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(Z5)*-ACTIONS AND A LINEAR INDEPENDENCE
CONDITION :

ZHI LU

1. BASIC BACKGROUND

Throughout the following, G = (Z;)* (i.e., 2-torus of rank k > 0 where k = 0 means that G
is trivial), and all manifolds are smooth, closed and unoriented. Here unoriented means that no
requirements of orientability or orientedness are imposed.

Now let us review the development history of G-manifolds from the viewpoint of bordism
theory.

(I) The case in which G is trivial.

In the 1950s, Thom invented the unoriented bordism theory, so that all closed manifolds are
classified in terms of bordism and are understood very well. Simply speaking, the unoriented
bordism classes of all closed manifolds form a polynomial algebra M, =3 n>0 Tln over Z2 with
generators Tn,n # 2° — 1. In even dimensions the z, can be chosen to be the real projective
spaces RP™, and in odd dimensions the z, can explicitly be chosen to be Dold manifolds. Note
that Stong [S4] constructed Stong manifolds so z, can be chosen to a Stong manifold whenever
n is even or odd.

(II) The case in which G is non-trivial.

In the 1960s, Conner and Floyd applied the bordism theory to G-manifolds and established
the equivariant bordism theory, so that G-manifolds are understood very well in many respects
in terms of bordism (see, [C4], [CF]). For example, they showed that

(1) The equivariant bordism class of any involution (i.e., Zs-action) on a closed manifold is
determined by that of normal bundle to its fixed point set.

(2) Any closed G-manifold M with M G empty bounds.

(3) There cannot be G-actions fixing only an isolated point.

Along this line (or from the viewpoint of bordism), the further development with respect to
G-manifolds is stated as follows.

Let (®, M™) be a G-action on a closed manifold, and F its fixed point set. Then F is the
disjoint union of submanifolds of M™. By dim F we denotes the dimension of the component of
F of largest dimension.

(A) The case where G = Zj (i.e., involution).
(i) In 1967, Boardman [B] proved %-theorem that if dim A/ > § dim F, then M™ bounds.

(i) In 1973, Stong [S4] introduced the group J7, which consists of all those closed manifolds
in M, admitting an involution whose fixed point set has constant-codimension r. Many authors
studied such JZ. For example, Capobianco [C1]{C2| determined the group structure of J; when
r = 3,4; Iwata [I] determined the group structure of J; when r = 5; Wada [W1] determined the
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group structure of Ji when r = 6; Wu [W3] determined the group structure of Jy, when r < 35;
finally, Yue [Y4] completely determined the group structure of Jr for all r.

In 1989, Wu [W2] introduced the group Jn'"""™ in the general sense. which consists of all
those closed manifolds in 9, admitting an involution whose fixed point sets have codimensions
1,.-.7. Up to now, the group structure of J*"™ is yet not determined completely. Some
works with respect to this problem can be found in [LW1],[LW2],[L1], [L2], and [LL1].

(iii) In 1978, Kosniowski and Stong [KS1] gave a formula of calculating Stitefel-Whitney
numbers of A/™ in terms of fixed data v — F = | ], v” — F"="_ which is stated as follows.

Kosniowski-Stong formula I: If f(z;, -+ ,2n) is any symmetric polynomial over Z, in n
variables of degree at most n, then

F@1.-  z) M) = Z fA+y.--- 151—({—11{:,;11), ,zn-r)[F,,_T]

where the expressions are evaluated by replacing the elementary symmetric functions o; (z),0:(y),
and 0;(z) by the Stiefel- Whitney classes W;(AI™), W;(v"), and W; (F™T) respectively,and taking
the value of the resulting cohomology class on the fundamental homology class of MI™ or Fn—T.

Using this formula, some classical results can be reproved. For example, Smith theorem
(i.e., x(M") = x(F) mod 2), Boardman %-theorem (note that actually, a stronger result can
be obtained, i.e., if dimASf > %dim F, then M™ with Zs-action bounds equivariantly), and
some results by Conner and Floyd [CF], and by tom Dieck [D1]. In addition, some new results
can be obtained. For example, Kosniowski and Stong showed that if (®.M) is an involution
fixing a constant-dimensional fixed point set such that dim A/ > 2dim F, then (®, M) bounds
equivariantly. Also, Lii [L3] showed that if (®, A/) is an involution with dim A/ > 2dim F (note
that here F is not restricted to be constant dimensional), then (®, M) bounds equivariantly,
and especially, 2dim F is the best possible upper bound of dim Af if (®, Al) is nonbounding.

(B) The case where G = (Z3)* with k > 1.

(i) In 1970, Stong [S3] generalized the above result (1) of Conner-Floyd into the general case,
i.e., the equivariant cobordism class of any (Z3)*-action on a closed manifold is determined by
that of normal bundle to its fixed point set. Further, he showed that any closed G-manifold A/
with M€ empty doesn’t only bounds, but also bounds equivariantly.

(ii) In 1971, tom Dieck [D2] studied characteristic numbers of G-manifolds, and also obtained
some integrality theorems. Then applying obtained results to G-manifolds fixing only isolated
points, he gave a necessary and sufficient condition that some isolated points with given G-
representations are the fixed data of a G-manifold.

(iil) In 1979, Kosniowski and Stong [KS2] obtained the formula in the general case of (Zy)k-
actions, stated as follows.

Kosniowski-Stong formula II: If f(a:2;2%) is of degree less than or equal to n, then

iy = N L@ B QY o+ )
flosz;2) (M) ; fary

in the quotient filed of H*(BG:Z,) .

Note: The above formulae I, II were given by Kawakubo [K] independently.

Using this formula, Kosniowski and Stong showed that if (&, A/™) is a G-action with the
fixed point set F = | ], F"~" satisfying the condition that each part F™~" is connected and if
dim M > (2¥*+1 — 1) dim F, then (&, M™) bounds equivariantly. Note that this inequality is not
the best possible. And Kosniowski and Stong also posed the following question:
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Suppose that (&, M) is a G-action firing a connected submanifold F. Then (a) if dim A >
X dim F, (®. M) bounds equivariantly: (b) if dim M = 2k dim F, (@, M) is equivariantly cobor-
dant to the action (twist, F' x --- x F'} on the product of 2% copies of F which interchanges
factors. '

This question was solved by Pergher [P3] in 2002.

(iv) In 1992, Pergher {P1] introduced the group J;, ., which consists of those closed manifolds in
N, admitting a G-action with fixed point set of codimension r. This is directly the generalization
of J for k = 1. When k > 1, generally it is difficult to determine the structure of Jy ;. Some
works in this respect can be found in [P7], [S1], [S2], [WWD], [WWNM].

(v) Inn 2001, Lit [L4] introduced a linear independence condition for the fixed point set. With
the help of the condition, argument can be carried out without the connectedness restriction of
fixed point set. For example, with the help of the condition, one can analyze the following two
kinds of G-actions: (1) G-actions with trivial normal bundle of fixed point set; (2) G-actions
with w(F) = 1. Note that in this talk, I will mainly introduce the linear independence condition,
and a result for G-actions with w(F) = 1.

Fundamental Problem: To classify all G-manifolds in terms of bordism.

Unfortunately, the fundamental problem is far from solved even if G is equal to the simplest
Z, group. Also, many works are restricted to be G = Za.
With respect to the fundamental problem, the following two ways are often used mainly.

One is that given a known closed manifold M, to classify all possible G-actions on M. The
other one is that given a known closed manifold F', to classify all possible G-actions fixing F'.
Some works in this respect can be found in [C3], [HT1], [HT2], [LL2], [L5], (L6}, [P2], [P4], [P5],
[P6], [P8], [PS]. [R], [S5], [Y1], [Y2], [Y3].

Kosniowski-Stong Conjecture: Any involution with w(F') = 1 is cobordant to a polynomial
formed by involutions (T, RP?") defined by

Ts : [$o,:r1,...,332.¢] — [—-9:0,:1:1,...,3:2:].

2. A LINEAR INDEPENDENCE CONDITION
Suppose that (¢, M ") is a G-action on a closed manifold M™ and let F' = UgF™ % be its fixed
point set.

Let Hom(G,Z;) be the set of homomorphisms p : G — Z2 = {+1, =1}, which consists of 2k
distinct homomorphisms. One agrees to let pp denote the trivial element in Hom(G, Z,), i.e.,
polg) = 1 for all g € G. Every irreducible real representation of G is one-dimensional and has
the form X, : G x R — R with A,(g,r) = p(g) - 7 for some p. Ay, is the trivial representation
corresponding to po. »

Let EG — BG be the universal principal G-bundle, where BG = EG/G = (RP™®)* is the
classifying space of G. It is well-known that

H*(BG;Zs) = Zs[ay, .., ak)

with the a; one-dimensional generators. In particular, all nonzero elements of H YBG;Z,;) =
(Z3)* consist of 2% — 1 polynomials of degree one in Zs[ay, ..., ax], i.e.,

a1, .- ak,

ay +a9,...,a1 + ai,a2 + as, ..., a2 + Qgy .eey

ay+ -+ af-1,--,02+az3+---+ag,
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ai +as + - -+ ag.

- These polynomials of degree one correspond to all nontrivial elements of Hom(G. Z2) (note that

actually H'(BG;Z,) = Hom(G,Zs)). and so for a convenience, they are denoted by a, for
p € Hom(G, Zy) with p # po. Also, one agrees to let a,, = 0, the zero element of H Y(BG;Z,).

For each part F™=4 of F, write F"~4 = ]_Jf;] FE7=?. Then the restriction to each connected
component F]“d of F"=4 of the tangent bundle of A/™ decomposes into subbundles under the
action of G

TM|Fp-d =] TF}""“ & @ Vp,d
! P#p0
where 1,4 is the subbundle on which G acts via ),, and the subbundle on which G acts trivially
is identified with the tangent bundle of F"~%. Let g, q = dimv, g, so that d = 2 ortpo . and
one obtains the sequence {g,alp # po} (called the normal dimensional sequence). The collection

Cpn-a = {{Q;’;,dlp #potli=1,--- N7
of such sequences occuring in F*~? will be called the normal dimensional sequence set of Fn—4d,

Generally, all sequences of Cpn_¢ may not be distinct if F*~? is disconnected. However,
(®, M™) is equivariantly cobordant to a G-action such that all elements of the normal dimensional
sequence set of the (n — d)-dimensional part F'*~¢ of its fixed point set are distinct. In fact,
one may form a connected sum for those connected components in F™*~¢ with the same normal
dimensional sequence when n — d > 0, and one may cancel pairs of components with the same
normal dimensional sequence when n — d = 0. This doesn't change the (Z2)*-action (&, M )
up to equivariant cobordism. Thus, without loss of generality one may assume that the part of
Fnd with the same normal dimensional sequence is connected, so all sequences of Cpn_a are
distinct.

DEFINITION. We say that the (n — d)-dimensional part F"~9 of F possesses the linear inde-
pendence property if its normal dimensional sequence set

Cpn-a = {{d}alp # po}li=1,--- ,£q}

has the following property:
1 1

ql - IR q[d
P .d
HP#pO ap Hp#po a'pp

are linearly independent in the quotient field of Z3[ay, ..., ax).

Theorem 2.1. Suppose that (2, M™) is a smooth (Z3)*-action on a closed smooth n-dimensional
manifold such that each part FP of the fized point set F' possesses the linear independence prop-
erty, and w(F) = 1. If dim M™ > 28 dim F, then (3, M™) bounds equivariantly.

Note. (1) When k = 1, as shown in [L3], 2dim F is the best possible upper bound of dim M if
the involution (®, M) with w(F) = 1 doesn’t bound. For the general case, Example 1 will show
that 2% dim F is still the best possible upper bound of dim M if (®, M) doesn’t bound.

(2) Example 2 will show that the condition which each part FP of the fixed point set F
possesses the linear independence property is necessary.

Example 1. Let us begin with the involution (T, RP?) given by [xo, T1, T2] — [—z0, 71, x9),
which fixes the disjoint union of a point and a real projective 1-space RP!. Then the product

(Tx---xT.RP*x---x RP?)
N — 7-./
£
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of £ copies of (T, RP?) forms a new involution, and its fixed point set is Uf—_—o (f)]RPl x - x RP!,
e —
i
where RP! x --- x RP! means a point if i = 0. This new involution is cobordant to an involution

(1, M) having fixed set F = F¢{JFE ]| FO with dim A% = 2dim F and w(F) = 1,
where .
RP!x---xRP' if (°) #0 mod 2
FP = p g
empty if (ﬁ) =0 mod 2.

Consider M3! x M3P¢ with two involutions t; = twist and ta = ®; x ®;. The fixed point
set of this (Zs)2-action (@2, M3¢) is the fixed point set of ®; in the diagonal copy of MY
which is F = F¢| | F¢-1]---|J F°, which has w(F) = 1 and dim M3 = 2°dim F. Squaring
this example gives examples for all (Z,)F-actions. Actually, if (®x—1, MZ ;%) is a (Zo)F~1-
action fixing F = FE| | F¢|]---|J F®, then the twist and the diagonal (Z)*~1-action induced
by ®r_1 on ]\[,'g’k_'_llf X M,';’i_lle produce a (Z;)*-action (@k,AIEke) whose fixed set is still F =
FELFE .- L) FO, and dim M2t = 2¢dim F. Also, the linear independence for the fixed
point set is obvious since FP? is connected for each p. However, (<I>,,;,1\I§ke) is nonbounding for
every value of dim F' = ¢ and every k.

Example 2. Consider the standard (Z,)2-action (%o, RP?) given by
['in Ti, 1:2] — [500, Nnri, 92-’1’2],

which fixes three isolated points, where (g1, g2) € (Z2)2. Then the diagonal action on the product
of 2¢ copies of (o, RP?) is also a (Z3)%-action denoted by (@, M*), and the fixed point set
of this action is formed by 32¢ isolated points. Furthermore, by using the construction as in
Example 1 to (@, A?), one may obtain a (Z»)*-action (\I/,Jb[gke'), which fixes 3%¢ isolated
points. Now, the diagonal action on the product of (T, M*€) and (®k, M2‘?) in Example
1 produces a (Zs)F-action (&', M2*¢+)) fixing the disjoint union F' of 32¢ copies of F =
Fe|JFE1(].--| | FO. However, (&', M?"(€+)) never bounds although dim A{ 2E(e+t) = k(¢ 4
¢') > 28 dim F” for £ > 0 and w(F”') = 1. This is because each p-dimensional part of F’ " doesn’t
satisfy the linear independence property.
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