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DEFINABLE $CrG$ TRIVIALITY OF $G$ INVARIANT PROPER
DEFINABLE $C^{r}$ MAPS

TOMOHIRO KAWAKAMI

ABSTRACT. Let $G$ be a compact definable $C^{r}$ group and $1\leq r<\infty$ . We prove that
every $G$ invariant proper definable $C^{r}$ onto submersion from an affine definable $CrG$

manifold to $\mathbb{R}$ is definably $CrG$ trivial.

1. INTRODUCTION

M. Coste and M. Shiota [1] proved that a proper Nash onto submersion from an affine
Nash manifold to $\mathbb{R}$ is Nash trivial. This Nash category is a special case of the definable $C^{r}$

category and it coincides with the definable $C^{\infty}$ category based on $72=$ $(\mathbb{R}, +, \cdot, >)$ $[16]$ .
General reference on $0$-minimal structures are [2], [5], see also [15]. Further properties
and constructions of them are studied in [3], [4], [6], [12] and there are uncountably many
$\mathrm{o}$-minimal expansions of 72 [13]. Equivariant definable category is studied in [7], [9], [10],
$[\mathrm{i}\mathrm{i}]$ .

Let $G$ be a definable $C^{r}$ group, $X$ a definable $CTG$ manifold and $1\leq r<\infty$ . Suppose
that $f$ is a $G$ invariant definable $C^{r}$ function from $X$ to R. We say that $f$ is definably $C^{r}G$

trivial if there exist a definable $CrG$ manifold $F$ and a definable $CrG$ map $h$ : $Xarrow F$

such that $H=$ $(f, h)$ : $Xarrow \mathbb{R}\cross F$ is a definable $CTG$ diffeomorphism. If $f$ is definably
$CTG$ trivial, then for any $y\in \mathbb{R}$ , $f^{-1}(y)$ is definably $CrG$ diffeomorphic to $F$ and there
exists a definable $CrG$ diffeomorphism $\phi$ : $Xarrow \mathbb{R}\cross f^{-1}(y)$ such that $f=p\circ\phi$ , where
$p$ : $\mathbb{R}\cross f^{-1}(y)arrow \mathbb{R}$ denotes the projection.

A map $\psi$ : $Marrow N$ between topological spaces is proper if for any compact set $C\subset N,$

$\psi^{-1}(C)$ is compact.
We consider an equivariant definable $C^{r}$ version of [1] and an equivariant version of [1].

Theorem 1.1. Let $G$ be a compact definable $C^{r}$ group and $X$ an affine definable $CrG$

manifold and $1\leq r<\infty$ . Then every $G$ invariant proper definable $C^{r}$ onto submersion
$f$ : $Xarrow \mathbb{R}$ is definably $CrG$ trivial.

Let $X=\{y=0\}\cup\{xy=1\}\subset il\mathit{2},$ $\mathrm{Y}=\{y=0\}\subset il\mathit{2}$ and $f$ : $Xarrow Y$, $f(x, y)=x.$
Then $f$ is a polynomial onto submersion and it is not definably trivial. Thus proper
condition is necessary.

The projection onto $S^{n}$ of the tangent bundle of the standard $n$-dimensional sphere $S^{n}$

with the standard $O(n+1)$ action for $n\geq 8$ is not piecewise definably $CTG$ trivial. Thus
$G$ invariant condition is necessary.
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Corollary 1.2. Let $G$ be a finite group and $X$ an affine Nash $G$ manifold. Then every
$G$ invariant proper Nash onto submersion from $X$ to $\mathbb{R}$ is Nash $G$ trivial.

2. PROOF OF RESULTS

The following is a result on pi wise definable $C_{J}^{r}G$ triviality of $G$ invariant submersive
surjective definable $C^{r}$ maps [9].

Theorem 2.1 (1.1 [9]). (Piecewise definable $CrG$ triviality). Let $X$ be an affine defin-
able $C^{r}G$ manifold. $Y$ a definable $C^{r}$ manifold and $1\leq r<\infty$ . Suppose that $f$ : $Xarrow$ $\mathrm{Y}$

is a $G$ invariant submersive surjective definable $C^{r}$ map. Then there exist a finite decom-
partition $\{T_{i}\}_{i=1}^{k}$ of $Y$ into definable $C^{r}$ submanifolds and definable $CrG$ diffeomorphisms
$\phi_{i}$ : $f^{-1}(T_{i})arrow$ $\mathrm{t}$ $\cross f^{-1}(y_{i})$ such that $f|f^{-1}(T_{i})=p_{i}\circ\phi_{i}$ , $(1 \leq i\leq k)f$ where $p_{i}$ denotes
the projection $T_{i}\cross f^{-1}(y_{i})arrow T_{i}$ and $y_{i}\in T_{i}$ .

The following is existence of a definable $CrG$ tubular neighborhood of a definable $CrG$

submanifold of a representation of $G$ when $1\leq r<\infty$ .

Proposition 2.2 ([8]). If $1\leq r<\infty$ , then every definable $CTG$ submanifold $X$ of $a$

representation $\Omega$ of $G$ has a definable $CrG$ tubular neighborhood $(U, \theta)$ of $X$ in $\Omega_{f}$ namely
$U$ is a $G$ invariant definable open neighborhood of $X$ in $\Omega$ and 0 : $Uarrow X$ is a definable
$CrG$ map with $\theta|X=idx-$

Note that if $r=\infty$ or $\omega$ , then Proposition 2.2 is already known in [11].

Proof of Theorem 1.1. Applying Theorem 2.1, we have a partition oo $=a_{0}<a_{1}<$

$a_{2}<$ . . $l$ $<a_{j}<a_{j+1}=$ oo of $\mathbb{R}$ and definable $CrG$ diffeomorphisms $\phi_{i}$ : $f^{-1}((a_{i}, a_{i+1}))arrow$

$(a_{i}, a_{i+1})\cross f^{-1}(y_{i})$ with $f|f^{-1}((a_{i}, a_{i+1}))=p_{i}\circ\phi_{i}$ , $(0\leq.i\leq j^{\backslash })$ , where $p_{i}$ denotes the
projection $(a_{i}, a_{i+1})\cross f^{-1}(y_{i})arrow$ (a, $a_{i+1}$ ) and $y_{i}$

$\in$ (a, $a_{i+1}$ ).
Now we prove that for each $a_{i}$ with $1\leq i\leq j,$ there exist an open interval $I_{i}$ containing

$a_{i}$ and a definable $CrG$ map $\pi_{i}$ : $f^{-1}(I_{i})arrow f^{-1}(a_{i})$ such that $F_{i}=(f, \pi_{i})$ : $f^{-1}(I_{i})arrow$

$I_{i}\cross f^{-1}(a_{i})$ is a definable $CrG$ diffeomorphism. By Proposition 2.2, we have a definable
$CrG$ tubular neighborhood $(U_{i}, \pi_{i})$ of $f^{-1}(a_{i})$ in $X$ . Since $f$ is proper, there exists an
open interval $I_{i}$ containing $a_{i}$ such that $f^{-1}(I_{i})\subset U_{i}$ . Note that if $f$ is not proper, then
such an open interval does not always exist. Hence shrinking $I_{i}$ , if necessary, $F_{i}=$ $(f, \pi_{i})$ :
$f^{-1}(I_{i})arrow I_{i}\cross f^{-1}(a_{i})$ is the required definable $CrG$ diffeomorphism.

By the above argument, we have a finite family of $\{J_{i}\}_{i=1}^{l}$ of open intervals and definable
$CrG$ diffeomorphisms $h_{i}$ : $f^{-1}(J_{i})arrow J_{i}\cross f^{-1}(y_{i})$ , $(1 \leq i\leq l)$ , such that $y_{i}$ $\in J_{i}$ ,
$\bigcup_{i=1}^{t}J_{i}=\mathbb{R}$ and the composition of $h_{i}$ with the projection $J_{i}\cross f^{-1}(y_{i})$ onto 4 is $f|f^{-1}(J_{i})$ .

Now we glue these trivializations to get a global one. We can suppose that $i\geq 2,$

Ui-i $dJi=(a, b)$ and $k_{i-1}$ : $f^{-1}(U_{i-1})arrow U_{i-1}\cross/-1$ $(y_{1})$ is adefinable $CrG$ diffeomorphism
with $f|f^{-1}(U_{i-1})=proj_{i-1}\mathrm{o}k_{i-1}$ , where $U_{i-1}= \bigcup_{s=1}^{i-1}J_{s}$ and $proj_{i-1}$ denotes the projection
$U_{i-1}\cross f^{-1}(y_{1})arrow U_{i-1}$ . Take $z\in(a, b)=U_{i-1}\cap J_{i}$ . Then since $f^{-1}(y_{1})\cong f^{-1}(z)\cong$

$f^{-1}(y_{i})$ , $f^{-1}(y_{1})$ is definably $GrG$ diffeomorphic to $f^{-1}(y_{i})$ . Hence we may assume that $h_{i}$

is a definable $CrG$ diffeomorphism from $f^{-1}(J_{i})$ to $J_{i}\cross f^{-1}(y_{1})$ . Then we have a definable
$CrG$ diffeomorphism

$k_{i-1}\circ h_{i}^{-1}$ : $(a, b)\cross f^{-1}(y_{1})arrow(a, b)\cross f^{-1}(y_{1})$ , $(t, x)$ $-\succ(t, q(t, x))$ .
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Take a $C^{r}$ Nash function $u:\mathbb{R}arrow \mathbb{R}$ such that $u= \frac{a+b}{2}$ on $(- \infty, \frac{3}{4}a+\frac{1}{4}b]$ and $u=id$ on
$[ \frac{1}{4}a+\frac{3}{4}b, \infty)$ . Let

$H$ : $(a, b)\cross f^{-1}(y_{1})arrow f^{-1}((a, b))$ , $H(t, x)=k_{i-1}^{-1}(t, q(u(t), x))$ .

Then $H$ is a definable $CrG$ diffeomorphism such that $H=h_{i}^{-1}$ if $\frac{1}{4}a+\frac{3}{4}b\leq t\leq b$ and
$H=k_{i-1}^{-1}\mathrm{o}(id\cross\psi)$ if $a \leq t\leq\frac{3}{4}a+\frac{1}{4}b$ , where $\psi$ : $f^{-1}.(y_{1})arrow f^{-1}(y_{1})$ , $\psi(x)=q(\frac{a+b}{2}, x)$ .
Thus we can define

$k_{i}$ : $f^{-1}(U_{i})arrow U,$ $\mathrm{x}$ $f^{-1}(y_{1})$ ,

$k_{i}(x)=\{$
$H^{-1}(x)(id\cross\psi)^{-1},\circ k_{i-1}(x)$

, $/(x) \leq\frac{3}{4}a+\frac{1}{4}b$

$\frac{3}{4}a+\frac{1}{4}b$ $\leq f(x)\leq b$

$h_{i}(x)$ , $/(x)$ $>b$

Then $k_{i}$ is a definable $CrG$ diffeomorphism. Therefore $k_{l}$ is the required definable $C^{r}G$

diffeomorphism. $\square$

By [14] and 4.3 [9], we have the following proposition.

Proposition 2.3. Let $G$ be a finite group, $f$ a $C^{r}$ Nash $G$ map between affine Nash $G$

manifolds and $1\leq r<\infty$ . Then $f$ is approximated by a Nash $G$ map.
Proposition 2.3. Let $G$ be a finite group, $f$ a $C^{r}$ Nash $G$ map between affine Nash $G$

manifolds and $1\leq r<\infty$ . Then $f$ is approximated by a Nash $G$ map.

Proof of Corollary 1.2. By Theorem 1.1, we have a $C^{r}$ Nash $G$ diffeomorphism
$F=$ $(f, \phi)$ : $Xarrow$ $\mathbb{R}$ $\cross f^{-1}(y)$ such that $f=p\circ F,$ where $p$ : $\mathbb{R}\cross f^{-1}(y)arrow \mathbb{R}$ denotes
the projection. By Proposition 2.3, we have a Nash $G$ map $\psi$ : $Xarrow f^{-1}(y)$ as an
approximation of $\phi$ . If this approximation is sufficiently close, then $H=$ $(f, \psi)$ : $Xarrow$

$\mathbb{R}\cross f^{-1}(y)$ is the required Nash $G$ diffeomorphism. [I]
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