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Abstract The possibility of dispersive instabilities of homogeneous distributions of N
interacting populations in a uniform environmental potential is investigated. The small
amplitude solution emerging after Turing instability of the homogeneous distribution is
given for two interacting and dispersing populations following Volterra dynamics. The
possibility of cross-dispersion-induced instabilities is investigated for commensalism,
predation, and competition respectively. Spatial aggregation in a commensal system is
shown as an illustrative example. Including a double-well environmental potential, the
spatial distribution of a single nonlinearly growing and rapidly dispersing population is
determined analytically using the two-timing perturbation technique. Spatially nonuni-
form time-periodic environmental potentials are proposed for the description of migra-
tion processes.

Introduction

The investigation and mathematical description of spatial patterning of interacting
and dispersing species or populations has been a main subject of theoretical biology
during the recent years. It should be mentioned here that the terms “dispersal” and
“diffusion” are used for the same essence, i.e. an individual leaves its living place with
an overall net movement not necessarily zero. On the other hand the term “migration”
stands for dispersal plus an implied returning to the original area so that a zero net
movement occurs (Lidicker & Caldwell, 1982). It has been pointed out that biological
species are not simple diffusers at all. Their migration and dispersal cannot be
considered simply as a random walk with state-independent transition probabilities
resulting in the phenomenological description as Fickian diffusion. Biodiffusion is the
result of various kinds of biological effects as e.g. heterogeneity of environmental
conditions, mutually attractive or repulsive interactions of individuals, localization of
fertilization, egg-laying, breeding, etc.. A remarkable breakthrough in the develop-
ment of biodiffusion theory was initiated by the works of Skellam (1951, 1955, 1973).
Among other things he classified biological movements into 3 categories, compare also
Okubo (1980):

(1) Neutral (Fickian) diffusion, where the flux of population i at position r and time ¢
is given by

jin(r) t)=_Di(r, X) VX,(r, t)a l‘_‘ls 27, N: (1)
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with population density X={X;: i=1, 2,---, N| and diffusion coefficient D; which can
depend on position and/or local density. Density dependence of diffusion was incorpo-
rated later into Skellam’s theory, compare McMurtrie (1978). This density dependence
is essential to ecological diffusion as well as physical diffusion what has been shown in
a preceding paper (Malchow, 1988a). Formulation (1) is applicable to the description
of physico-chemical diffusion but only in a few cases to biodiffusion, i.e., when the flux
is directed from high to low density. Reaction (interaction)-diffusion (dispersal)
equations involving this flux term have been investigated in detail. For reviews
compare e.g. Crank (1975), Fife (1979), Okubo (1980), Malchow and Schimansky-
Geier (1985), Britton (1986).

(2) Repulsive dispersal, where the movements depend on the conditions at the actual
habitat, with

jir(rx l)=—V[D,-(I‘, X)Xi(r) t)]
— —X(r, OV Dy(r, X)—Dyr, X)VXr, ) i=1, 2,-, N. @)

Several kinds of taxis and dispersal are best treated by the concept of a repulsive
dispersive force. A special example is to avoid crowding.

(3) Attractive dispersal, where the movements depend on the conditions in the target
area, with

i, )==Diw, )V (HA0) =Xir, 7 D, 0= Dir, )7 Xr, 1)

i=1, 2,---, N. 3)

Comparing egs. (2) and (3) one sees that the sign of the gradient of D; determines
whether the dispersal is attractive or repulsive. Of course, there is a permanent
interplay of attractive and repulsive forces in ecological communities. This interplay is
best taken into account by admitting negative cross-population pressure to the treat-
ment of repulsive dispersal what will be used later. The phenomenological description
of repulsive and attractive dispersal comes out of the treatment of a random walk with
state-dependent transition probabilities. It should be noted that in these cases the flux
is not necessarily directed down the density gradient. This fits real biodiffusion in
many cases.

Several papers on spatial pattern formation due to dispersal of populations with
intra- and inter-specific interactions appeared during recent years. The reader is kindly
referred to the reviews by McMurtrie (1978), Levin (1981), Murray (1988) and again to
the outstanding monography by Okubo (1980) and its bibliography.

An extension of the treatments of biodiffusion mentioned above was introduced
by Shigesada and Teramoto (1978) generalizing the concept of an environmental
density (Morisita, 1971) for describing density-dependent dispersal towards favourable
habitats in nonuniform environments. The species move in an environmental potential
U(r) and the favourableness of a habitat is proportional to the potential force —
v U(r). Several examples for the regulation of interacting polulations as e.g. stabiliza-
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tion of the coexistence of competitors have been explained, compare Shigesada et al.
(1979), Teramoto and Shigesada (1981), Shigesada (1984), Ei and Mimura (1984), and
Teramoto and Seno (1987).

The first part of this paper deals with the emergence of dispersive instabilities and
patterning of homogeneously distributed interacting populations which disperse in an
uniform environmental potential. The time and space evolution of interaction and
dispersal of N polulations is described by

(213X Lr, H=f(X)—Vju(r, t); i=1,2---, N; @)

where f(X) is the nonlinear interaction function. In contrast to eq. (2) the dispersion is
assumed to be purely density-dependent, i.e. it is only implicitly space- and time-
dependent:

jir(r> t):*V{Di(X)Xi(r: t)]; l:la 2,"', N. (5)

The repulsive flux is used here but as already mentioned above negative cross-
population pressures will be introduced to describe also attractive transitions.

Since the basic paper by Turing (1952) it is known that homogeneous distributions
can become unstable against spatially inhomogeneous fluctuations if the dispersion
coefficients cross a critical ratio. The effect of the resulting spatial pattern formation
has been studied theoretically as well as experimentally for various physical chemical,
and biological systems, for reviews see e.g. Nicolis and Prigogine (1977), Haken
(1978), Okubo (1980), Malchow and Schimansky-Geier (1985). A very first application
to ecological interaction-diffusion problems is due to Segel and Jackson (1972). Kerner
(1959) emphasized the importance of cross-diffusion in ecological systems and intro-
duced ad hoc cross-diffusion coefficients into the treatment of neutral diffusion. Using
this Jorné (1977) showed for an ecologically rare situation the possibility of cross-
diffusion-induced pattern in the classical Lotka-Volterra mechanism where self-
diffusion-induced pattern formation is impossible (Murray, 1975; Jorné and Carmi,
1977). Even negative cross-diffusion increases the possibility of spatial patterning what
is also known from electrolyte systems (Jorné, 1975; Malchow, 1988b).

Mimura and Kawasaki (1980) observed cross-diffusion-induced spatial segregation in a
competitive interaction system with repulsive diffusion, see also Mimura et al. (1984).

In the next chapter the small amplitude solution first bifurcating from the
homogeneous distribution after Turing instability is given for arbitrary interactions and
arbitrary density-dependent attractive and/or repulsive dispersal. This is applied to
cross-diffusion-induced pattern formation in two-component interaction systems and
specified for two-component Volterra systems with commensal, predacious as well as
competitive interactions. The possibility of cross-diffusion-induced instability of the
coexistent state for ecologically plausible diffusional interactions is investigated. A
special commensal system is treated as an example.

In the following chapter a population model with logistic growth and constant
one-sided immigration is treated for rapid dispersal in a double-well environmental
potential. The spatial distribution is obtained analytically using the two-timing per-
turbation technique (Reiss, 1971; Nayfeh, 1973; Shigesada, 1984; Ei and Mimura,
1984; Ei, 1988).
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Spatially nonuniform time-periodic environmental potentials are introduced in the
final chapter for the description of migratory population movements.

Turing Structures in Interaction Systems with
Repulsive Density-Dependent Dispersal in
Uniform Environmental Potentials

Interaction and density-dependent dispersal of N polulations in an environmental
potential are described by egs. (4, 5) with inclusion of the potential term into the flux:

(8/20)X(r, H=f(X)+ V|V D(X)X{(r, )]+yX(r, OV U@ }; 1,2,-, N: (6)

where the y; are the coefficients of affinity for the environment. An uniform potential
is assumed in this chapter so that eq. (6) reduces to

(8120)X{r, D=f{X)+ A[D{X)X{r, ©)]; i=1,2,---, N. (7

The diffusion term can be rewritten to give

AIDDXXr, D=5V DXV X(r, D)y i=1, 2., N; ®)

where the self-diffusion
Di(X)=[1+Xr, ©) (8/2X)|D«(X); i=1,2,--, N; )]

and the cross-diffusion
DyX)=X(r, 1) (8/2X;))DLX); i, j=1, 2,--, N; i=#]; (10)

have been introduced. For the corresponding neutral diffusion problem the cross-
diffusion coefficients would not appear at all.

Now the existence of a stationary spatially homogeneous distribution X=X°, f(X*)=0,
Vv X*=0, is supposed what is possible for uniform environmental potentials only(except
a trivial zero solution). It stability against fluctuations

x(r, H)ocexp | pt+ikr} an

is investigated by the usual linear analysis. Inserting (11) into (7) and neglecting
nonlinear terms in x one gets the characteristic equation for the eigenvalues p

det [a;—K*Dy—8;plx=x =0; i, j=1, 2,--, N; (12)
with
a;=[0f/ 0 Xjlx=x.. (13)
The solution is stable if the real parts of all eigenvalus are less than zero:
Re p;<0; V i=1, 2,---, N. (14)

This can be proved by the Hurwitz criterion. For the investigation of diffusive
instabilities of homogeneous distributions one has to suppose stability for k=0, i.e.

det [a;—d;p]=0; Rep(k=0)<0; Vv i=1, 2,---, N. (15)
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Instability occurs for finite k>0, i.e. at least one real part becomes greater than zero:
Re pn(k>0)>0; 1<m<N;

Re pi(k>0)<0; Vv i+m. (16)

Specified for two-component systems this leads to the well-known explicit stability
conditions for k=0

a1 +axn<0;  ayan—ana >0. (17)

Necessary and sufficient conditions for inducing diffusive instabilities in systems
with density-dependent self- and cross-diffusion have been derived recently from egs.
(12, 16) (Malchow, 1988a) as an extension of the expressions given by Segel and
Jackson (1972) for systems with constant self-diffusion. They read

D11D2—D12D21 >0, (18)
D112+ Dpayy — Dizda1 — Dorarn =
2/ (D11D2—D12Dy) (41120 —a12a1) 12 >0. (19)
The equality sign in (19) corresponds to the critical point. It is reached at the

minimum wave number

P Dhyaz+ Dyar1 — Dintiyy — Doidy, (20)
" 2(D11D2—D12Dyy) '

The small amplitude solution in the vicinity of the Turing bifurcation point can be
obtained using a standard method of bifurcation theory (Sattinger, 1973; Malchow,
1988c). The general algorithm is not given here. A spatially one-dimensional solution
is sought in the form

X(r, )=X"+ 0o+ & 0,. 21
¢ is the small amplitude

o—o0,
€ p— (22)

The ¢, are the eigenfunctions of the Laplace operator satisfying zero-flux boundary
conditions @y={ ¢, |cos (kr); k=nn/L; i=1, 2,---, N; n=1, 2,---; with system length L.
The @, are series expansions of these eigenfunctions. The quantity o is the bifurcation
parameter and ¢, is its critical value. Because the interest is in diffusive instabilities
here it can be chosen as the ratio of self- or cross-diffusion coefficients. The value of o,
follows generally from the algorithm and it is given below for a special density
dependence of diffusion which will be introduced now.

Random movements as well as intra- and interspecific interferences have been
successfully described already (see e.g. Shigesada et al., 1979) by dispersion coef-
ficients of the form

Dy(X)=a;+ BuXi+ ByXs i=1,2,-, Ny j=1,2,--, N; i#]. (23)

The ¢; correspond to random movements, the 3; to the intraspecific interferences and
it is supposed ;>0 as well as f3;>0 because of intraspecific repulsion. The f;; i#j; are
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due to the interspecific interferences and their sign depends on the actual type of
interaction, e.g. 8;<0 for attraction of species i by species j. A slight generalization is
introduced by

D;=g{ X))+ B;X;, (24)

so that one finds
Dy=[1+X(2/2 X)Igi+ByXj; Dy=XB. (25)

Arguments and limits of indices are dropped here and in further considerations if
misunderstandings are excluded.
Abbreviating

[1+Xi(a/aXi)}gi=dii (26)
one finds finally
Dy=d;+(Xj/X;)Dy; Dy=Xp;. 27)

Now the bifurcation parameter o can be fixed. The ratio of the cross-diffusion
coefficients is introduced here:

Dy1=0aD15. (28)
This leads to
Dyo=dy+(X1/X2) D120, (29)

i.e. the bifurcation paramenter is also hidden in the self-diffusion coefficient of X,. Its
critical value is

0,=AIB (30)
with
A=—k*Dydn+ kz(Duazz'f‘ dpaa11— D12021) — (A11G22— 012021), (31)
B=(X1/X2) D1 k*dy1+ K [(Xo/X1)ar1z—an] |. (32)
The value of o, is found to be
oy Port1 + Poaltiz (33)

Ly 8%+ L1z +Lizt) do1boa+ L1z 9

with L111=L112:0, L121=D12, L122=(X1/X2)D12 here. The quantities ¢0i and R i=
1, 2; follow from the general algorithm, compare Malchow (1988b) again.

The possibility of cross-diffusion-induced pattern formation in two-component
Volterra systems will be investigated now. The corresponding kinetic equations read

(8/8l‘)X1=(R1~—a1X1+b1X2)X1-— le, (34)
(8180 Xo=(Ra—ar X, + b, X1) Xo— V o, (35)
with supposed a1 >0, a,>>0. There are 4 possible stationary solutions:

(1) (Xi1, X52)=(0, 0), extinction of both species, trivial solution;
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R . .
(2) (Xiz, X3)= (0, 713 ), extinction of X7, survival of X5;
2

R
3) (Xis, X33)= <7le’ O) , survival of X3, extinction of X5;

a2R1 + b1R2 a2R2 -+ b2R1
a1a2~b1b2 ’ alaz—blbz

4 (X4, X34)= ( > , coexistence of X; and X.
Domains of stability of these solutions are listed in Tab. 1 for different kinds of
interaction (Maynard Smith, 1974):

a) Commensalism; b; >0, by >0;
b) Predation; b;<0, b;>0 (X;-prey, Xp-predator);
¢) Competition; b;<0, b,<0.

Returning to the specific expression (23) for the dispersion coefficients one can deduce
now the signs of the B; for describing ecologically plausible cross-population interfer-
ences:

a) Commensalism; [81,<0; £1<0, i.e. mutual attraction of the symbiotic partners;
b) Predation; B12>0, $21<0, i.e. escape of prey X; and chase of predator X, for X;;
¢) Competition; £1,>0, B1>>0, i.e. mutual repulsion of the competitors.

After this classification it is of interest now whether these cross-population interfer-
ences can lead to instabilities of the coexistent solution 4 resulting in spatial patterning.
One finds from linear stability analysis that conditions (17) are always satisfied for
nonnegative densities because it holds

— — ) — $ _
ap=—a1 X1, a=b1X14, a1=0,X%4, ap=—a,X3,. (36)

It should be noted that self-diffusion-induced instabilities are not possible because
there is not an activator-inhibitor relationship between the populations (Fife, 1979;
Meinhardt, 1982).

Having regard to positive self-diffusion D;; >0, D,;>>0 one gets the conditions

diy dy,
>— >— = 37
fo>= s, 2 G7
The latter conditions have to be combined with
dp X34
> 2 [1 + ] : 38
Par Xia4 di1 P2 (38)

what follows from (18). Finally one finds from the first part of relation (19), i.e. from
the necessary condition Djiaz+ Dypayg— Dizda1 — Da1a1, >0, the necessary relation
between interaction parameters by, b, and diffusion parameters B,, £ for inducing
cross-diffusive instabilities:

B12ba+ 2101 <0. (39)

It is readily seen that cross-diffusive instabilities for ecologically reasonable relations
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Density of Species

Fig. 1. Spatial aggregation for commensal interactions due to overcritical cross-population
pressure. Parameters: Ry=1, Ry=2, ay=2, by=b,=1, ;=0.75, a,=0.1, Bu=9.375*10_2, Bio=
—1, Bu=—10"2% Py=7.5%10"3, D{;=0.33333, Dpp=—1.33333, D, =—0.01667, Dp=

1.8
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1
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System Length

0.11167, k=6.78625, n=2, L=1/k, ¢.=1.25*1072

Table 1. Stability of stationary solutions 2, 3, 4. Solution 1 is stable for R; and R, less than
zero only. The possibility or impossibility of a cross-diffusive instability of coexistence is given.

Ecologically plausible diffusional interactions are marked by @.

T

1.0

Cross-Diffusive Instability

Stability for of Solution 4 Possible for
Type gtat.
of Interaction olution B,,<0]B,<0|B,>0[B,,>0
2 2
R <0;Ry>0 Ry>0;Ry<0 Ri>0:Ry>0 5;f<o B;f>o 5;1<o {3;>o
5 Ry . by
Commensalism R, e a0 /
3 .lﬁ < b, /
by;>0:by>0 R, "
Ry by o by 3 Ry by 3y 7 07 X
R b
2 hwa Lolb
Predation avays K 5 L/
3 Boa ]
by<0;by,>0 Ry by
Ry  a R; by 7 7 9 | 77
4 57 & |A\ || A4
R b
2 always L r
Competition Y R; R /
a R
! L] L]
by <0;by<0 3 s b, “ K,
a R, by [7 7 T~
4 R T v\ |

: possibility ;[NS] : impossibility
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between f, and f3,; are possible only for commensal and competitive interactions. In
predacious systems these instabilities are restricted to “deceitful” relationships between
prey and predator (Jorné, 1977). A corresponding overview is added to Tab. 1.
Mimura and Kawasaki (1980) gave an example for cross-diffusion-induced spatial
segregation in the competitive system and of course, their result can be reproduced by
this procedure. Jorné (1977) showed the possibility of spatial patterning due to
cross-diffusive instability in the classical Lotka-Volterra mechanism (a;=a,=0, R; >0,
R,<0), but patterning can only occur for D1,<0, D,; >0, what is a already mentioned
deceitful relation.

The possibility of patterning in a commensal system for the ecologically reason-
able case Dy;<0, D,;<0 is shown here. The entire algorithm for determining the
small amplitude solution near the Turing bifurcation point is worked off and the
resulting solution is plotted in Fig. 1. The corresponding parameters are given in the
figure caption. The expected spatial community of the symbiotic partners can be seen.

Nonlinear Growth and Rapid Dispersal in a
Double-Well Environmental Potential

A nonuniform environmental potential for modelling spatial heterogeneity is
included now, i.e. a stable homogeneous distribution does not exist at all. The shape
of the stationary spatial population pattern is strongly determined by the shape of the
potential. One can think about U(r) as “mountains” of which the valleys are basins of
optimum conditions for growth and interaction. These valleys are separated by
mountain ranges where growth and interaction can take place at low or eventually zero
rates only. All informations about the structure of the environment are contained in
the “map” of U(r).

A single population model is considered for analytical convenience but the
extension to the case of n populations is done without difficulties. An approximate
solution can be found analytically by applying the two-timing perturbation technique
(Reiss, 1971; Nayfeh, 1973; Shigesada, 1984; Ei and Mimura, 1984; Ei, 1988) under
the assumption of rapidly dispersing species. This is an ecologically plausible supposi-
tion because in many cases the change of the population density as a result of species
dispersal occurs more rapidly than that due to growth processes. The general
algorithm is dropped again. It is given in detail in Shigesada (1984).

Growth and dispersal of a single population in an environmental potential U(r)
can be described by the modified eq. (6)

(a/0)X(r, )=e(X)+V[DV X(r, )+ X(r, t)V U(r)] (40)

with appropriate initial condition X(r, 0) and zero-flux boundary conditions. For later
convenience, the interaction function is written as the product of a constant ¢ and f. It
is assumed that f and the flux term — Vj are of the same order of magnitude. The
dispersal D is assumed to be constant. Furthermore, it is assumed that growth and
dispersal take place in different time scales. The spatial density distribution is
supposed to be mainly dispersal-controlled, i.e. the local change of density due to
dispersal occurs more rapidly than the change due to growth processes. This situation
is frequently seen in nature. For realizing this ¢ is assumed to be small enough to give
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the opportunity of analyzing the model (40) by the multiple-scale (two-timing) method.
The flux term — Vj and the function f are set to the same order of magnitude O(1) and
a truncated expansion vaild for all times up to O(1/¢) is obtained.

For t—co the system reaches the stationary state

X (Y5 8°(r). (41)

Y5 is the stationary overall density in the considered space domain w whereas g%(r) is
the stationary probability density of the spatial population distribution

exp|{—Ur)/D}
f exp | —U()/D ldr

w

gn= (42)

It will be shown by an example now that this approximate stationary solution fits the
exact solution quite well.
The ecological model is presented as a formal chemical reaction scheme:

A—5X B+ Xe=2X. (43)

The first reaction is due to the immigration of X (Ebeling and Feistel, 1976; Ebeling
and Schmelzer, 1980) whereas the second one corresponds to the logistic growth
process. The values of A and B are used as parameters for driving the system. The
kinetic equation for the scheme (43) reads with formal inclusion of the parameter ¢

(8/20X(r, )= K;A(r)+K,B(r) X—K>3X?), (44)

where space dependence of A and B has been included too. Introducing the reference
quantities for the densities Ay, By, and Xo=(K1A¢/K3)"?, for the length L,, for the
time fto=Xy/(K1Ao), for dispersal and environmental potential Dy=Uy=L{/ty, one
finds the reaction-diffusion-advection equation

(a/00)X(r, H=A(P)+yB(NX—X*]+V[DV X+ XV U(r), (45)

with y=22B0 /Kido 1y Ar) and B(r) will be specified now. A double-well
Kdo ¥ K

potential in one-dimensional space re{0, L] is assumed for simplicity. It can be
written as

Uuin=Us éounr”‘ (46)

For reasons of spatial symmetry it is supposed that

__9 3.5, 11
u0~§75—6— L’ uy= 3

3 L? us=—2L, us=1. 47)

4
L » W= —

The spatial distribution of B should have the opposite shape, i.e.

ifv U(rg)=0, then V B(rg)=0, and
if v2 U(rg)<0, then V2B(rg)>0, and vice versa.

Hence B(r) is chosen as
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B(r)zBé‘[bo—élunr”]. (48)

Assuming a constant immigration from the left-hand side into the considered space
domain, A(r) is taken as a stationary single spatial gradient decreasing monotonously
from the left-hand to the right-hand side:

A(r)=A{)”(a0+a1r). (49)
The resulting shape of U(r), A(r), and B(r) can be seen in Fig. 2.

5
B@®)
4 -
[a]
< %
=]
)
<
E 2 AT
g ®
D
1
u@)
0 e e o T e e T e T e e T T eI e T T e T
[ S /2 3

System Length

Fig. 2. Sketch of the considered double-well potential Ur) as well as of the spatial distributions
of A and B. The strainght line D=1=const. is added. Parameters: Uf =A§=B§=1, L=3, ag
=L%40, a;=— L340, by=5L"*/256.

The interest is in stationary spatial distributions here. g°(r) is given by eqns. (42) and
(46) whereas Y§ can be determined from

—S—tYO( )= e(A*+ B°Y,—C°Y3), Yi=Yo(0)= j " X(, Oy, (50)
where AS= fL A(r)dr, B'=y fLB(r)gs (ndr, C= J [&(N)dr.
0 Y 0

With 0=[B*]*+4A°C®, the solution of eq. (50) is given by

Y()( El):
(B+vT) (B—y/5 ~2CYY)—(B'—y/F) (B+v& —2C°YY) exp| — ety/5 |

2C(BS—y/& —2C°YQ)— (B ++/8 2C°Y{) exp | —ety/S || - 1)
The solution (51) approaches for ef—co
. Bs+ 5 Bs+~/Bs2+4Ascs

2C° 2C¢
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The stationary spatial distribution (41) reads finally

. B+ [BP+4A°C* exp |—U(r)/D |

- 2C% 'L :
exp{ —U(r)/D idr

0

X5(r)

(53)

This distribution plotted in Figs. 3a, b. It is compared with the exact numerical
solution of eq. (45) for rapid dispersal (¢=0.01) as well as for growth and dispersal in
like time scales (e=1). It is readily seen that the approximation fits the exact solution
very well for small e<1. In this case the environmental potential controls strongly the
shape of the stationary distribution and there is not any influence of the density
gradient due to immigration from the left-hand side. Its influence becomes stronger for
e=1 and a slight deviation from the approximate solution can be seen. However, this
method provides a good impression of stationary spatial distributions of populations
dispersing rapidly in a heterogeneous environment mediated by an environmental
potential.

@

Population Density
W
1

Two-Timing
+ £=0.01
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B
=
53
[
=3
2
]
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o
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Two-Timing
e =10
O e errrerre e e e e e e e TR T e T
Covrnniie e ) N e 3
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Figs. 3a, b.  Plots of the stationary distribution (53) with solid line in comparison with the exact

numerical solution of eq. (45) for £=0.01 and e=1 respectively. Parameters: y=1, all others are
the same as in Fig. 2.
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Migration of Interacting Species in Spatially Nonuniform
Time-Periodic Environmental Potentials

Spatially nonuniform but time-constant environmental potentials have been consi-
dered above. But the environmental conditions and hence the favourableness of
habitats change very often temporally e.g. periodically daily or seasonally. Many
species respond to this by migratory movements following their favourable conditions.
Temporal environmental changes are taken into account now by spatially nonuniform
and time-periodic environmental potentials ‘

U(r, H=U(r, t+T) (54)

with the period of oscillation 7. The interaction function will be neglected because
these processes are secondary during migratory movements. Including the diffusion
term (23), the migration equations read

2 X, D=1V (et 3B, DX, D]+ X7 UG, 0 )

o .
i=1,2,, N;  (55)

with zero-flux boundary conditions. Two different situations will be investigated
numerically following descriptions of examples for animal migrations:

One example is the vertical migration in marine organisms Mysidae (Skellam,
1973). In darkness they are fairly evenly distributed over all depths, but as light from
above increases in intensity the organisms aggregate downwards. The distributions
have tails and the individuals do not consistently occupy the preferred place.

This behaviour is described by eq. (55) for a single species population. The potential is
chosen as

U(r, fy=a+b r sin®> wt; w=27/T; a, b constant; (56)

i.e. linear in one-dimensional space r € [0, L] with time-periodic ascent. The uniform
distribution corresponds to zero ascent. The result of the numerical integration is
plotted in Fig. 4.
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Fig. 4. Model with density-dependent dispersal D(X)=ae+pX in a space-time-dependent

environmental potential U(r, f)=a+b(r— L sin’wt)® with a=2., §=0.5, y;=1., a=1., b=60., w
=27/T, T=240 a.u., L=1.
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Migration of flocks is a well-known pattern of movement that is found in many
species of birds in many parts of the world. One example is a North American
songbird, the bobolink, Dolichonyx oryzivorus (Baker, 1978). It nests in southern
Canada and northern United States. During winter in the northern hemisphere,
however, it is found in the southern hemisphere in eastern Bolivia, western Brazil,
Paraguay, and northern Argentina.

Migration of swarms following meteorological changes is well-known from insects too,
e.g. from the African locust Schistocerca gregaria (Dingle, 1972). The gregarious
phase of this species forms large migratory swarms traveling on winds which converge
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Figs. 5a, b, ¢, d, e. Model for 2 populations of similar species with density-dependent dispersal
DAX) =+ B Xi+ By X;; i=1, 2; =1, 2; i=/; in a space-time-dependent environmental potential
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at the intertropical convergence zone. This zone moves forth and back across the
equator once each year causing seasonal rains in much of tropical Africa. These rains
promote greening and growth of the vegetation, and the locust swarms are thus
deposited in areas suitable for breeding.

Migratory swarms or flocks are modeled here by inclusion of an environmental
potential

U(r, )=a+b(r—L sin*wt)?; w=2#/T; a,b constant; (57)

i.e. a time-periodically moving parabola in one-dimensional space re[0, L]. The
spatial aggregation takes place at minimum potential and follows its movement. The
joint migration of two populations of similar species with interspecific attraction and
like affinities for the environment is investigated. The corresponding moving patterns
are given in Figs. 5a-e. Both distributions have only one maximum due to the
interspecific attraction.

The given figures illustrate the usefulness of spatially nonuniform time-periodic en-
vironmental potentials for the description of migratory movements of animal species.
The models could be extended by inclusion of space-time-dependent growth-
interaction functions f; with a certain phase shift compared to the migration period for
modelling growth and interactions at the resting places.

Finally it should be remarked that all attempts have failed to prove stabilization of
coexistence of competing species by spatial segregation in time-periodic environmental
potentials what is a known effect for time-constant space-parabolic potentials (Shigesa-
da et al., 1979).

Discussion

The small amplitude pattern near the Turing bifurcation point of the
homogeneous distribution of N populations has been given for arbirary interactions
and arbitrary density-dependent attractive and/or repulsive dispersal in uniform en-
vironmental potentials. It has been specified for the interactions of two populations.
Explicit conditions for the emergence of diffusive instabilities in two-component
systems with cross-population motional interferences have been provided.

A Volterra interaction system has been treated as an example. Self-diffusion-
induced instabilities of the coexistent state are not possible at all regardless of the
special type of interaction, but the possibility for instabilities induced by the cross-
population motional interferences has been shown for commensal and competitive
interactions and for the corresponding ecologically reasonable diffusional interfer-
ences. Cross-diffusive instabilities in predacious systems are possible for deceitful
relationships between prey and predator only. It has been shown that spatial aggrega-
tion in a commensal system can occur due to overcritical strong cross-population
pressure, i.e. the attraction of the symbiotic partners is much stronger than their
intraspecific repulsive force.

Nonlinear growth and dispersal in heterogeneous environments has been de-
scribed by reaction-diffusion-advection equations. The advection term results from the
inclusion of a spatially nonuniform environmental potential which mediates the heter-
ogeneity. It was possible to obtain an approximate solution analytically for dispersal
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and growth in different time scales. The two-timing perturbation technique has been
applied for rapid dispersal. Using logistic growth with directed immigration as an
example, it could be shown that the approximation holds very well. The shape of the
resulting stationary spatial density distribution follows strongly the modality of the
potential. Spatial variations of growth parameters do not play any role. Maxima of
density are formed at minima of the potential which stand for optimum growth
conditions.
For like time scales of dispersal and growth the influence of spatially varying growth
parameters becomes stronger what has been shown by a density gradient formed
quasi-stationary as a result of constant immigration directed from one side.
It should be remarked incidentally that the approximate solution fits the exact solution
quite well for constant growth parameters, even for like time scales of growth and
dispersal.

At last two different migration patterns have been modelled by inclusion of
spatially nonuniform and time-periodic environmental potentials.
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