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Abstract Reaction-electrodiffusion equations with concentration-dependent diffusivi-
ties are given in their compartmental representation. Microscopic and global elek-
troneutrality limit are considered respectively. Conditions for the emergence of Turing
structures in continuous systems are derived. The formation of Turing patterns after
diffusive instability of a homogeneous concentration distribution in a chain of compart-
ments is shown numerically for two nonlinear model reaction systems. The nonlinear
polynomial concentration dependence of diffusion influences amplitudes and symmetry
of the spatial structures.

1. Introduction

The theory of reaction-diffusion equations has found many applications in de-
velopmental biology, ecology, physiology etc., for reviews compare e.g. Murray 1977,
Okubo 1980, Segel 1980, Meinhardt 1982, Britton 1986. The term “reaction” is used as
a synonym for reactive interactions of chemical substances as well as for inter- and
intraspecific interactions of biological species. The term “diffusion” includes the
description of random and/or constrained movements of chemical as well as biological
species. Those reactive and diffusive interactions are described by generally nonlinear
partial differential equations (PDE) and the states of the biological or biochemical
system of imterest correspond to transient or stationary solutions of these equations.
A great variety of spatial, temporal, and spatio-temporal solutions has been obtained.
Since the basic paper by Turing (1952) the role of physiological gradients (Child, 1941;
Kiihn, 1965) and their stabilization by reaction and diffusion of biochemical substances
during biological pattern formation has been of increasing interest (Gmitro and
Scriven, 1966; Wolpert, 1969; Crick, 1970; Frankel, 1974; Kauffman et al., 1978;
Hunding, 1981; Malchow and Feistel, 1982; Meinhardt, 1982; Murray, 1982; Malchow
and Schimansky-Geier, 1985; Nagorcka et al., 1987). Because biochemical reactions
are interactions of charged particles the ionic character of the reactants is included in
the theoretical investigation of the system kinetics here. The importance of internal
and external electric fields for morphogenetic processes has been emphasized already
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by several authors (Jaffe, 1968; Plonsey, 1969; Jorné, 1975; Larter and Ortoleva, 1981;
Ebeling and Feudel, 1983; Malchow et al., 1983; Pohl and Lamprecht, 1985; Toko et
al., 1985; Malchow, 1988). Conditions for the emergence of Turing structures in
reaction-electrodiffusion systems with constant diffusion have been derived by Jorné
(1975) for the strong microscopic elecyroneutrality (MEN) limit and by Ebeling and
Feudel (1983) for the weaker global electroneutrality (GEN) limit. The results of
Jorné have been extended recently to the case of arbitrary concentration-dependent
diffusion. It has been shown that the inclusion of concentration dependence of
diffusion controls the amplitudes of the spatial distribution (Malchow, 1988). The
inclusion of concentration depencence of diffusion is not only essential in ionic
reaction-diffusion systems but also in other physical, chemical, and biological systems.
Density-dependent migration and its effect on spatial segregation in prey-predator
systems has been of special interest (Shigesaka et al., 1979; Minura and Kawasaki,
1980; Teramoto and Shigesada, 1981).

Because of the difficulties often arising while dealing with nonlinear PDE or for
modelling special processes as e.g. cell-cell communication it is sometimes useful to
investigate spatially discrete instead of continuous systems. The space is divided into a
finite number of homogeneous, wellmixed, lumped compartments with mass exchange.
The processes inside these coupled compartments can be described by ordinary
differential equations (ODE). Useful introductions to compartmental modeling have
been given by Atkins (1969), Jacquez (1972), Godfrey (1983) and an application to
selforganization in multiple-unit systems by Babloyantz (1986).

In this paper ch. 2 is devoted to systems with MEN, ch. 3 to systems with GEN.
In chs. 2.1 and 3.1 conditions for the emergence of Turing instabilities in continuous
systems are given. The obtained regions of critical ratios of diffusion coefficients are
applicable to the following numerical study of the corresponding compartmental
systems. A set of ODE describing ionic reaction and concentration-dependent diffu-
sion in a compartmental system for the MEN is derived in ch. 2.2. In ch. 2.3 a special
ternary model reaction system (Malchow, 1988) is solved numerically under Turing
instability conditions for polynomial concentration dependence of diffusion.

The assumption of MEN is dropped in ch. 3 and the condition of GEN is taken
into consideration. Compartmental equations are derived in ch. 3.2. A binary model
reaction system due to Ebeling and Feudel (1983) is treated numerically in ch. 3.3.
The arising voltages are computed by the method of Hafemann (1965). The control of
amplitudes and symmetry of the Turing structures by the concentration dependence is
shown for systems with MEN as well as with GEN.

2. Reaction-Electrodiffusion Equations in the
Microscopic Electroneutrality Limit

The time course of ionic reactive and diffusive interactions can be described by
parabolic partial differential equations of the form

(a/a)X(r,)=f(X)—Vjlrt); i=1,2,-, n. 2.1

Here X(r, ¢) is the concentration of ions of kind i at time ¢ and position r whereas the f;
are the generally nonlinear reaction functions. The flux j(r, f) reads
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Jir, 0=—D{(X)V Xi(r, )+MX)X(r, DE(r, 1); i=1, 2,-, n; (2.2)

with the macroscopic electric field E(r, ¢) satisfying the Poisson equation. The
concentration-dependent diffusivities D,(X) and mobilities M,(X) are connected by the
Einstein relation

MI(X):Z,FDI(X)/RT, 1:1, 2,"', n; (23)

where the z; are the charge numbers, F is the Faraday constant, R the gas constant and
T the temperature. Introducing the reference values for time fy, concentration Xj,
length Ly, diffusion Dy=L3/t, and electric field E,=RT/FL, one obtains in dimension-
less quantities

(8/00)X[r, )=Ff(X)+ V[DX)X(r, )—z,D{X)X{r, DE(r, ©)]; i=1,2,--, n. (2.4)

For the MEN limit and n=2 this system can be treated by the concept of ambipolar
diffusion (Ebeling, 1967; Falkenhagen, 1971; Arndt and Roper, 1972; Malchow and
Schimansky-Geier, 1985), for n>2 this simplification is not possible at all but the
corresponding system of n equations can be reduced to order (n—1), the nth concen-
tration value follows simply from the electroneutrality condition

$2X(r, =0, X,(r, )=—"5.(2/2)X(r, 0). 2.5)

Using (2.5) the electric field is related to the concentration gradients by

S 2 D(X) — Do(X)]1V Xi(r, 1)
E(r, )= ,,ff‘ " (2.6)
E‘Zk[Zka(X)_ZnDn(X)]Xk(rr t)

so that (2.4) can be rewritten and reads

(a/2H)X(r, )=fX)
+VIDAX) VX r, )—t(X) S, (2u/z)[Du(X) — D))V Xilr, 9} (27)

with the transference numbers (Falkenhagen, 1971)
2 DAX) X (r, 1)

4(X) =3 ;
kélzk[Zka(X) - ZnDn(X)]Xk(r) t)

i=1,2,-, n—1. (2.8)
Introducing the self- and cross-diffusion coefficients (Jorné, 1975)
D(X)=[1—t(X)|D{(X) +t(X)D,(X), 2.9)
D (X)=—(z/2)t(X)[D{(X) — D (X)];
i=1, 2,-, n—1; j=1, 2,---, n—1; (2.10)

eq. (2.7) can be written as a general reaction-diffusion equation with concentration-
dependent diffusion matrix D including non-vanishing off-diagonal elements

(8/9)X(r, )=f(X)+ V[DX)V X]. 2.11)
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2.1 ConpITIONS FOR THE EMERGENCE OF TURING
STRUCTURES IN CONTINUOUS TERNARY SYSTEMS

Now the existence of a homogeneous steady state X° with (8/9)X*=0, fiX*)=0is
assumed. Investigating its stability against small fluctuations

x(r, H)ocexp | pt+ikr| (2.12)

one finds in linear analysis the characteristic equation for the eigenvalues p determin-
ing stability

det |a;—Kk*D(X°)—dyp| =0 (2.13)

TLoX Jxex oz L 0X, Jx=x'

i=1, 2,5, n—1; j=1,2,, n—1.  (2.14)

with

By definition of a Turing instability the solution is assumed to be stable for k=0, i.e.
the real parts of all eigenvalues are less than zero:

Repl(k:0)<0; l=13 2,“" n‘_]-; (215)
whereas instability occurs for finite k>0, i.e. at least one real part becomes greater
than zero:

Re p,,(k>0)>0; 1<m=<n-—1;

Re p(k>0)<0; Vitm. (2.16)
If this is specified for ternary systems (n=3) one obtains the well-known condition for
maintaining stability at k=0:

a11+a22<0; a8 —anaaz; >0. (2.17)

One finds the necessary condition
D2za11+ D11622> D112+ D12t (2.18)

and finally the sufficient condition
Doyayy + D112y — Doz — D 12212 2{ (D1;D 3o~ D12D21) (an1az—apax) I (2.19)

for inducing Turing instabilities (Malchow, 1988). These are the equivalents of the
formulas for neutral two-component systems found by Segel and Jackson (1972). It is
to be seen that even negative cross-diffusion can increase the region of instabilities, i.e.
cross-diffusion-induced instabilities become possibie.

2.2 COMPARTMENTAL SYSTEMS
A compartmental formulation of eq. (2.7) is derived now. The simplest case of
Carthesian coordinates in one dimension is considered. It can be extended easily to
other geometries and/or higher dimension.  The space is divided into m compartments
with equal volume and characteristic length d. The flux between the compartments k
and (k—1) is characterized by the exchange coefficients P, for the pure diffusion
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exchange and By, for the exchange caused by electric field interactions. The index i is
a mark for the kind of ion, k is the number of the compartment and j a summation
index to be seen below. The definition of these exchange coefficients is related to the
treatment of space-dependent diffusion by DeAngelis et al. (1986). The system is
sketched in Fig. 1:

i2 i3 Pim~1 Pim
1 4> 2 4> <4 -1 <4 m
ij2 Bij3 Bijm~1 Bijm

Fig. 1. Sketch of the compartmental system used in Ch. 2 (compare text).

With these definitions eq. (2.7) can be written in its compartmental formulation

(8/ 20 Xu=f{X1)+ Pix+1Xix+1+ PuXixk—1— (Pix+1+ Pu) Xin +

n—1

— 3 [Bijk+1Xjk+1+ BijeXje—1— (Bijic+-1+ Biji) X ] (2.20)

j=1

with
Py=(112d%) [D(X)) + D{(X.—1)], (2.21)
Bijk=(z//2dzzi) [ X[ D{(X ) — D (Xi) ]+ t:(Xi— 1) [ DXk —1) — D (X~ 1] 1, (2.22)
and
ZizDi(Xk)Xik
X)) = — i=1, 2,--, n—1;

S 202D X — 2uD X)) X
SHEDX) 2D X T 02
These equations are valid for all compartments except at the ends where the boundary
conditions must be satisfied.

2.3 NuMericAL TREATMENT OF A TERNARY MODEL REACTION SYSTEM
WITH POoLYNOMIAL CONCENTRATION DEPENDENCE OF DIFFUSION

A ternary model reaction system has been introduced recently (Malchow, 1988).
The charge numbers are z;=—1, z,=2z3=+1. After substitution X;=X,+ X3 because
of MEN the pseudo-two-component system to be considered reads in dimensionless
quantities without flux terms

o X
atz =—aX,+ X5X3— X [ Xo+ X3]+ B,
X
aa t3 =aX,— X3X;, (2.24)
where « und f are functions of reaction rates and concentrations of substrates and
products. The only stationary solution
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[#4
VB—a
is always stable against homogeneous fluctuations but can be destabilized by crossing
critical ratios (D3/D5).

The concentration dependence of diffusion is chosen as a polynomial of third
order (Malchow, 1988):

Xi=—L2  X3=f—a; Xi= (2.25)

Di=Dy| 1+ S(AX;+ B:.X;+G:X}) | (2.26)
with
X3y 1+m
A=K WMy o i1, 2,3 2.27)
m; m;

where D, >0 and m;>1 are specific constants for each ion. This choice of A;, B;, and
G; yields D;> Dy for X;< X7 and vice versa for small deviations from the stationary
state. S is only a technical parameter switching the concentration dependence on or
off.

Eqgs. (2.24) and (2.26) are inserted into (2.20) now assuming a chain of 30
compartments with Neumann boundary conditions. The resulting system of 60 ODE’s
is integrated by Gear’s method after finding instability regions from (2.18) and (2.19).
Fig. 2 shows a typical numerically stable result. It is seen that the inclusion of
concentration dependence of diffusion not only influences the amplitudes of the spatial
distribution but also breaks its spatial symmetry. Contrast sharpening by concentra-
tion-dependent diffusion has been obtained recently for continuous space using the
same model reaction system and determining te spatial distribution near the Turing
bifurcation point analytically (Malchow, 1988).
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Fig. 2. Turing strucure for the MEN limit. Black columns (S=0): Constant diffusion. Hatched
columns (S=10"?%): Concentration-dependent diffusion.
Parameters: a=12; 8=16; D1g=0.03; D;u=0.002; D3=0.5; d=1.
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3. Reaction-Electrodiffusion Equations without
Microscopic Electroneutrality Limit

The assumption of microscopic charge neutrality is self-contradictory because
experimentally measured potential differences could not appear if there would be no
charge separation. However, Hafemann (1965) proved the approximate validity of the
MEN assumption for time scales on which experiments are performed. Following the
same author and Ebeling and Feudel (1983) this assumption is eliminated and charge
distributions are computed.

3.1 CoNDITIONS FOR THE EMERGENCE OF TURING
STRUCTURES IN CONTINUOUS BINARY SYSTEMS

Starting again with the continuous system (2.1) the Poisson equation
1 n
E(r, )=—V ¢, VE([r, t)=— A¥r, t):—;——}_‘,lziX,-(r, 0, (3.1)
1=

with potential ¢ and dimensionless dielectric constant

RT 1
EE %
is inserted explicitly into the flux term (2.2). As in ch. 2.1 the stability of a

homogeneous steady state X* against fluctuations (2.12) is investigated now. One finds
the characteristic equation for the eigenvalues

(3.2)

det |ay—(z:z &) D{X*) X;— 0,{K*D{(X*) +p] | =0 (3.3)
with a;= [ :ff" ] C =1, 2y, my j=1, 2,0, (3.4)
j dx=x

As in the MEN limit (Jorné, 1975; Malchow, 1988) the inclusion of concentration
dependence of diffusion does formally not alter the results of linear stability analysis
for constant diffusion given by Ebeling and Feudel (1983). Introducing the abbrevia-
tion

S D)X i=1, 2 ny =1, 2,0, 13 (3.5)
1

aij = aij —

[

one finds the following conditions for the emergence of Turing structures specified for
binary systems:

1) for k=0: a11+a22<0, 011022<0, (36)
ii) for finite £>>0:
-necessary  Dy(X°)dy1+ Di(X%)dn >0;  D1(X°)+Dy(X%) 3.7

or explicitly

1
Do(X%)ay; + D1(X°)aop — E—Dl(XS)Dz(XS)[Z% 1+25X5]>0, (3-8)
1
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—sufficient

Dy(X*)d11 + D1(X*)d22 22| D1(X5)Do(X°) [G11820~ 1] |2 (3.9)

The second inequality in (2.17) does not longer hold for binary systems because of a;;
=ay; and a;p=ay,. In this case only (3.6) determines stability for k=0. Egs. (3.7) and
(3.9) correspond exactly to the conditions found by Segel and Jackson (1972) for
neutral systems but extended to concentration-dependent electrodiffusion in the GEN
limit. However, it is readily seen from (3.8) that the inclusion of the electric field
interactions reduces the region of Turing instabilities, i.e. the electric field stabilizes
the homogeneous distribution. The instability region can decrease further but also
increase again due to the concrete concentration dependence of diffusion.

3.2 COMPARTMENTAL SYSTEMS WITH INTERNAL
ELEcTRIC POTENTIAL DIFFERENCES

Introducing exchange coefficients P, for pure diffusion and By, for the exchange
due to electric field interactions as in ch. 2.2 one finds the compartmental formulation
of (2.4):

(0/20Xu=F(Xi)+ P 1Xix+1+ PuXie—1— (Pige 11+ Pu) X
+Bikr1br1+ Bubi—1— (Bu+1t Bu) b, (3.10)
with
Py=(1/2d%) [Di(X;)+ Di(Xic—1)] (3.11)
and
By=(2/2d%) [DiX;) X+ DX~ 1) Xiie—1], (3.12)
or explicitly with the abbreviations f{X,)=fu, Di(Xi)=Dy
O Xl dt=fy
+ 532“21_1 {[Du+ D] (X~ Xi) + 2 DX+ DXl (8— b) ;
i=1,2,-,n;, k=1,2,-, m. (3.13)

For constant diffusion the latter equation reduces to the expression found by Ebeling
and Feudel (1983).

The potential differences appearing in (3.13) are determined by the method due to
Hafemann (1965). It is assumed all of the charge in compartment k to lie on a plane at
the midpoint of the compartment. The surface charge density o, on this plane is

UkzdélziXik (3.14)
with S 6,=0, (3.15)

because the system as a whole has no net charge. The planes are located at ry, ro,--,
r,, respectively. The electric field intensity E at a point r between r, and ri; is
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1
E(r)= = A

(3.16)

where the summation includes the charges on the left side of r only. Fig.3 shows a
sketch of the considered compartmental system with charged planes.

i2 P P im
> | < > | <>
0 1 Biz 2 i3 Bim'lm— 1™ o

Fig. 3. Sketch of the compartmental system used in Ch. 3 (compare text).

The potential difference @ across a system of infinite planes of uniform surface charge
with a reference electrode of potential ¢, is given by

2
O, — do— %El j iz, (3.17)

From this expression one finds finally for the potential differences between adjacent
compartments

2

Ge— 1= d—§ ﬁ‘,z]-Xi]-; k=1, 2,--, m. (3.18)
& j=k i=1

For m=2 this coincides with the potential difference of a plate capacitor used by

Ebeling and Feudel (1983) for a two-compartment system. Eqs. (3.13) and (3.18)

describe the compartmental system completely except the ends which have to satisfy

the boundary conditions.

3.3 NUMERICAL TREATMENT OF A BINARY MoDEL REACTION
SYSTEM WITH POLYNOMIAL CONCENTRATION
DEPENDENCE OF DIFFUSION
The model reaction used here is due to Ebeling and Feudel (1983). The charge
numbers are z;=+1, z,=—1 and the kinetic equations read in dimensionless quanti-
ties without flux terms

o0X; 2 Xz

= =1-X X+ eXi= T (3.19)
This system has one homogeneous steady state
Xi=X3=(1—a)~ "2 (3.20)

which is without diffusion always stable for a<(1 but can be destabilized crossing
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critical ratios (Dy/D,) for (1/2)<a<1. The concentration dependence of diffusion is
assumed to be the same as in ch. 2.3. Instability regions are found from (3.7) and
(3.9). A numerically stable integration result can be seen in Fig. 4 for 30 compart-
ments and Neumann boundary conditions. As for systems in the MEN limit the
inclusion of nonlinear concentration dependence of diffusion influences amplitudes and
symmetry of the spatial distribution.
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Discussion

Compartmental reaction-electrodiffusion equations have been derived for concen-
tration-dependent diffusion in systems with MEN as well as with GEN limit. The
conditions for the emergence of Turing structures in continuous systems have been
extended to the case of concentration-dependent diffusion. After finding instability
regions from the latter conditions the compartmental equations have been integrated
by Gear’s method for a ternary model system in the MEN limit as well as for a binary
model in the GEN limit. In both cases the concentration dependence of diffusion
controls not only the amplitudes of the spatial distribution but can also break the
symmetry of the Turing structures.
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