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Abstract The dependence of growth of a plant population on the circulation of a
mineral nutrient is analyzed by means of a mathematical model which consists of four first
order nonlinear differential equations. Three of them describe the nutrient flow between
the nutrient pool, the plant population itself, and its litter. The remaining equation
describes the plant growth. Michaelis-Menten kinetics is used to represent the material
flow from the nutrient pool to the plant population, and the growth of the plant is
described by a generalized logistic equation. A comprehensive analysis of the plant
growth and its dependency on the system parameters is given.

INTRODUCTION

The material circulation in ecosystems, along with the energy flow, is a principal
problem of systems ecology and environmental sciences, and various theoretical inves-
tigations have been developed. Waide et al. (1974) studied the calcium circulation in a
forested watershed ecosystem by means of a linear system analysis. They analyzed the
response of the system to a calcium input as well as the stability of circulation. Further,
the nutrient uptake and the growth response of plants have been widely investigated as
fundamental problems of plant production (e.g. Nye et al., 1975). It is clear that these
two problems are closely related, and specifically the nonlinear response of plant growth
is thought to play an important role in regulating nutrient cycle. The main objective of
this paper is the interplay between plant growth and nutrient cycle with focus on the
effects of nonlinear response of the former on the latter by using a simple model
ecosystem.

We consider the cyclic flow of a mineral nutrient in a closed ecosystem consisting of
three compartments: an available nutrient pool, a population of a single plant species
and organic materials in the litter including decomposer organisms (Fig.1). In the

Fig. 1. Nutrient circulation. N-nutrient pool; P-plant
population; L-litter and decomposers.
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present model, input and output flow rates are assumed to be negligible compared with
the internal flow rates of the nutrient. The nonlinear response of plant growth is taken
into account by introducing the carrying capacity of the plant population, which depends
on the concentration of the incorporated nutrient. Connecting this plant growth
response with the cyclic flow of nutrient, we analyze the stability condition of nutrient
cycle in the three compartment system.

THE MODEL

The mechanism of nutrient cycle is highly intricate even in a simple ecosystem (see
for example Epstein, 1972), and we cannot give here a sweeping description of the
circulation processes.

The plant takes up nutrients from the soil mainly through its roots and the absorbed
nutrients cooperate with other factors in the process of plant growth. When a part of a
plant such as withered leaves and branches, or a whole plant falls on the ground, the
incorporated nutrients are released from the plant and become a part of the litter. There
may also be a small contribution due to secretions and excretions. The mineral nutrients
contained in organic materials of the litter are decomposed by the decomposers in the
litter or leached by the physical environmental conditions, and released into the nutrient
pool. Thus, the system repeats this cyclic process.

The above simplified picture serves as the basis of a model that deals with a mineral
nutrient and a single plant species in a closed ecosystem. To specify a model we make
further assumptions as follows:

(1) Environmental conditions of the plant such as temperature, humidity and light
intensity are optimal.

(2) The nutrient is supposed to affect the growth rate of the plant only after it is
absorbed.

(3) The response of the plant to the incorporated nutrient is immediate and has no time
delay in the time scale of our dynamical model.

(4) The available nutrient pool and the litter are homogeneous.

(5) All the plants are of the same genotype.

Suppose the following four variables:

X, y and z: the total amounts of the nutrient contained at time t in the available
nutrient pool, in the plants and the litter, respectively,

w: the pure dry weight of the plant at time t, where we define

(pure dry weight)=/(total dry weight)— (mineral nutrients)

Then, a dynamical model of the nutrient cycle can be given by the set of differential
equations:

dx Axw

7 —,H—_K+Ly+DZ (1.1.a)
dy Axw

dz

DY RIF(C)—ww (1.1.d)

dt
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where c is the concentration of the nutrient in the dry matter of the plant:

7
w-y

Note that the nutrient cycle given by (1.1.a)-(1.1.c) is coupled with the growth
equation of the plant governed by (1.1.d) through the term of uptake rate which appears
in (1.1.a) and (1.1.b), and the function F(c).

The first term of (1.1.a) represents the uptake rate of a plant, which is assumed to
follow a Michaelis-Menten type kinetics. The constant A gives the maximum uptake
rate. The absorption capacity of the plant, K, is a half-saturation constant, which
corresponds to the amount of available nutrient x at which the uptake rate becomes a
half of the maximum, and it is related to absorbing ability of the plant at a low
concentration nutrient pool. It is also assumed as a first approximation that the uptake
rate is proportional to the plant size, which is, in turn, proportional to the pure dry
weight w. The second term Ly expresses a loss of the nutrient from the plant through
leaching, secretions and excretions. These processes are physiologically important in the
plant growth process, but in many cases the rates are relatively small (Parker, 1983).
The third term Dz stands for the inflow from the litter, which ought to be the
decomposition rate of organic matter in the litter, and the amount of the decomposers is
assumed to be proportional to that of the nutrient contained in the litter. This
assumption is made here for the sake of model simplicity, but it may be applicable to
some cases (Heath et al., 1966).

The second term My of equation (1.1.b) stands for the loss of the incorporated
nutrient from the plant due to the death and withering processes.

The last equation (1.1.d) represents the growth rate of plant in terms of the pure dry
weight, where the carrying capacity F(c) of plant biomass (pure dry weight) is assumed
to depend on the concentration of the absorbed nutrient. It is known that per capita dry
matter production of plant, RF(c), generally depends on the concentration of nutrient in
plant as shown in Fig. 2 (Larcher, 1980). This figure shows that there are basically three
nutrient states in terms of F(c): deficiency, adequate supply and toxic excess. It can be
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Fig. 2. Dry matter as a function of the absorbed nutrient (After Larcher, 1980).



92 Icor LEILER

seen that both, nutrient shortage and overabundance give the same suppressive effect on
the plant production.

STATIONARY STATES

In the system (1.1) all the parameters are assumed to be nonnegative, i.e., A, D, K,
R>0, L, M=0 and L+M>0. Since we consider a closed system, the total amount of
nutrient x+y-+z==m is conserved and only three of the equations (1.1) are independent.
Therefore, we can obtain stationary points by solving the equations.

dx Axw
VT -—m—%-Ly—}—D(m—x—y)—O (3.1.3)
dy Axw
%zR[F(c)—w}w=0 (3.1.c)
z=m—x—y (3.1.d)
where B=L+M and
7 ¢
c= Wiy Or y=-——w (3.2.a)
From (3.1.a) and (3.1.b), we have
xX=m— M;)_Dy (3.2.b)
and also from (3.1.b), (3.2.a) and (3.2.b)
BKc
X—m (32C)
D . BKc
Y=p+ M A—(A+ D)) (3:2.d)
Equation (3.2.d), combined with (3.2.a) and F(c)=w gives the relation
c D BKc (3.3)

— [ —
= =31 " A=(a+B))

When (3.3) has a solution ¢* we have, from Eqgs. (3.1.c), (3.1.d), (3.2.a) and (3.2.c) the
following stationary point:

BKc* . c*

o T mme————— *

Y=A—GrEe VT et (5.4
M :

* o #* & __ #

=y g F(c*), w*=F(c*).

The condition for this stationary point to be positive is

ES
0<c <A+B
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Equation (3.1.c) involves another case, w=>0, which generates out of Egs. (3.1.a) and
(3.1.b) another stationary point:
x*=m, y*=z"=w*=0. (3.5)
We now investigate equation (3.3) which determines the stationary value ¢*. The
right hand side of (3.3)

BKc

D
M) =3 D" A=A+ By

(3.6)

is decreasing as the function of ¢ in the range 0<c<<A/(A+ B) with an asymptote at its
boundary c=A/(A+ B), as shown in Fig. 3.a. The other branch of the hyperbola for ¢>
Al(A+B) is irrelevant to the present discussion. The left hand side of (3.3) (see Fig.
3.b)

i (b}
(a)
} F(c)
f(c)
A
A+B
\ \ 3 (c)
_ Am
0~ TRTBImvBR
Fig. 3. A graph of function k(c) and f(c).
c
fey=7—F() (3.7

is a function F(c) of the type shown in Fig. 2 reduced by the factor ¢/(1—c); note that
c/(1—c)<1 because nutrient concentration c is smaller than 1/2 in any real system.

As typical situations, we can consider two cases depending upon the parameter
values of the system (3.1) and the functional form of F(c).

(i) Single intersection (Fig. 4)

In this case, the curve h(c) has a single intersection with the curve f(c) in the range
0<c<A/(A+B), and it is the single solution c* of the equation (3.3) which gives a
positive stationary point (3.4). This situation will be expected to appear when the value
of parameter K, B/A or m is large, provided that the curve f(c) does not drop down very
rapidly in this range.

(ii) Triple intersections (Fig. 5)

On the contrary, when the value of parameter K or A/B is relatively small, the
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Fig. 4. Single intersection-one stationary point. (a) the point determined by ¢* is asimptotically
stable; (b) the point determined by ¢* is asimptotically stable if R is sufficiently small, otherwise
unstable.
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Fig. 5. Triple intersections-three stationary points. c¢;* determines an asimptotically stable
stationary point; c¢; determines an unstable stationary point; c3* determines a point whose
stability character depends on R: the point is asimptotically stable for any sufficiently small R,
otherwise unstable.

curve h(c) has possibly three intersections with the curve f{(c) at ¢{*, ¢;* and ¢5* as shown
in Fig. 5. Thus, in this case we have three positive stationary points.

STABILITY ANALYSIS

In the present model, the total amount of nutrient m=x-+y+z is conserved and the
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growth of plant is also limited. Therefore, it can be seen that all trajectories of system
(1.1) are bounded in the nonnegative domain of a four dimensional space (x, y, z, w). In
order to study asymptotical behavior of the system, we summarize in this section the
results of stability analysis of the stationary points, which have been obtained in the
previous section. The mathematical details of calculation are given in Appendix.

(i) When there is only one intersection of the two curves, A(c) and f(c), the system
asymptotically approaches either this stationary point or a limit cycle.

First, it can be proved that if the value ¢* of intersection lies in such a region that

ﬁ_i[ ¢
dec™ detl—c

F(c)]=0 (4.1)

the stationary point given by (3.4) is stable and the system asymptotically approaches
this stationary state.

Even if dfldc<0 at ¢*, as long as its absolute value |df/dc| is smaller than some
critical value, the stability can be secured; otherwise the stationary point given by ¢*
becomes unstable and the system approaches a limit cycle surrounding this unstable
stationary point. It can also be seen that a larger value of the parameter R reduces this
critical value and the instability of the stationary point occurs at rather small values of
|dfldc|. This instability may possibly occur in a part of the descending region of the
curve f(c), and generally, c* gives a stable stationary state on both sides of this region.

When F(c) gives such severe condition that F(c)=0 in some part of the deficiency or
toxic regions of the nutrient concentration (Fig.2) and if ¢* lies on that region, i.e.,
F(c*)=0, the system approaches the state x*=m, y*=z"=w*=0, and hence the plants
completely die out.

(ii) We next consider the case in which the two curves A(c) and f(c) have three
intersections at ¢;*, ¢;* and ¢5" as shown in Fig. 5. In most cases the condition (4.1) holds
at the point ¢;* and even if ¢* lies in the region such that dfidc< 0, we can expect the
value ¢;* to give a stable stationary point. At the value ¢;* the relation |dfldc| > |dh/dc|
always holds, which implies that the stationary point given by ¢, if always unstable. The
point ¢5*, which appears in the region df/dc<0, mostly gives a stable stationary point
provided that |df/dc| does not exceed the critical value; otherwise a limit cycle takes
place.

Therefore, in this case, depending upon an initial condition, the system asymptoti-
cally approaches either of the stable stationary states given by ¢;" and c¢3*, including a
possibility of a limit cycle.

PARAMETER DEPENDENCE

Since the behavior of the present model depends on many parameter values, it
would appear difficult to get a concise grasp of the characteristic properties of the system
from the mathematical results obtained in the last section. However, assuming that the
carrying capacity of plant F(c) has the nutrient concentration dependence of the type
given by Fig. 2, it is possible to develop a perspective on the properties of stationary
states by paying attention to the two intercepts of the curve y=h(c) (see Fig. 3):

Am A

h(0)= (ATB)m+ KB ~A+B

m and co=

D+M



96 Icor LEILER

As we have already discussed in the previous sections, the stationary states of our
system are given by intersections of two curves A(c) and f(c). The parameter dependence
of curve h(c) is schematically shown in Fig. 3.a.

The following is a summary of the parameters that characterize the properties of the
system.

(i) B/A=(L+M)/A. This is the ratio of the coefficients of the loss and uptake
rates of the plant and it determines the position of asymptote c=A/(A + B) of curve h{c).
If the value B/A becomes larger, the range of curve k(c) is compresssed, which shifts ¢
to a smaller value of ¢, and thus the value ¢* for the stationary point, at which the curve
h(c) intersects with f{c) also moves from the adequate nutrient region to the deficiency
region where the plants are stunted. On the contrary, a smaller value of B/A moves the
stationary point to the right and in the toxic region the plant may possibly be damaged
by poisonous effects cof the nutrient.

(i) K. Half saturation constant K is a measure of the absorbing ability of the
plant. The plant with a smaller half saturation constant has a higher uptake rate
especially at low concentration of the available nutrient pool. A small value of K
possibly shifts the stationary point from the deficiency region to the adequate one.

iii) M/D and m. A high decomposition rate raises the value of 4(0) (see Fig. 3.a).
The total amount of nutrient, m, also lifts up the entire curve h{c).

(iv) R. Although the stationary points are determined independently of the value
of growth rate factor R, the stability condition of the stationary point is sensitively
affected by R. A high growth rate of the plant destabilizes the stationary point in the
range of a surplus nutrient, which corresponds to the descending part of the curve f(c),
and the system approaches a limit cycle.

Appendix
Stability
Consider system (3.1) and let
Axw
X(xr Vs W)_ - x+K +Ly+D(m—x_y)
Axw

Y(x, y, w)=—By+ Y1 K
W(x, y, wy=R[F(c)—w]w.

Then we have

oX AKw oX oX Ax

- — o4 1 I
ox (x+K)* D, ay D, ow x+K
0X  AKw oX oX  Ax
ox  (x+K)*’ ay ow  x+K
ow oW dF(c) oc

=0, 27 _Rp&\) 9¢
ox oy de ayw

ow dF(c) oc

———=R[F(c)—w]+R[

ow dc ow Iw
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Thus the matrix of linearized system at the stationary point (3.4) is given as

—o(e)F(0)—D L—D — llicc
«(Q)F(¢) _B f_cc
0 R(1—c)2%(cc) —R[e(1—c)3E) (C) +F(c)]
where
[A—(A+B)cP

a(e)= AK(1—c)?

The characteristic equation of this matrix is given by
MB4+a 2+ aAh+a;=0 with
a,=B+ D+a(c)F(c)+R(1 -—c)zi{i(—cg—)-
a,=BD~+[RB+(M+D)a(c)]F(c)
+R[D+a(c)F(c)](1— c)z%(cc)~

as=RBDF(c)+R(M+D)(1—c)’a(c)F(c) dg(f)

__dh(c)
3 b

=R(M+ D)(1—c)?a(c)F(c)[ 25 af (c)

where

D [ — KBc¢ 1
M+D'Y" A—(A+B)

flo)= 1iCF(c) and h(c)=

Therefore the stability conditions (Routh-Hurwitz)
a1> O) a3>0

and
a1a,—as={B+D+a(c)F(c)+R(1 —c)zi]:-gl}
|BD +R[D+a(c)F(c)](1—c)2id(cﬁ)~}
+ | B+a(c)F(e)| | RBF(¢) + (M+ D)a(c)F(c)
+D(D+M)a(c)F(c)+BF(c)R2(1—c)2f£’;(ci)>o

are satisfied when df/dc>0.
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