<table>
<thead>
<tr>
<th>Title</th>
<th>DEFINABLE C^rG TRIVIALITY OF G INVARIANT PROPER DEFINABLE C^r MAPS (Transformation Group Theory and Surgery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawakami, Tomohiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004, 1393: 102-105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25893</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
DEFINABLE C^G TRIVIALITY OF G INVARIANT PROPER DEFINABLE C^r MAPS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C^r group and $1 \leq r < \infty$. We prove that every G invariant proper definable C^r onto submersion from an affine definable C^G manifold to \mathbb{R} is definably C^G trivial.

1. INTRODUCTION

M. Coste and M. Shiota [1] proved that a proper Nash onto submersion from an affine Nash manifold to \mathbb{R} is Nash trivial. This Nash category is a special case of the definable C^r category and it coincides with the definable C^∞ category based on $\mathcal{R} = (\mathbb{R}, +, \cdot, >)$ [16]. General reference on o-minimal structures are [2], [5], see also [15]. Further properties and constructions of them are studied in [3], [4], [6], [12] and there are uncountably many o-minimal expansions of \mathcal{R} [13]. Equivariant definable category is studied in [7], [9], [10], [11].

Let G be a definable C^r group, X a definable C^G manifold and $1 \leq r < \infty$. Suppose that f is a G invariant definable C^r function from X to \mathbb{R}. We say that f is definably C^G trivial if there exist a definable C^G manifold F and a definable C^r map $h : X \rightarrow F$ such that $H = (f, h) : X \rightarrow \mathbb{R} \times F$ is a definable C^G diffeomorphism. If f is definably C^G trivial, then for any $y \in \mathbb{R}$, $f^{-1}(y)$ is definably C^G diffeomorphic to F and there exists a definable C^G diffeomorphism $\phi : X \rightarrow \mathbb{R} \times f^{-1}(y)$ such that $f = p \circ \phi$, where $p : \mathbb{R} \times f^{-1}(y) \rightarrow \mathbb{R}$ denotes the projection.

A map $\psi : M \rightarrow N$ between topological spaces is proper if for any compact set $C \subset N$, $\psi^{-1}(C)$ is compact.

We consider an equivariant definable C^r version of [1] and an equivariant version of [1].

Theorem 1.1. Let G be a compact definable C^r group and X an affine definable C^G manifold and $1 \leq r < \infty$. Then every G invariant proper definable C^r onto submersion $f : X \rightarrow \mathbb{R}$ is definably C^G trivial.

Let $X = \{y = 0\} \cup \{xy = 1\} \subset \mathbb{R}^2$, $Y = \{y = 0\} \subset \mathbb{R}^2$ and $f : X \rightarrow Y$, $f(x, y) = x$. Then f is a polynomial onto submersion and it is not definably trivial. Thus proper condition is necessary.

The projection onto S^n of the tangent bundle of the standard n-dimensional sphere S^n with the standard $O(n + 1)$ action for $n \geq 8$ is not piecewise definably C^G trivial. Thus G invariant condition is necessary.

2000 Mathematics Subject Classification 14P10, 14P20, 57R22, 58A05, 03C64

Keywords and Phrases. o-minimal, definable C^r manifolds, proper definable C^r functions, definable C^G trivial, Nash G trivial.
Corollary 1.2. Let \(G \) be a finite group and \(X \) an affine Nash \(G \) manifold. Then every \(G \) invariant proper Nash onto submersion from \(X \) to \(\mathbb{R} \) is Nash trivial.

2. Proof of results

The following is a result on piecewise definable \(C^r \) triviality of \(G \) invariant submersive definable \(C^r \) maps [9].

Theorem 2.1 (1.1 [9]). (Piecewise definable \(C^r \) triviality). Let \(X \) be an affine definable \(C^r \) manifold, \(Y \) a definable \(C^r \) manifold and \(1 \leq r < \infty \). Suppose that \(f : X \rightarrow Y \) is a \(G \) invariant submersive definable \(C^r \) map. Then there exist a finite decomposition \(\{ T_i \}_{i=1}^k \) of \(Y \) into definable \(C^r \) submanifolds and definable \(C^r \) diffeomorphisms \(\phi_i : f^{-1}(T_i) \rightarrow T_i \times f^{-1}(y_i) \) such that \(f|f^{-1}(T_i) = p_i \circ \phi_i \), \((1 \leq i \leq k) \), where \(p_i \) denotes the projection \(T_i \times f^{-1}(y_i) \rightarrow T_i \) and \(y_i \in T_i \).

The following is existence of a definable \(C^r \) tubular neighborhood of a definable \(C^r \) submanifold of a representation of \(G \) when \(1 \leq r < \infty \).

Proposition 2.2 ([8]). If \(1 \leq r < \infty \), then every definable \(C^r \) submanifold \(X \) of a representation \(\Omega \) of \(G \) has a definable \(C^r \) tubular neighborhood \((U, \theta) \) of \(X \) in \(\Omega \), namely \(U \) is a \(G \) invariant definable open neighborhood of \(X \) in \(\Omega \) and \(\theta : U \rightarrow X \) is a definable \(C^r \) map with \(\theta|X = id_X \).

Note that if \(r = \infty \) or \(\omega \), then Proposition 2.2 is already known in [11].

Proof of Theorem 1.1. Applying Theorem 2.1, we have a partition \(-\infty = a_0 < a_1 < a_2 < \cdots < a_j < a_{j+1} = \infty \) of \(\mathbb{R} \) and definable \(C^r \) diffeomorphisms \(\phi_i : f^{-1}((a_i, a_{i+1})) \rightarrow (a_i, a_{i+1}) \times f^{-1}(y_i) \) with \(f|f^{-1}((a_i, a_{i+1})) = p_i \circ \phi_i \), \((0 \leq i \leq j) \), where \(p_i \) denotes the projection \((a_i, a_{i+1}) \times f^{-1}(y_i) \rightarrow (a_i, a_{i+1}) \) and \(y_i \in (a_i, a_{i+1}) \).

Now we prove that for each \(a_i \) with \(1 \leq i \leq j \), there exist an open interval \(I_i \) containing \(a_i \) and a definable \(C^r \) map \(\pi_i : f^{-1}(I_i) \rightarrow f^{-1}(a_i) \) such that \(F_i = (f, \pi_i) : f^{-1}(I_i) \rightarrow I_i \times f^{-1}(a_i) \) is a definable \(C^r \) diffeomorphism. By Proposition 2.2, we have a definable \(C^r \) tubular neighborhood \((U_i, \pi_i) \) of \(f^{-1}(a_i) \) in \(X \). Since \(f \) is proper, there exists an open interval \(I_i \) containing \(a_i \) such that \(f^{-1}(I_i) \subset U_i \). Note that if \(f \) is not proper, then such an open interval does not always exist. Hence shrinking \(I_i \), if necessary, \(F_i = (f, \pi_i) : f^{-1}(I_i) \rightarrow I_i \times f^{-1}(a_i) \) is the required definable \(C^r \) diffeomorphism.

By the above argument, we have a finite family of \(\{ J_i \}_{i=1}^l \) of open intervals and definable \(C^r \) diffeomorphisms \(h_i : f^{-1}(J_i) \rightarrow J_i \times f^{-1}(y_i), \ (1 \leq i \leq l) \), such that \(y_i \in J_i, U_{i-1} \cap J_i = (a, b) \) and \(k_{i-1} : f^{-1}(U_{i-1}) \rightarrow U_{i-1} \times f^{-1}(y_i) \) is a definable \(C^r \) diffeomorphism with \(f|f^{-1}(U_{i-1}) = \text{proj}_{i-1} \circ k_{i-1} \), where \(U_{i-1} = \bigcup_{s=1}^{i-1} J_s \) and \(\text{proj}_{i-1} \) denotes the projection \(U_{i-1} \times f^{-1}(y_i) \rightarrow U_{i-1} \). Take \(z \in (a, b) = U_{i-1} \cap J_i \). Then since \(f^{-1}(y_i) \approx f^{-1}(z) \approx f^{-1}(y_1) \), \(f^{-1}(y_i) \) is definably \(C^r \) diffeomorphic to \(f^{-1}(y_1) \). Hence we may assume that \(\hat{h}_i \) is a definable \(C^r \) diffeomorphism from \(f^{-1}(J_i) \) to \(J_i \times f^{-1}(y_1) \). Then we have a definable \(C^r \) diffeomorphism

\[k_{i-1} \circ h_i^{-1} : (a, b) \times f^{-1}(y_1) \rightarrow (a, b) \times f^{-1}(y_1), (t, x) \mapsto (t, q(t, x)). \]
Take a C^r Nash function $u : \mathbb{R} \to \mathbb{R}$ such that $u = \frac{a+b}{2}$ on $(-\infty, \frac{3}{4}a + \frac{1}{4}b]$ and $u = id$ on $[\frac{1}{4}a + \frac{3}{4}b, \infty)$. Let

$$H : (a, b) \times f^{-1}(y_1) \to f^{-1}((a, b)), \quad H(t, x) = k_{i-1}^{-1}(t, q(u(t), x)).$$

Then H is a definable $C^r G$ diffeomorphism such that $H = h_i^{-1}$ if $\frac{3}{4}a + \frac{3}{4}b \leq t \leq b$ and $H = k_{i-1}^{-1} \circ (id \times \psi)$ if $a \leq t \leq \frac{3}{4}a + \frac{1}{4}b$, where $\psi : f^{-1}(y_1) \to f^{-1}(y_1), \psi(x) = q(\frac{a+b}{2}, x)$. Thus we can define

$$k_i : f^{-1}(U_{i}) \to U_{i} \times f^{-1}(y_1),$$

$$k_i(x) = \begin{cases} (id \times \psi)^{-1} \circ k_{i-1}(x), & f(x) \leq \frac{3}{4}a + \frac{1}{4}b \\ H^{-1}(x), & \frac{3}{4}a + \frac{1}{4}b \leq f(x) \leq b \\ k_{i}(x), & f(x) > b \end{cases}.$$

Then k_i is a definable $C^r G$ diffeomorphism. Therefore k_i is the required definable $C^r G$ diffeomorphism. □

By [14] and 4.3 [9], we have the following proposition.

Proposition 2.3. Let G be a finite group, f a C^r Nash G map between affine Nash G manifolds and $1 \leq r < \infty$. Then f is approximated by a Nash G map.

Proof of Corollary 1.2. By Theorem 1.1, we have a C^r Nash G diffeomorphism $F = (f, \phi) : X \to \mathbb{R} \times f^{-1}(y)$ such that $f = p \circ F$, where $p : \mathbb{R} \times f^{-1}(y) \to \mathbb{R}$ denotes the projection. By Proposition 2.3, we have a Nash G map $\psi : X \to f^{-1}(y)$ as an approximation of ϕ. If this approximation is sufficiently close, then $H = (f, \psi) : X \to \mathbb{R} \times f^{-1}(y)$ is the required Nash G diffeomorphism. □

References

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, WAKAYAMA UNIVERSITY, SAKAEDANI WAKAYAMA 640-8510, JAPAN

E-mail address: kawa@center.wakayama-u.ac.jp