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Abstract The possibility of dispersive instabilities of homogeneous distributions of N
interacting populations in a uniform environmeRtal potential is investigated. The sinall
amplitude solution ernerging after Turing instability of the homogeneous distribution is
given for two interacting and dispersing populations following VolteTra dynamics. The
possibility of cross-dispersion-induced instabilities is investigated for commensalism,
predation, and competition respectively. Spatial aggregation in a commensal system is
shown as an illustrative example. Including a double-well environmental potential, the
spatial distribution of a single nonlinearly growing and rapidly dispersing population is
determined analytically using the two-timing perturbation technique. Spatially nonuni-
form time-periodic environmental potentials are proposed for the description of migra-
tlon processes.

Introduction

    The investigation and mathematical description of spatial patterning of iRteracting

and dispersing species or populations has been a main subject of theoretical biology
during the recent years. It should be mentioned here that the terms "dispersal" and
"diffusion" are used for the same essence, i.e. an individual leaves its living place with

aR overall net movement not necessarily zero. On the other hand the term "migration"
stands for dispersal plus an irnplied returning to tke origiAal area so that a zero net
movemeRt occurs (Lidicker & Caldwell, 1982). It has been pointed out that biological

species are not sirnple diffusers at all. Their migration and dispersal cannot be
coRsidered simply as a random walk with state-independent transition probabilities
resulting in the phenornenological descriptioR as Fickian diffusion. Biodiffusion is Åíhe

result of various kinds of biological effects as e.g. heterogeneity of environmeRtal
conditioRs, mutually attractive or repulsive interactions of individuals, localization of

fertilizatioR, egg-laying, breeding, etc.. A remarkable breakthrough in the develop-
ment of biodiffusion theory was initiated by the works of Skellam (1951, 1955, 1973).
Among other things he classified biological movements into 3 categories, compare also
Okubo (1980):

(1) Neutral (Fickian) diffusion, where the fiux of population i at position r and time t
is given by

                ji.(r, t) =-Di(r, X) VXi(r, t); i--1, 2,•••, N; (1)
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with population density X =l Xi: i=1, 2,•••, NI and diffusion coefficient Di which can

depend on position andlor local density. Density dependence of diffusion was incorpo-
rated later into Skellam's theory, compare McMurtrie (1978). This density dependence
is essential to ecological diffusion as well as physical diffusion what has been shown in

a preceding paper (Malchow, 1988a). Formulation (1) is applicable to the description
of physico-chemical diffusion but only in a few cases to biodiffusion, i.e., when the flux

is directed from high to low density. Reaction (interactioR)-diffusion (dispersal)
equatioRs involving this fiux Åíerm kave been investigated in detail. For reviews
compare e.g. Crank (1975), Fife (1979), Okubo (1980), Malchew and SchimaRsky-
Geier (1985), Britton (1986).

(2) Repulsive dispersal, where the movements depend on the conditions at the actual
habitat, with

        ji.(r, t) :-V[Di(r, X)Xi(r, t)]

              =:-Xi(r, t)VDi(r, X)-Di(r, X)VXi(r, t); i--1, 2,•••, IV. (2)

Several kinds of taxis aRd dispersal are best treated by the concept of a repulsive
dispersive force. A special example is to avoid crowding.

(3) Attractive dispersal, where the movements depend on the conditions in the target

area, with

ji.(r, t)=-Di(r, X)V ( Xi(r, t)

Di(r, X)
)=Xi(r, t)VDi(r, K>-Di(r, X)VX,(r, t);

                    i==1, 2,-•, N. (3)

Comparing eqs. (2) and (3) one sees that the sign of the gradieRt of Di determines
whether the dispersal is attractive or repulsive. Of course, there is a permanent
interplay of attractive and repulsive forces in ecological communities. This interplay is

best taken into accOunt by admitting negative cross-population pressure to the treat-
ment of repulsive dis' persal what will be used later. The phenomeRological descriptioR
of repulsive and attractive dispersal comes out of the treatment of a random walk with
state-dependent traRsition probabilities. It should be noted that in these cases the fiux

is not necessarily directed dowR the density gradient. This fus real biodiffusion in

many cases.
   Several papers on spatial pattern formation due to dispersal of populations with
intra- and inter-specific interactions appeared during recent years. The reader is kind}y

referred to the reviews by McMurtrie (1978), Levin (1981), Murray (1988) and again to
the outstandiRg monography by Okubo (1980) and lts bibliography.
   An extension of the treatments of biodiffusion mentioned above was iRtroduced
by Shigesada and Teramoto (1978) generalizing the concept of an enviroRmental
density (Morisita, 1971) for describing density-dependent dispersal towards favourable

habitats in noRuRiform environments. The species move in an environmental potential
U(r) and the favourableness of a habitat is proportional to the potential force -
V U(r). Several examples for the regulation of interacting polulatioRs as e.g. stabiliza-
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tioR oÅí the coexisteRce of competitors have been explained, compare Shigesada et al.
(1979), Teramoto and Shigesada (1981), Shigesada (1984), Ei and Mimura (1984), and

Teramoto and Seno (1987).
   The first part of this paper deals with the emergence of dispersive instabilities and

patteming of homogeneously distributed interacting populatioRs which disperse iR an
uRiform enviroRmental potential. The time aRd space evolution of interactiofl and
dispersal of N polulatioRs is described by

               (alat)Xi(r, t)==fi(X)-VJ'i,(r, t); i=1, 2•••, N; (4)

where fi(X) is the noRlinear interaction function. In contrast to eq. (2) the dispersion is

assumed to be purely density-dependent, i.e. it is only implicitly space- and time-

dependent:

                 J'i,(r, t)=-V[Di(X)Xi(r, t)]; i--1, 2,•••, N. (s)

The repulsive fiux is used here but as already mentioned above negative cross-
population pressures will be iRtroduced to describe also attractive transitions.
   SiRce the basic paper by Turing (1952) it is known that homogeneous distributions

caR become unstable against spatia}ly inhomogeneous fiuctuations if the dispersion
coefficients cross a critical ratio. The effect of the resultiRg spatial pattern formatioR

has been studied theoretically as well as experimeRtally for various physical chemical,

aRd biological systems, for reviews see e.g. Nicolis and Prigogine (1977), Haken
(1978), Okubo (1980), Malchow aRd Schimansky-Geier (1985). A very first application
to ecological interaction-diffusion problems is due to Segel aRd Jackson (1972). Kemer

(1959) emphasized the importance of cross-diffusion iR ecological systems aRd intro-
duced ad hoc cross-diffusion coefficieRts into the treatment of neutral diffusion. Using

this Jorn6 (1977) showed for an ecologically rare situation the possibility of cross-

diffusion-induced pattem in the ciassica} Lotka-Volterra mechanism where self-
diffusion-induced pattern formation is impossible (Murray, 1975; Jome and Carmi,
1977). EveB negative cross-diffusioA increases the possibility of spatia} patterning what

is also kRown from electrolyte systems (Jome, 1975; Malchow, 1988b).
Mimura and Kawasaki (1980) observed cross-diffusion-induced spatial segregation in a
competitive interaction system with repulsive diffusion, see also Mimura et al. (1984).

   In the next chapter the small amplitude soiution first bifurcating from the
homogeneous distribution after Turing instability is given for arbitrary interactioRs and

arbitrary density-dependent attractive andlor repulsive dispersal. This is applied to

cress-diffusion-induced pattern formation in two-component interaction systems and
specified for two-component Volterra systems with commensal, predacious as well as
competitive interactioRs. The possibility of cross-diffusion-induced iRstability of the
coexisteRt state for ecologically plausible diffusional interactions is investigated. A

special commensal system is treated as an exampie.
   In the following chapter a population model with logistic growth and constant
one-sided immigration is treated for rapid dispersal in a double-well environmental
potential. The spatial distribution is obtained analytically usiRg the two-timing per-

turbation technique (Reiss, 1971; Nayfeh, 1973; Shigesada, 1984; Ei and Mimura,
1984; Ei, 1988).



 86 HoRsT MALcHew
    SpaÅíially nonuniform time-periodic environmenta! potentials are introduced in the

final chapter for the description of migratory population movements.

                 Turing Structures in Interaction Systems with
                   Repillsive Density-Dependent Dispersal in
                      Uniform EBvirenmental Potentials

    Interaction and density-dependent dispersal of N polulations in an eRvironmental
potential are descrjbed by eqs. (4, 5) with inclusion of the potential term into the fiux:

     (a/at)Xi(r, t)==fi(X)+VlVDi(X)Xi(r, t)]+7iXi(r, t)vU(r) l; 1, 2,•••, N: (6)

where the 7i are the coefficients of affinity for the enviroRment. Ait uniform potential
is assumed in this chapter so that eq. (6) reduces to

            (a/at)Xi(r, t)=fi(X)+A[Di(X)Xi(r, t)]; i--1, 2,•••, N. (7)

The diffusion term can be rewritten to give

                            N            AID,(X)Xi(r, t)]=:,2=,VIDi,•(X)VXi(r, t)]; i=1, 2,•••, N; (8)

where the self-diffusion

              Dii(X)=:Il+Xi(r, t)(alaXi)]Di(X); i=1, 2,•••, N; (9)

aRd the cross-diffusion

            Di,•(X)==Xi(r, t)(a/aXi)Di(JY); i, i--1, 2,•••, N; i=s=j; (le)

have been introduced. For the corresponding neutral diffusion problem the cross-
diffusion coefficients would not appeaf at all.

Now, the existence of a stationary spatially homogeneous distribution X==XS, f(XS)==e,
vXS==O, is supposed what is possible for uniform environmeRtal potentials only(except
a trivial zero solutiofl). It stability againsS fiuctuations

   11   / x(r, t) oc exp lpt+ ikrl (1 1)     '
is investigated by the usual linear analysis. IRserting (11) into (7) and neglecting
nonlinear terms in x one gets the characteristic equation for the eigenvalues p

     '     . ' det [ai,•-k2Di,•- Si,p]x..x,=O; i, i--1, 2,•••, N; (12)

with

                            aiix{af,laXi]x.,.x.. (13)
The solution is stable if the real parts of all eigenvalus are less than zero:

                         Repi<O; v i=1, 2,•••, IV. (14)
This can be proved by the Hurwitz criterion. For the investigatioR of diffusive
instabilities of homogeneous distributions one has to suppose stability for k=O, i.e.

              det laij-8iip]==O; Repi(k=:O)<O; V i=1, 2,•••, N. (15)
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Instability occurs for fiRite k>O, i.e. at least one real part becomes greater than zero:

                       Rep.(k>O)>O; IE{ms{N;
                       Re p,(k>e) <o; v i=# m. (16)

Specified for two-cornpoRent systems this leads to the well-known explicit stability

conditions for k=O

                     all+a22<O; alia22-a12a21>e. (17)
   Necessary aRd sufficient conditions for inducing diffusive instabilities iR systems

with density-dependent self- and cross-diffusion have been derived recently from eqs.
(12, 16) (Maichow, 1988a) as an extension of the expressions given by Sege} and
Jackson (1972) Åíor systems with constant self-diffusion. They read

                          DiiD22-D,2D21>O, (18)
     Dlla22+D22all-D12a21-D21a12;}l
                           21 (DiiD22-Di2D2i) (aiia22-ana2i) liX2>O. (19)

The equa}ity sigR in (19) corresponds to the critica} point. It is reached at the
minimum wave number

                    2 Diia22+D22aii-Dma2i-D2ian                   kM= 2(D,,D,,-D,,D2,) • (2e)
   The small amplitude solution iR the vicinity of the Turing bifurcatioR point can be

obtained using a standard method of bifurcation theory (Sattinger, 1973; Maichow,
1988c). The general algorithm is not giveR here. A spatially one-dimensioRal solution
is sought in the form

                         X(r, t) =XS+edio+e2dii. (21)
e is the smali amplitude

                             e=gop. (22)

The Oo are the eigenfunctions of the Laplace operator satisfying zero-fiux bouRdary
conditions dio=l Åëoi Icos (kr); k==nnlL; i=1, 2,•••, N; n =1, 2,-••; with system iength L.

The dii are series expafisions of these eigeRfuRctions. The quantity ais the bifurcation

parameter and a. is its critical value. Because the iRterest is in diffusive iRstabilities
here it can be chosen as the ratio of self- or cross-diffusion ceefficients. The value of 62

follows generally from the algorithm and it is given below for a special density
dependence of diffusion which wiil be introduced now.
    Random movements as well as intra- and interspecific interferences have been
successfully described already (see e.g. Shigesada et al., 1979) by dispersion coef-
ficients of the form

          D,(X)=cr,+P,,X,+fi,,•Xj; i=1,2,•••,N; i=1,2,•••,N; i=si. (23)

The ai correspond to random movements, the Pii to the intraspecific iRterferences and
it is supposed ai>-O as well as Bii;}i!O because of intraspecific repulsion. The Bii; i iei; are
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due to the interspecific interferences and their sign depends on the actual type of
interaction, e.g. 3i•<O fof attraction of species i by species i A slight geReralization is

introduced by

                             Di=gi(Xi)+BiiXJ, (24)
so that one finds

                  Dii==[1+l,(aleli)]gi+BiiXi; Di,•=:X,Bii. (25)

Arguments afid limits of indices are dropped here and in further considerations if
misunderstaRdings are excluded.
Abbreviating

                           [1+Xi(a/aXi)]gi=dii (26)
one fiRds finally

                      Diixdii+(X/Xi)Dii; Di]•=XiBii• (27)
Now the bifurcation parameter a can be fixed. The ratio of the cross-diffusion
coefficients is introduced here:

                               D2i :aDi2• (28)
This leads to

                          D22= d22+(JYifX2)Dna, (29)

i.e. the bifurcation paramenter is aJso hidden in the self-diffusion coefficient of X2. Its

critical value is

                                 a. ==A/B (30)
with
          A=-k4Diid22+k2(Diia22+d22ak-Di2a2D-(aiia22-ai2a2i), (31)

                   B== (XilX2)Dnl k`dii+k2[(X2fXi)ai2-aii] l. (32)

The value of ch is found to be

                                 ipOlnl1+ ip02n12
                                                                     (33)                 a2 == -                       Lm dioi+ (Lii2 +Li2i) Åëoi ipo2 +Ln2Åëo2

with Lm =Lin = O, Lni=:Di2, Ln2 == (XifX2)Di2 here. The quaRtities Åëoi and nii; i=
1, 2; follow from the general algorithm, compare Ma}chow (1988b) again.
    The possibility of cross-diffusion-induced pattem forrnation iR two-cornponent
Voiterra systems will be investigated now. The corresponding kinetic equations read

                   (ala t)Xi == (Ri-aiXi +biX2)Xi- vJ'i, (34)

                   (ala t)X2 == (R2-a2I2+b2XDX2- vi2, (35)
with supposed ai>O, a2>O. There are 4 pessible stationary solutions:

(1) (Xii, X?2)==(O, O), extiRction of both species, trivial solution;
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(2) (Xi2, XS2)=:(O, Ii ), extinction of Xi, survival of X2;

(3) (Xi3, X83)== ( S,i , e), survival of Xi, extinction of X2;

(4) (xi4, xS4)= ( aa2illl-+bbibR22, aiiRti-+bb2ibR2i ),coexisteRce of xi and x2.

Domains of stability of these solutioRs are Iisted in Tab. 1 for differeRt kinds of
interaction (Maynard Smith, 1974):

a) Commensalism;bi>e,b2>O;
b) Predation; bi<O, b2>O (Xi-prey, X2-predator);
c) Competition; bi<e, b2<O.

ReturRing to the specific expression (23) for the dispersion coefficients one can deduce

now the signs of the Bii for describing ecologically plausible cross-population interfer-

ences:

a) Commensalism; Bi2<e; B2i<O, i.e. mutual attraction of the syrnbiotic partners;
b) Predation; Bi2>O, B2i<O, i.e. escape of prey Xi and chase of predator X2 for Xi;
c) CompetitioR; Bi2>O, B2i>O, i.e. mutual repulsion of the competitors.

After this classification it is of iRterest now whether these cross-population interfer-

ences can lead to instabilities of the coexistent solution 4 resulting in spatial patterning.

One finds from linear stability analysis that conditibns (17) are always satisfied for

nonnegative densities because it holds

              all=-alXi4, ai2 =blXi4, a21=b2XS4, a22=-a2XS24. (36)

It should be noted that self-diffusion-induced instabilities are not possible because
there is not an activator--inhibitor relatioRship between the populations (Fife, 1979;

Meinhardt, 1982).
HaviRg regard to positive self-diffusion Dii>O, D22>O one gets the conditions

                                dll                                             d22
                        Bi2>- xs,, i(92i>- xi,• (37)

The iatter conditions have to be combined with

                        P2i>- S2,,2, [l+ d,X, '2p4,, ], (3s)

what fQllows from (18). Finally one finds from the first part of relatioR (19), i.e. from

the necessary conditioft Diia22+D22aii-Di2a2i-D2iai2>e, the necessary relation
between iRteraction parameters bi, b2 and diffusion parameters Pi2, B2i for inducing
cross-diffusive instabilities:

                             Bi2b2+B2ibi<O. (3g)
It is readily seen that cross-diffusive instabilities for ecologically reasonable relations
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Fig.1. Spatial aggregation for commensal interactions due to ovefcritical cross-population
pressure. Parameters: Ri ==1, R2 =2, a2 ==2, bi = b2=1, ai =e.75, a2=:e.1, Bn=9.375*1e-2, Bi2=
-1, P2i=-10-2, B22==7.5*1or3, Dii =O.33333, Di2 =-1.33333, D2i==-O.e1667, D22=
O.11167, k=6.78625, n =2, L=1/k, a.=1.25"lem2.

Table 1. Stability of stationary solutions 2, 3, 4. Solution 1 is stable for Ri and R2 less than
zero only. The possibility or impossibility of a cross-diffusive instability of coexistence is given.

Eeologically plausible diffusional interactions are marked by e.

Stabilityfer
Cross-DiffusiveInstability
ofSolution4Possiblefor

Type
ofInteraction

Stat.
Solution

Rl<O;R2>O Rl>O;R2<O R!>e;R2>O
P12<O
521<o

P12<O
P21>O

P12>O
521<o

Bn>O
B21>o

2 Rlbl->-

R2a2Commensaiism

bl>O;b2>O
3

Rlbl"Rsi<li5

4
Rlbial'---<---<-

R2a2b2
bla!-<-

a2b2
[llilEEi] mmEl:ll{l

2 always
Rlbl-<-tw

R2a2Predation

bl<O;b2>O
3

Rlal--<-

R2b2
4

Rlal-i(i'Ei va mws ua
2 always

R!bl-<-.--R2a2

Competjtion

bl<O;b2<O
3 always

-L,.gL,b2R2

t.

4
Rlblai->->- [ll$ligil mua ma

EZ} : possibility ; [SSE] : impossibi}ity
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betweeR Bi2 and B2i are possible only for commensal and competitive interactions. In
predacious systems these iRstabilities are restricted to "deceitful" relationships between

prey and predator (Jorne, 1977). A correspoRding overview is added to Tab.1.
Mimura and Kawasaki (1980) gave aR example for cross-diffusioR-induced spatial
segregation in the competitive system aRd of course, their result can be reproduced by
this procedure. Jorne (l977) showed the possibility of spatial patteming due to
cross-diffusive instability in the classical Lotka-Volterra mechaRism (ai=a2=O, Ri>O,
R2<O), but patterning can only occur for Di2<O, D2i>O, what is a a}ready rnentioned
deceitful relaÅíion.

   The possibility of patterRing in a commensal system for the ecologicaliy reason-
able case Di2<O, D2i<O is shown here. Tke entire algorithm for determiniRg the
small amplitude solutioR near the Turing bifurcation point is worked off and the
resulting solutioR is plotted iR Fig. 1. 'Irhe correspondiRg parameters are given in the
figure caption. The expected spatial community of the symbiotic parmers can be seen.

                 Nonlinear Growth and Rapid Dispersal in a
                   Deuble-Well Environmental Potential

   A nonuniform environmental potential for rnodelling spatial heterogeneity is
included now, i.e. a stable homogeneous distribution does Rot exist at all. The shape
of the stationary spatial population pattem is strongly determined by the shape of the
potential. Ofie can think about U(r) as "mouRtains" of which the va}leys are basins of

optimum conditions for growth and interaction. These valleys are separated by
mountain rafiges where growth and iRteraction can take place at low or eventually zero
rates oniy. All informations about the structure of the enviroRment are contained iR

the "map" of U(r).
   A siRgle population model is coRsidered for analytical convenience but the
extension to the case of n populations is done without difficulties. An approximate
solution can be found analytically by applying the two-timing perturbation technique
(Reiss, 197i; Nayfeh, 1973; Shigesada, 1984; Ei and Mirnura, 1984; Ei, 1988) under
the assumption of rapidly dispersing species. This is an ecologically plausible supposi-
tion because in many cases the change of the populatioR density as a result of species

dispersal occurs more rapidiy than that due to growth processes. The geAerai
algorithm is dropped again. It is given in detail in Shigesada (1984).

   Growth and dispersal of a single population in an environmental potential U(r)
can be described by the modified eq. (6)

             (alat)X(r, t)=ef(X)+V[DVX(r, t)+X(r, t)VU(r)] (40)
with appropriate initial conditioR X(r, O) and zero-fiux bouRdary conditions. ]For later

convenience, the interaction function is writteR as the product of a constant e and f. It

is assumed that f aRd the fiux term - Vj are of the same order of magRitude. The
dispersal D is assumed to be coRstant. Furthermore, it is assumed that growth and
diSpersal take place in diffefent time scaies. The spatial density distribution is
supposed to be mainiy dispersal-controlled, i.e. the local change of density due,to
dispersai occurs more rapidiy than Åíhe change due to growth processes. This situation

is frequently seen in nature. For realiziRg this e is assumed to be small enough to give
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the opportuRity of analyzing the model (40) by the multiple-scale (two-timing) method.

The flux term - W' and the functioRfare set to the same order of magnitude 0(2) and
a truBcated expaRsion vaild for all times up to O(11e) is obtained.

For t-oo the system reaches the statioRary state

                              XS(r) Yg gS(r). (41)
Y8 is the stationary overall density iR the considered space domain w whereas gS(r) is
the stationary probability density of the spatiai population distribution

                                exp l - U(r)ID i
                       gS(")=" f.exp{-u(r)iD}dr' (42)

It will be showR by an example Row that this approximate stationary solutioR fus the
exact solution quite well.

    The ecological model is presented as a formal chemicai reaction scheme:

                         AL' X; B+.ikTt?, 2X. (43)

The first reaction is due to the immigraÅíion of X (Ebeling and Feistel, 1976; Ebeling

and Schmelzer, 1980) whereas the second one corresponds to the logistic growth
process. The values of A and B are used as parameters for driving the system. The
kinetic equation for the scheme (43) reads with formal inclusion of the parameter e

                 (a/et)X(r, t)=e[KiA(r)+K2B(r)X-K3X2], (44)
where space depeRdence of A and B has been included too. Introducing the reference
quantities for the densities Ao, Bo, and Xo =(KiAblK3)ii2, for the length Lo, for the
time to=Xof(KiAo), for dispersal and environmental potential Do==Uo=:L2ofto, one

finds the reaction-diffusion-advection equation

           (a/at)X(r, t)==e[A(r)+7B(r)X-X2]+v[DvX+J\vU(r)], (45)

        K2Bo KiAo                     . double-wellwith 7==
        KiAo K3
potential in one-dimensional IÅí can be
wrltten as

                                                                    (46)

For rgasons of spatial symmetry

                  9                    L4,             uo ==                 256

The spatial distribution of B

ifVU(rE)==O, then VB(rE)
if v2 U(rE)<O, then v'2B(rE)>O,

Hence B(r) is chosen as

U(r), A(r), and B(r) will be specified now. A

   space rE{O, L] is assumed for siraplicity.

               4      U(r) = Uo" E u.rn.
              n=O

     it is supposed that

 ui=:- gL3, u2= lsl L2, u3=-2L, u4=1.

  shouid have the Qpposite shape, i.e.

 =O, and
         and vice versa.

(47)
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                                      4                         B(r)=Bo*[bo-2u.r"]. (48)
                                     n=1
Assuming a constant imraigration from the left-hand side into the considered space
domain, A(r) is taken as a stationary single spatial gradieBt decreasing monotonously

from the left-hand to the right-hand side:

                           A(r) =Ao* (ao+air). (49)
The resulting shape of U(r), A(r), and B(r) can be seeR in Fig. 2.

5

4

i'i

1

o

B(r)

l(r

U(f)

                  CH....-...".....L.........-......2.............."...3

                                System Length
Fig. 2. Sketch of the considered double-well potential Ur) as well as of the spatial distributions
of A aRd B. The strainght line D=1==const. is added. Parameters: Uo* --Ao' --Bo"=1, L=3, ao
==L`140, ai = -L3!40, bo= 5L`1256.

The iRterest is in stationary spatial distributions here. gS(r) is given by eqns. (42)

(46) whereas Y8 can be determined from

           eatYo(et)=e(As+Bsyo-csy3), y9o = yo(e) =f,L x(r, o)dr,

        where As= fLA(r)dr, Bs=7fLB(r)gs(r)dr, cs= S'L[gs(r)]2dr.

                  Jo "o io
With a=:IBS]2+4ASCS, the solution of eq. (SO) is given by

  Yo(et)=:

  (Bs+ VE-) (Bs- Vl]i7 -2csyg) -(Bs- Vli}- ) (Bs + vr5- -2csy8) exp l - etpt l

and

(50)

The

      2cs[(Bsmv'Zff" -2csy8)-(BS+VEi-2CSY8) exp l - Et" l]

solution (51) approaches for et.oo

                       BS+Vlj- BS+V'{BS)2+4ASCS
            Y8==Yo(OO)= 2c, =: 2cs '

. (51)

(52)
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The stationary spatial distribution (41) reads finally

             xs(,)=BS+V[Bit2.+4ASCS f,ze,X.Ppli-Ui7iDiD}}d, (53)

This distribution plotted in Figs.3a, b. It is compared with the exact numerical
soiution of eq. (45) fer rapid dispersal (e=O.Ol) as well as for growth and dispersal in

like time scales (e==1). It is readily seen that the approximation fits the exact solution

very well for small e<<1. In this case the eRvironmental potential coRtrols strongly the

shape of the stationary distribution and there is Rot aRy iRfiuence of the density
gradient due to immigration from the left-haRd side. Its infiuence becomes stronger for

e=1 and a slight deviation from the approximate solution can be seen. However, this
method provides a good impression of stationary spatial distributions of populations
dispersing rapidly in a heterogeneous environment mediated by an environmental
potential.
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Figs. 3a, b. Plots of the stationary distribution (53) with solid line in comparison with the exact
numerical solution of eq. (45) for e=e.Ol and e= 1 respectively. Parameters: 7== 1, all others are
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            Migratien ef Interacting Species in Spatially Nonuniform
                   Time-Periedic Environmental Potentials

    Spatially nonuniform but time-constant environmental potentials have been consi-
dered above. But the environinentai conditions and hence the favourableness of
habitats change very often temporaily e.g. periodically daily or seasoRally. Many
species respond to this by migratory movements following their favourable cofiditions.

Temporal eRviroRmental changes are taken into account Row,by spaÅíially nonuniforrn
and time-periodic eRvironmental potentials

                            U(r, t)=U(r, t+D (54)
with the period of oscillation T. The interaction function will be negiected because
these processes are secondary during migratory movernents. Including the diffusien
term (23), tke migration equations read

       aN      atXi(r, t)=ViV[(ai+,rm-,BiiXf(r, t))Xi(r, t)l+7iXivU(r, t) l;

                                                     i--1, 2,•••, N; (55)

with zero-flux boundary conditions. Two diÅíferent situations wil! be investigated
numericaily following descriptions of examples for animal migrations:
    One example is the vertical migratien iR mariRe organisms Mysidae (Skellam,
1973). IR darkness they are fairly eveniy distributed over all depths, but as light from

above increases in intensity the orgaRisms aggregate downwards. The distributions
have tails and the individuals do not consistently occupy the preferred place.
This behaviour is described by eq. (55) for a single species population. The potential is

chosen as

               U(r, t) =a+brsin2 a)t; co==2rrIT; a,bcoRstaRt; (56)

i.e. Iinear in one-dimensional space rE [O, L] with time-periodic ascent. The uRiform

distribution correspoRds to zero ascent. The result of the numerical integratioB is
plotted in Fig. 4.
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Fig.4. Model with density-dependent dispersal D(X) =a+PX in a space-time-dependent
environmental potential U(r, t) =a+b(r-L sin2tot)2 with a=2., B=:O.5, 7i==1., a=1., b=:6e., ev

=2rr!T, T==240 a.u., L=1.
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    Migration of flocks is a well-known pattem of movement that is found in many
species of birds in many parts of the world. One example is a North American
songbird, the bobolink, Dolichonyx oryzivorus (Baker, 1978). It nests in southerR
Canada and northem United States. During winter in the northern hemisphere,
however, it is found in the southem hemisphere in eastern Bolivia, westem Brazil,
Paraguay, and northern Argentina.
Migration of swarms following meteorological changes is well-known from insects too,
e.g. from the African locust Schtstocerca gregaria (Dingle, 1972). The gregarious
phase of this species forms large migratory swarms traveling on winds which converge
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at the intertropica} convergence zone. This zone moves forth and back across the
equator once each year causiRg seasoRal rains in much of tropical Africa. These raiRs

promote greening and growth of the vegetatioB, and the locust swarms are thus
deposited in areas suitable for breeding.

Migratory swarms or flocks are modeled here by inclusion of an environmeRtal
potential

             U(r, t)--a+b(r-L sin2tut)2; w=2rrIT; a,b constant; (57)

i.e. a time-periodically moving parabola in one-dimensioRal space rG[e, L], The
spatial aggregation takes place at rninimum potential and fol}ows its movemeRt. The
joint migration of two populations of similar species with interspecific attraction and
like affinities for the environment is iRvestigated. The corresponding moving patterns

are given in Figs.5a-e. Both distributions have only oRe maxirnum due to the
interspecific attraction.

The given figures illustrate the usefulness of spatially noRuniform time-periodic en-
vironmental potentials for the description of migratory movemeRts of animal species.
The models could be extended by inclusion of space-time-dependefit growth-
interaction fuRctions fi with a certain phase shift compared to the migration period for
modelling growth and interactions at the resting places.
    Finally it should be remarked that all attempts have failed to prove stabilization of

coexistence of competing species by spatial segregation in time-periodic environmental
potentials what is a known effect for time-constant space-parabolic potentials (Shigesa-
da et al., 1979).

                                Discussion

    The small amplitude patterR near the TuriRg bifurcation point of the
homogeneous distribution of N populations has been given for arbirary interactions
and arbitrary density-dependent attractive andlor repulsive dispersal in uniform en-
vironmental potentials. It has been specified for the interactioRs of twe populations.

Explicit conditions for the emergence of diffusive instabilities in two-component
systems with cross-population motioRal interferences have been provided.
    A Volterra iRteraction system has been treated as an example. Self-diffusion-
induced instabilifies of the coexistent state are not possible at all regardless of the
special type of interaction, but the possibility for instabilities induced by the cross-

populatioR motionai inferferences has been shown for commensal and competitive
interactions and for the corresponding ecological}y reasonable diffusional interfer-
ences. Cross-diffusive instabilities in predacious systems are possible for deceitful
relationships between prey and predator ofily. It has been showR that spatial aggrega-

tion iR a commensal system can occur due to overcritical strong cross-population
pressure, i.e. the attraction ol the symbiotic partners is much stronger than their
intraspecific repulsive force.

    Nonlinear growth and dispersal in heterogeneous environmeRts has been de-
scribed by reactioR-diffusion-advection equations. The advection term results from the

inclusion of a spatially nonuniform enviroRmental potential which mediates the heter-
ogeneity. k was possible to obtain an approximate solution ana}ytica}Iy for dispersal
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and growth in difÅíereRt time scales. The two-timing perturbation technique has been
applied for rapid dispersal. Using logistic growth with directed immigration as aR
example, it could be showR that the approximation holds vefy well. The shape of the
resultiRg stationary spatial density distribution follows strongly the modality of the

potential. Spatial variatioRs of growth parameters do not play any role. Maxima of
density are formed at minima of the potential which stand for optimum growth
conditions.

For like time scales of dispersal and grovvth the iflfiuence of spatially varyiRg growth

parameters becoines stronger what has beeR shown by a density gradient forrned
quasi-stationary as a result of constant immigration directed from one side.

It should be remarked incidentally that the approximate solution fits the exact solutioR

quite well for constant growth parameters, even for like time scales of growth and
dispersal.

    At last two different migration pattems have been modelled by inclusion of
spatially nonuniform and time-periodic eRvironmentai potentials.
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