. The plant with a smaller half saturation constant has a higher uptake fate
especially at Iow concentration of the available nutrient pool. A small value of K
possibly shifts the statioRary point from the deficiency region to the adequate one.
    iii) M!D and m. A high decomposition rate raises the value of h(O) (see Fig. 3.a).
The total amount of nutrient, m, also lifts up the entire curve h(c).

    (iv) R. Although the statioRary points are deterrnined independently of the value
of growth rate factor R, the stability conditioR of the stationary point is sensitively
affected by R. A high growth rate of the plaRt desÅíabilizes tke stationary point iR the
raRge of a surplus nutrient, which corresponds to the descending part of the curve f(c),

aRd the system approaches a limit cycle.

Appendix

Stability

    Consider system

Then wehave

ax
ax
ax
ax
aw
ax

(3.1) and

 .iY(x, y,

 Y(x, y,

 W(x, y,

let

       AxwW)=-.+K+Ly+D(m-x-y)
          Axww) =- By+
          x+K
w) =R{F(c) - w] w.

     AKw                  ax
=- M(x+K) rmD' ay=LrmD,

   AKw aX"=M(x+K)' ayX"B,
               dF(c) ac        aw =O' ay ==R dc ayW
                           dF(c)        aw            ==R[F(c)-w]+R[
                            dc        ow

'i

-
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Thus the matrix oÅí linearized system at the statlonary point (3.4) is given as

                                      Bc        -a(c)F(c)-D L-D -                                     1-c
                                     Bc          a(c)F(c) -B                                    1-c
                                    dF(c)                       2 dF(c)                             -R[c(1-c)          O R(l-c)                                        + F(c)]                         dc                                     dc
where

                   a(c)--iA'iii}S22iflllgiL.}Sfi+#))c]2

The characteristic equation of this matrix is given by

           ,k3+aiA2-l-a2A+a3==e with
                                  2 df(c)                ai=B+D+a(c)F(c)+R(1-c)                                   dc
                a2==BD+[RB+(M+D)a(c)]F(c)
                                 , df(c)                   +R[D+a(c)F(c)](1-c)                                  dc
                                        df(c)                a3 == RBDF(c) +R(M+D)(1 - c)2a(c)F(c)
                                         dc
                   ==R(M+D)(1-c)2a(c)F(c)[ dpmd(,C) - dhd(,C) ],

where

              cD                                     KBc                       h(c) ==                               (m-                                          ]         f(C)=:1m,F(c) and                                  A-(/1+B)c                           M+D
Therefore the stability conditions (Routh-Hurwitz)

                     al>O, a3>O
and

            aia2-a3=:(B+D+a(c)F(c)+R(1-c)2 dfd(,C) l

            IBD+R[D+a(c)F(c)](1-c)2 dfi,C) l

            + ( B+ a(c)F(c) l ( RBF(c) + (M+D)a(c) F(c) l

            +D(D+M)a(c)F(c)+BF(c)R2(1-c)2 dpmi,C) >o

are satisfied wkeR dfldc>e.
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