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Abstract Reaction-electrodiffusion equations with concentration-dependeRt diffusivi-
ties are given in their compartmental representation. Microscopic and global elek-
troneutrality lirriit are considered respectively. Conditions for the emergence of Turing
structures in continuous systems are derived. The formation of Turing pattems after
diffusive instability of a homogeneous concentration distributien iR a chain of compart-
ments is showR Rumerically for two nenliRear model reaction systems. The nonlinear
polynomial concentfation dependence of diffusion infiuences amplitudes and symmetry
of the spatial structures.

1. Introduction

    The theory of reaction-diffusion equations has fouAd many applicatioAs in de-
velopmental biology, ecology, physiology etc., for reviews compare e.g. Murray 1977,
Okubo 1980, Segei 198e, Meinhardt 1982, Britton 1986. The term "reacÅíion" is used as
a synonym for reactive interactions of chemical substances as well as for iRter- aRd
intraspecific iRteractions of biological species. The term "diffusioR" includes the
description of random andlor constrained movements of cheraical as well as biological
species. Those reactive and diffusive interactions are described by geRerally nonlinear
partial differential equatioRs (PDE) and the states of the biological or biochemical

system of imterest correspond to transient or stationary solutions of these equations.
A great variety of spatial, temporal, and spatio-temporal solutions has been obtained.
Since the basic paper by Turing (1952) the role of physiologicai gradients (Child, 1941;

Klihn, 1965) aRd their stabilization by reaction and diffusion of biochemical substances

during biological pattern formation has been of increasing interest (Gmitro and
ScriveR, 1966; Wolpert, 1969; Crick, 1970; Frankel, 1974; Kauffman et al., 1978;
Hunding, 1981; Malchow and Feistel, 1982; Meinhardt, 1982; Murray, 1982; Malchow
and Schimansky-Geier, 1985; Nagorcka et al., 1987). Because biochemical reactions
are interactions of charged particles fhe ionic character of the reactants is included in

the theoretical investigation of the system kinetics here. The importance of internal
and extemal electric fields for morphogenetic processes has beeR ernphasized already
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by several authors (Jaffe, 1968; PIonsey, 1969; Jorne, 1975; Larter and Ortoleva, 1981;

Ebeling and Feudel, 1983; Malchow et al., 1983; Pohl and Lamprecht, 1985; Toko et
al., 1985; Malchow, 1988). Conditions for the emergence of Turing structures in
reaction-electrodiffusion systems with constant diffusioR have been derived by Jorn6
(1975) for the strong rnicroscopic elecyroneutrality (MEN) limit and by Ebeling aRd
Feudel (1983) for the weaker global electroneutrality (GEN) limit. The results of
Jorne have been extended recent}y to the case of arbitrary concentration-dependent
diffusion. It has beeR shown that the inclusion of concentration dependence of
diffusion controls the amplitudes of tke spatial distribution (Malchow, 1988). The
inc}usion of concentration depencence of diffusion is not only essential in ionic
reactioR-diffusion systems but also in other physical, chemical, and biological systems.

Density-dependent migration and its effect on spatial segregation in prey-predator
systems has been of special intefest (Shigesaka et al., 1979; Minura and Kawasaki,
198e; Teramoto and Shigesada, 1981).
    Because of the difficulties often arising while dealing with nonlinear PDE or for
modelling special processes as e.g. cell--cell communication it is sometimes useful to
investigate spatia!ly discrete instead of continuous systems. The space is divided into a

finite number of homogeneous, wellmixed, lumped compartments with mass exchange.
The processes inside these coupled compartments can be described by ordinary
differential equations (ODE). Useful introductions to compartmental modeling have
been given by Atkins (1969), Jacquez (1972), Godfrey (1983) and an applicatioB to
selforganization in mukiple-unit systems by Babloyantz (1986).
    IR this paper ch. 2 is devoted to systems with MEN, ch. 3 to systems with GEN.
In chs. 2.1 and 3.1 conditions for the emergence of TuriRg instabilities iR continuous
systems are given. The obtained regions of critical ratios of diffusion coefficients are

applicable to the following numerical study of the corresponding compartmeRtal
systems. A set of ODE describing ionic reaction and concentration-dependent diffu-
sion in a compartmental system for the MEN is derived in ch. 2.2. In ch. 2.3 a special

ternary model reaction system (Malchow, 1988) is solved numerica!ly under Turing
instability conditions for polyRomial concentration dependence of diffusion.

    The assumption of MEN is dfopped in ch. 3 and the condition of GEN is taken
into consideration. Compartmental equations are derived in ch. 3.2. A binary model
reaction system due to Ebeling and Feildel (1983) is treated numerically iR ch. 3.3.

The arising voltages are computed by the method of Hafernann (1965). The control of
amplitudes and symmetry of the Turing structures by the concentration dependeRce is
shown for systems with MEN as well as with GEN.

                2. Reaction-E)ectrediffusion Equations in the
                     Microscopic Electreneutrality Limit

   The time course of ionic reactive and diffusive interactions can be described by
parabolic partial differential equations of the form

                (Ofat)Xi(r,t) =fi(X)-Vii(r,t); i=1, 2,•••, n. (2.1)

Here Xi(r, t) is the concentration of ions of kind i at time t and position r whereas the fi

are the generally nonlinear reaction fuRctions. The fiux ji(r, t) reads
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         j,(r, t)==-Di(X)VXi(r, t)+Mi(X)Xi(r, t)E(r, t); i--1, 2,•••, n; (2.2)

with the macroscopic electric field E(r, t) satisfyiRg the Poisson equation. The
concentration-dependent diffusivities Di(X) and mobilities Mi(X) are coRRected by the
EiRstein relation

                     Mi(X) =ziFDi(X)IRT; i--1, 2,•••, n; (2.3)
where the zi are the charge numbers, F is the Faraday constant, R the gas constant and

T the temperature. Introducing the refereRce values for time to, conceRtration Xo,
leRgth Lo, diffusion Do :LZIto aRd electric fie}d Eo=RT/FLo one obtains in dimeRsion-

less quaRtities

(a1at)X,(r, t) =fi(X)+V[Di(X)Xi(r, t)-ziDi(X)Xi(r, t)E(r, t)]; i=1,2,•••,n. (2.4)

For the MEN limit and n=2 this system can be treated by the coRcept of ambipolar
diffusion (EbeliRg, 1967; FalkeRhagen, 1971; Amdt and Roper, 1972; Malchow and
Schimansky-Geier, 1985), for n>2 this simplification is Rot possible at all but the
correspoRding system of n equations can be reduced to order (n-1), the nth coRcen-
tration value follows simply from the electroneutrality condition

                 n n-1                          ==e, X.(r, t) =-Åí(zilz.)Xi(r, t). (2.5)                 2ziXi(r,                         t)
                                          i--1                 i.--1

Using (2.5) the electric field is related to the concentration gradients by

                           "Åí"z,[D,(x)-D.(X)]VXk(r, t)

                  E(r, t) == .iii , (2•6)
                                  k(X)-ZnDn(X)]Xk(r,                                                   t)                          2 zk[zkD
                          k=1
so that (2.4) can be rewritten and reads

    (o1at)Xi(r, t)=fi(X)

                                   n-1            +VIDi(X)VXi(r, t)-ti(X),E.,(zklzi)[Dk(X)-D.(X)IVXk(r, t) l (2.7)

with the transfereRce numbers (Falkenhagen, 1971)

                        z,2•Di(X)Xi(r, t)

           ti(X) =.-i ; i-- 1, 2,"', n-1. (2.8)
                         k(X)mZnDn(X)]Xk(r,                 2 zk[zkD                                           t)
                 k=1
Introducing the self- and cross-diffusion coefficienfs (Jorne, 1975)

                     Dii(X)=[1-ti(X)]Di(X)+ti(X)Dn(X), (2.9)
                     D/1 •#ri(X) = - (zilz,) ti(X) IDi(X) - D. (X) ] ;

                                   i--1, 2,•••, n-1;i--1, 2,•••, n-1; (2.le)

eq. (2.7) can be written as a general reaction-diffusion equatioR with concentration-
dependent diffusion matrlx D including non-vanishing off-diagoRal elemeRts

                      (ola)X(r, t) -f(X)+v[D(X)vX]. (2.11)
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                2.1 CoNDmoNs FoR THE EMERGENcE oF TuRING
                 STRucruREs IN CoNTINuous TERNARy SysTEMs
    Now the existence of a homogeneous'steady state XS with (a/a )XS=:O, f(XS) ==e is

assumed. IRvestigating its stability against smail fluctuations

                           x(r, t)ocexpipt+ikrl (2.12)
one finds in liRear analysis the characteristic equation for the eigenvalues p deterrnin-

ing stability

                        det lai,--k2Dij(XS)-6iipl==O (2.13)

with
                   a,] = [ eaxfij ]x..x.- - /t [ aa311'. ]x..x,;

                                  i==1, 2,•••, n-1; i--1, 2,•••, n-1. (2.14)

By definition of a Tufing instability the solution is assumed to be stable for k==O, i.e.

the real parts of all eigenvalues are less than zero:

                      Repi(k==O)<O; i--1,2,•••,n-1; (2.15)
whereas instability occurs for finite k>O, i.e. at least one real part becomes greater

than zero:

                       Rep.(k>O)>e; ls{ms{n-1;

                       Repi(k>O)<O; vi=ilem. (2•16)
If this is specified for ternary systems (n=:3) one obtains the well-known condition for

maintaining stability at k = O:

                       all+a22<O; aka22-ana21>O. (2.17)
One finds the necessary condition

                       D22all+D"a22>D2iai2+Dna2i (2.18)
and finally the sufficieRt condition

  D22aii+Dna22-D27ai2-Dna2i;}r21 (DiiD22-DnD2i) (aiia22-ai2a2i) lii2 (2.19)

for inducing Turing instabilities (Malchow, 1988). These are the equivalents of the
formuias for neutral two-component systems found by Segel and Jackson (1972). It is
to be seen that even Regative cross-djffusion can increase the region of instabilities, i.e.

cross-diffusion-induced instabilities become possible.

                       2.2 CoMpARTMENTALSYSTEMS
    A coihpartmental formulation of eq. (2.7) is derived now. The simp!est case of
Carthesian coordinates in one dimension is considered. It can be extended easily to
other geometries andlor higher dimension. The space is divided iRto m compartments
with equal volurne and characteristic length d. The fiux between the compartments k
and (k-1) is characterized by the exchaRge coefficients Pik for the pure diffusion
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exchange and BiJ•k for the exchange caused by elecfric field interactions. The index i is

a mark for the kind oNon, k is the Ruinber of the compartment aRdja summation
index to be seen below. The definition of these exchaRge coefficients is related to the

treatrnent of space-dependent diffusion by DeARgelis et al. (1986). The system is
sketched in Fig. 1:

                  PP                                        PP                   i2 i3 im-1 im

m-11 2 m

                  Bij2 Bij3 Bijm-i Bijm
       Fig. 1. Sketch of the compartmental system used in Ch. 2 (compare text).

With these definitions eq. (2.7) can be written iR its compartmental formulation

     ( a 1 O t)Xik --fi(Xk) + Pik+ IXik+1 + PikXik-1 - (Pik+ 1 + Pik)Xik +

                        n-1                      -2[B,fk.IXfk.1+BiikXjk-1-(B,ik.1+Biik)Xfk] (2.20)
                        i=1
with

                     Pik=(ll2d2) [D,(Xk)+D,(Xk-i)], (2.21)
  Biik=(Zi/2d2Zi) l ti(Xk){Di(Xk)mDn(Xk)]+ti(Xk-i)[Dj(Xk-i)-Dn(Xk-i)] l, (2•22)

and
                         z,2• Di(Xk)Xik
           ti (Xk) == .-i ; i-- 1, 2,''', n- 1;
                   2Zt[ZiDl(Xk)-ZnDn(Xk)]Xik
                   t=i k=1, 2,•••, m. (2.23)
These equatioits are valid for all compartments except at the ends where the boundary
condltions must be satisfied.

       2.3 NuMERIcAL TREATMENT oF A TERNARy MODEL REAcTIoN SysTEM
           WITH POLYNOMiAL CONCENTRATION DEPENDENCE OF DIFFUSION
   A temary model reaction system has beeR iRtroduced recently (Malchow, 1988).
The charge numbers agp zi-- -1, z2=:z3= +1. After substiYution Xi ==X2+X3 because
of MEN the pseudo-two-component system to be considered reads in dimensionless
quantities without fiux terms

                   aal2==-g3,'=X22.X.3,ZX.2i[.X,2,"X3]"B' (2.24)

where a und B are functions of reaction rates and concentrations of substrates and
products. The only stationafy solution
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                  Xf=kB.;Xg=VRB=ffa;Xg=kB. (2.2s)

is always stable against homogeneous fluctuations but can be destabilized by crossiRg
critical ratios (D31D2)•

    The concentratioR dependeRce of diffusion is chosen as a polynomial of third
ofder (Malchow, 1988):

                     Di=Dioi l+ S(A iXi+BiX?• +GiX9•)I (2.26)

with

             A, -- - (Xi' )2; B, m- 1+ Mi xe; G,= -1; i= 1, 2, 3; (2.27)

                    mi mi
where Dio>O and mi>1 are specific constants for each ioR. This choice of Ai, Bi, and
Gi yields Di>Dio for Xi<Xi• and vice versa for sinall deviations from the stationary
state. S is only a technical paraineter switching the conceRtraÅíion dependence on or
off.

    Eqs. (2.24) and (2.26) are inserted into (2.20) now assuming a chain of 30
compartmeRts with NeumanR boundary conditions. The resulting system of 60 ODE's
is iRtegrated by Gear's method after findiRg instability regioRs from (2.18) and (2.19).

Fig.2 shows a typical numerically stable result. It is seen that the inclusion of
concentration depeRdence of diffusion not oRly infiuences the amplitudes of the spatial

distribution but also breaks its spatial symmetry. Contrast sharpening by concentra-
tion-dependent diffusion has been obtained recently for continuous space using the
same rnodel reaction system and determiRing te spatial distribution near the Turing
bifurcation point analytically (Malchow, 1988).

4

iis

1

          o
            1 . , . . . . . .IO, , . . . . , . .20. . . . , . . . ,3o
                               CompartmeFtnumber
Fig. 2. Turing strucure f6r the MEN limit. Black columRs (S=O): Constant diffusion.

columns (S=le-2): Concentration-dependent diffusien.
Parameters: a== 12; B== 16; Dio==O.03; D2o=O.O02; D3o =O.5; d =1.

Hatched
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                3. Reaction-EIectrediffusion Equations without
                     Micrescopic EIectreneutrality Limit

    The assumption of microscopic charge neutrality is self-contradictory because
experimentally measured potential differences could Rot appear if tkere would be no
charge separation. However, HafemaRR (1965) proved the approximate validity of the
MEN assumption for tirne scales on which experiments are performed. Fol}owing the
same author and Ebeling and Feudel (1983) this assumption is eliminated and charge
distributioRs are computed.

               3.1 CoNDmoNs FoR THE EMERGENcE OF TuRING
                    STRUCTURES IN CONTINUOUS BINARY SYSTEMS
    Starting again with the continuous system (2.1) the Poisson equation

                                                ln            E(r, t) :-VÅë; VE(r, t)=-Ag5(r, t) =-2ziXi(r, t), (3.1)
                                                el i=1

with poteRtial ip and dimensionless dielectric constant

                                RT 1                            ei=F2 L2dx, eEe (3.2)
is inserted explicitly into the fiux term (2.2). As in ch. 2.1 the stability of a
homogeneous steady state XS against fluctuations (2.12) is investigated now. One finds

the characteristic equation for the eigenvalues

                det Iai,•-(zizil ei)Di(XS)Xi• - Sii[k2Di(XS) +p] l =O (3 .3)

with aij•= [ aaxfii ]....,; i--1, 2,•-, n; i=i, 2,•-, n• (3•4)

As in the MEN limit (Jorne, 1975; Malchow, 1988) the inclusion of concentration
dependence of diffusion does formally not alter the results of linear stability aRalysis

for constant diffusion given by Ebeling and Feudel (1983). Introducing the abbrevia-

tion

             a,,- :aij- ZiZj D,(XS)Xi•; i--1, 2,•••, n; f=1, 2,•••, n; (3.5)

                      el
oRe fiRds the followiRg conditions for the emergeRce of Turing structures specified for

binary systems:

i) fork=e: an+a22<O, aiia22<O, (3.6)
ii) for finite k>O:

      -Recessary D2(XS)a-ii+Di(XS)a22>O; Pi(X")=f=D2(XS) (3.7)

      or explicitly

            D2(XS)an+Di(XS)a22- -!LDi(XS)D2(XS){z?Xi+zZXS]>O, (3.8)

                                 el
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      -sufficient

            D2(xS)dn+Di(xS)d22)2I Di(xS)D2(xS) [aiia22-ai2a2i] li/2. (3.g)

The second inequality in (2.17) does not longer hold for binary systems because of aii
==a2i and ai2=a22. In this case only (3.6) determines stability for k=:e. Eqs. (3.7) and

(3.9) correspond exactly to the conditions found by Segel and Jackson (1972) for
neutral systems but extended to concentration-depeRdent electrodiffusion in the GEN
limit. However, it is readily seeR from (3.8) tkat the inclusiofl of the electric field
interactions reduces the region of Turing instabilities, i.e. the electric field stabilizes

the homogeneous distribution. The iRstability region can decrease further but also
increase agaiR due to the concrete concentratioR dependence of diffusion.

                 3.2 CoMpARTMENTAL SYSTEMS WITH INTERNAL
                      ELECTRIC POTENTIAL DIFFERENCES
    Introducing exchange coefficients Pik for pure diffusion and Bik for the exchange
due to electric field interactions as iR ch. 2.2 one finds the compartmental formulation
of (2.4):

    ( a 1 a t)X,k == fi(Xk) + Pik . IXik. 1 + PikXik- i - (Pik+ i + Pik)Xik

                              +Bik+1ipk"+B,kÅëk-1-(B,k.1+Bik)ipk, (3.10)

with

                       Pik=(l12d2) [Di(Xk)+Di(Ik-i)l (3.11)

and

                  B,,=(z,12d2) [D,(X,)X,k+D,(X,-,)Xik-,], (3.12)

or explicitly with the abbreviations fi(Xk)==fik, Di(Xk)=Dik

    a X,kl a t=fik

              1 k+1
          + 2d2 ,i, i {Dii+Dik] (Xii-Xik)+zi[DiiXii+D,kX,k](ip,- Åë,) I;

                                      i=1, 2,-,n; k =1, 2,-•, m. (3.13)

For constaRt diffusion the latter equation reduces to the expression found by EbeliRg
and Feudel (1983).

    The poteRtial differences appearing in (3.13) are determined by the method due to
HafemaRn (1965). It is assumed all of the charge in compartment k to lie on a plane at

the midpoint of the compartment. The surface charge density ak on this plaRe is

                                    rl                               ak urd2ziXik (3.14)
                                    i=1
                           '                                         /.                                 mWith ,Z.,Gk =O, (3.15)
because the system as a whole has no net charge. The planes are located at ri, r2,•••,
r. respectively. The electric field inteBsity E at a point r between rk and rkÅÄi is



where
sketch
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                              1 k(r)
                        E(r) = ff ,;, af,

the summation includes the charges on the left side of r only. Fig.3
of the considered compartrnental system with charged planes.

i2PP,PP.13im-l 1rn

Bi212i3iM'lm..m
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  (3.16)

shows a

          o
        Fig. 3. Sketch of the compartmental system used in Ch. 3 (compare text).

The poteRtial difference Åë across a system of infinite planes of uniform surface charge
with a reference electrode of potential Åëb is given by

                                    d2 nz ,n
                        Åë--Åëm-glSb= ,i ,?,j,;.,ZiXij• (3.17)

From this expression one fiRds finally for the potential differences betweeR adjacent

compartments

                             d2mn
                  ipk-Åëk-i= ,1 i--, ,2..,ZiXii; k=:1, 2,•••, m. (3.ls)

For m==2 this coincides with the potential difference of a plate capacitor used by
Ebeling and Feudel (1983) for a two-compartment systein. Eqs. (3.13) and (3.18)
describe the compartmental system completeiy except the eRds which kave to satisfy
the boundary conditions.

           3.3 NuMERIcAL TREATMENT oF A BINARy MoDEL REAcTIoN
                  SYSTEM WITH POLYNOMIAL CONCENTRATION
                         DEpENDENCE OF DIFFUSION
    The model reaction used here is due to Ebeling and Feudel (1983). The charge
numbers are zi== +1, z2== -1 and tke kinetic equations read in dirnensionless quanti-
ties without flux terms

                       aali =1-xix2+axi= aa42. (3.lg)

This system has one homogeneous steady state

                            xf=:xg == (1-a)-i'2 (3.20)
                                '
which is without diffusion alw'ays stable for a<1 but caR be destabilized crossing
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critical ratios (DifD2) for (112)<cr<1. The concentration dependeRce of diffusion is
assumed to be the same as in ch. 2.3. Instability regions are found from (3.7) and
(3.9). A Rumerically stable integration result can be seen in Fig. 4 for 30 compart-
ments and NeumaRR boundary conditions. As for systems in the MEN limit the
inclusion of nonlinear concentratioR dependence of diffusioninfiuences amplitudes and
symmetry of the spatial distribution.

6

5

ig

1

          o
             1 .,,.....lo..,......20.,.......30
                              Compartmentnumber
Fig. 4. Turing structure for the GEN limit. Black columns (S==O): Constant diffusion. Hatched
columms (S =10-4): Concentration-dependent diffusion.
Parameters: a=O.75; Dio==O.el; D2o=O.2; d=2; Lo=10-6; Xo==10-7 mol cm-3; T=30e K.

                                Discussion

    Compartmental reaction-electrodiffusion equations have been derived for concen-
tration-dependent diffusion in systems with MEN as well as with GEN limit. The
conditions for the emergeRce of Turing structures iR contiituous systems have beeR
extended to the case of concentratjon-dependent diffusion. After fiRding instabjljty
regions from the latter conditions tke compartmental equations have been integrated
by Gear's method for a terRary model system in the MEN limit as well as for a biRary
model in the GEN limit. In both cases the conceRtration dependence of diffusion
controls not oRly the amplitudes of the spatial distributioR but can also break the
symmetry of the Turing structures.
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