Title Page

LYMPHOID NEOPLASIA

5 LUBAC accelerates B-cell lymphomagenesis by conferring B cells resistance to genotoxic stress

Tomoyasu Jo, ${ }^{1,2}$ Momoko Nishikori, ${ }^{1,14, *}$ Yasunori Kogure, ${ }^{3,4}$ Hiroshi Arima, ${ }^{1}$ Katsuhiro Sasaki, ${ }^{2}$ Yoshiteru Sasaki, ${ }^{2}$ Tomoko Nakagawa, ${ }^{2}$ Fumie Iwai, ${ }^{1}$ Shuji Momose, ${ }^{5}$ Aki Shiraishi, ${ }^{6}$ Hiroshi Kiyonari, ${ }^{6,7}$ Noritaka Kagaya, ${ }^{8}$ Tetsuo Onuki, ${ }^{9}$ Kazuo Shin-ya, ${ }^{8,10}$ Minoru Yoshida, ${ }^{9,11,12}$ Keisuke Kataoka, ${ }^{3,4}$ Seishi Ogawa, ${ }^{3,13}$ Kazuhiro Iwai, ${ }^{2, *}$ and Akifumi Takaori-Kondo ${ }^{1}$
${ }^{1}$ Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ${ }^{2}$ Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ${ }^{3}$ Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ${ }^{4}$ Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan; ${ }^{5}$ Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan; ${ }^{6}$ Laboratories for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; ${ }^{7}$ Laboratories for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; ${ }^{8}$ National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan; ${ }^{9}$ Seed Compound Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, Wako, Japan; ${ }^{10}$ Biotechnology Research Center and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan; ${ }^{11}$ Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan; ${ }^{12}$ Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; ${ }^{13}$ Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
${ }^{14}$ Lead Contact
*Correspondence:
Momoko Nishikori, Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; e-mail: nishikor@kuhp.kyoto-u.ac.jp; Tel: +81-75-751-4964; Fax: +81-75-751-4963

39 Kazuhiro Iwai, Department of Molecular and Cellular Physiology, Graduate School of 40 Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan;
41 e-mail: kiwai@mcp.med.kyoto-u.ac.jp; Tel: +81-75-753-4671; Fax: +81-75-753-4676
42
43 Note: Presented in abstract form at the $60^{\text {th }}$ annual meeting of the American Society of 44 Hematology, San Diego, CA, 3 December 2018.

46 Running head: Roles of LUBAC in B-cell lymphomagenesis
47
48 Abstract word count: 220 words
49 Text word count: 3,974 words
50 Number of Figures: 5
51 Number of Tables: 1
52 Number of References: 63
53 Number of supplemental Figures: 6
54 Number of supplemental Tables: 11
55

56 Key Points

57 1. LUBAC accelerates B-cell lymphomagenesis through protection of DNA 58 damage-induced apoptosis, thereby promoting AID-mediated mutations.

59 2. Inhibition of LUBAC by small molecules is a promising therapeutic strategy for
60 B-cell lymphomas with NF-кB activation.

Abstract

Linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-кB signaling. Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are enriched in patients with activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL), and expression of HOIP which parallels LUBAC activity is elevated in ABC-DLBCL samples. Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating mutation. The developed lymphoma cells partly shared somatic gene mutations with human DLBCLs, with increased frequency of a typical AID mutation pattern. In vitro analysis revealed that HOIP overexpression protected B cells from DNA damage-induced cell death through NF- $\kappa \mathrm{B}$ activation, and the analysis of human DLBCL database showed that expression of HOIP positively correlated with gene signatures representing regulation of apoptosis signaling, as well as NF- KB signaling. These results indicate that HOIP facilitates lymphomagenesis by preventing cell death and augmenting NF- KB signaling, leading to accumulation of AID-mediated mutations. Furthermore, a natural compound that specifically inhibits LUBAC was shown to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicates that LUBAC is crucially involved in B-cell lymphomagenesis through protection against DNA damage-induced cell death, and is a suitable therapeutic target for B-cell lymphomas.

Keywords: LUBAC, B-cell lymphoma, ABC-DLBCL, NF- κ B, AID, cell death

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoma subtype in adults, ${ }^{1,2}$ and it is classified into two major categories, germinal center B cell-like (GCB)-DLBCL and activated B cell-like (ABC)-DLBCL, based on the gene expression profiling. ${ }^{3-6}$ Since ABC-DLBCL has been shown to have a worse prognosis compared to GCB-DLBCL, new therapeutic strategies against ABC-DLBCL are warranted. ${ }^{7-9}$

ABC-DLBCL is characterized by constitutive NF-кB activation mediated by the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, and many oncogenic mutations within these pathways have been identified. Among them, activating mutations of MYD88, a signaling molecule in the TLR pathway, including L265P, are present in around 30% of ABC-DLBCL cases, ${ }^{10}$ and constitute the most frequent genetic abnormalities leading to aberrant $\mathrm{NF}-\mathrm{\kappa B}$ activation.

Protein ubiquitination is involved in multiple steps of the NF-кB pathway. ${ }^{11}$ The linear ubiquitin chain assembly complex (LUBAC), which consists of the catalytic subunit HOIP (RNF31) and two accessory subunits, HOIL-1L and SHARPIN, promotes NF- κB activation and protects against cell death by synthesizing unique N -terminally linked linear polyubiquitin chains. ${ }^{12-19}$ We previously reported that rare germline single-nucleotide polymorphisms (SNPs) in HOIP that increase LUBAC ligase activity are significantly enriched in ABC-DLBCL patients, suggesting that augmentation of LUBAC activity contributes to ABC-DLBCL pathogenesis. ${ }^{20}$ The majority of ABC-DLBCLs in patients with these HOIP SNPs also harbor the MYD88 L265P mutation. Given that LUBAC plays a pivotal role in the NF-кB activation by linearly polyubiquitinating substrates, including the key NF- KB regulator NEMO, ${ }^{18,19,21-24}$ it is speculated that LUBAC collaborates with MYD88 signaling in B-cell lymphomagenesis by further amplifying NF-кB activation.

By analyzing published clinical RNA sequencing (RNA-seq) gene expression data, ${ }^{25}$ we found that expression of HOIP is elevated in human ABC-DLBCL (Figure 1A). As we previously reported that enforced expression of the catalytic subunit HOIP augments LUBAC functions, ${ }^{17}$ we assumed that LUBAC activation is frequently involved in the pathogenesis of ABC-DLBCL, independent of SNPs in HOIP. To clarify the roles of LUBAC played in the pathogenesis of B-cell lymphoma, we established a gene-engineered mouse with enforced expression of HOIP in B cells. We found that increased expression of HOIP enhanced LUBAC activity, and it facilitated generation of MYD88-mediated DLBCL, whereas it could not lead to B-cell lymphoma development per se. Elevated expression of LUBAC was suggested to accelerate B-cell lymphomagenesis, not only by activating NF-кB in concert with MYD88-mediated signals, but also by protecting cells from DNA damage-induced apoptosis. Importantly, the mutations in B-cell lymphomas that arose in mice expressing an oncogenic MYD88 mutant and high levels of HOIP partially overlap with those reported in human DLBCLs, indicating the biological similarity between these tumors. Finally, by using a mouse lymphoma model with secondary transplantation of a newly established lymphoma cell line, we demonstrated that LUBAC inhibition represents a novel and promising therapeutic strategy against B-cell lymphomas.

Methods

Mice

Tissue-specific HOIP transgenic mice (ROSA26-STOP-Hoip-ires-eGFP-pA) and MYD88 L252P transgenic mice (ROSA26-STOP-Myd88_L252P-ires-eGFP-pA) (Accession No. CDB 1320K: http://www2.clst.riken.jp/arg/mutant\ mice\ list.html) were established as described in supplemental Methods. ROSA26-STOP-Hoip-ires-eGFP-pA or ROSA26-STOP-Myd88_L252P-ires-eGFP-pA transgenic mice were crossed with CD19-cre mice to express transgenic HOIP or MYD88 protein specifically in B cells from the pre-B cell stage. ${ }^{26}$ All mice were maintained under specific pathogen-free conditions. All animal protocols were approved by Kyoto University and RIKEN Center for Biosystems Dynamics Research.

Analysis of European Genome-phenome Archive and The Cancer Genome Atlas datasets

Clinical and RNA sequencing (RNA-seq) gene expression data derived from the core set of 624 human DLBCL samples were obtained from the European Genome-phenome Archive (EGA) (dataset identifier [ID]: EGAD00001003600), ${ }^{25}$ and the Cancer Genome Atlas (TCGA) whole exome sequencing and RNA-seq data of 48 DLBCL samples (project ID: TCGA-DLBC) were obtained from the Broad Institute Firehose (http://gdac.broadinstitute.org/), ${ }^{27,28}$ and were analyzed as described in supplemental Methods and supplemental Tables 1-4.

Whole-exome sequencing

Lymphoma tissues obtained from the transgenic mouse model were analyzed by whole-exome sequencing using the SureSelect XT Mouse All Exon V2 kit (Agilent). Mouse tail DNA was used as a germline control. Sequence alignment to GRCm38/mm10 and mutation calling were performed using the Genomon pipeline (https://github.com/Genomon-Project) as previously described ${ }^{29}$ with minor modifications. Candidate mutations with (i) $\mathrm{p}<0.01$ (Fisher's exact test), (ii) >4 variant reads in tumor samples, and (iii) variant allele frequency (VAF) in tumor samples >0.05 or >0.2 were selected and manually reviewed. Human orthologues of mouse genes were assigned with the Ensembl 92 database. For each sample, the number of mutations, SNVs at C:G base pairs, transitions, and SNVs within the WRCY/RGYW motifs were calculated and compared using the Brunner-Munzel test. Enrichment of SNVs at C/G within the WRCY/RGYW motifs in genes were performed by binomial test. Gene enrichment analyses were performed with Fisher's exact test using the gene sets derived from supplemental Tables 5-8. ${ }^{30,31}$

AlphaScreen binding assay for LUBAC inhibitors

To search for inhibitors of linear polyubiquitination, an AlphaScreen-based HTS system was established using N-terminally FLAG-His-tagged ubiquitin (FLAG-Ub), C-terminally glutathione S-transferase (GST)-tagged ubiquitin (Ub-GST), ubiquitin-activating enzyme E 1 , UbcH 7 as the E 2 ubiquitin-conjugating enzyme, and Petit-LUBAC or Petit-SHARPIN as the E3 ubiquitin ligase, as described in supplemental Methods.

Generation of a preclinical model for validation of LUBAC inhibitor

The cell line HM876 was established as described in supplemental Methods. Transplantation of HM876 tumor cells was performed by subcutaneously injecting $5 \times$
10^{6} cells into 6 -week-old C57BL/6 females, that were sublethally irradiated (4.5 Gy) 6 hours before transplantation. The animals were divided into three groups: the control group ($n=7$) received intraperitoneal injection of DMSO diluted in 5% glucose; the other two groups were injected intraperitoneally with thiolutin diluted in 5% glucose at 2.5 or $5.0 \mathrm{mg} / \mathrm{kg} /$ day $(\mathrm{n}=7)$. Thiolutin was administered from days 2 to 6 and days 9 to 13. On day 14 , the animals were euthanized, and tumor weight was assessed.

Results

Augmented HOIP expression accelerates MYD88-mediated B-cell lymphomagenesis in mice

Based on the analysis of a publicly available database of gene expression in human B cells, ${ }^{32}$ HOIP is physiologically expressed throughout B-cell development (supplemental Figure 1A). However, we previously reported that two rare SNPs of HOIP that augment LUBAC activity were enriched specifically in patients with ABC-DLBCL. ${ }^{20}$ Because the protein expression level of HOIP determines the amount of other LUBAC subunits and activity of LUBAC, ${ }^{17}$ we hypothesized that HOIP plays a key role in the activation of NF- κ B pathway in ABC-DLBCL, ${ }^{21,33,34}$ irrespective of the SNP status. We examined expression of HOIP in RNA sequencing (RNA-seq) data from 624 DLBCL samples in the European Genome-phenome Archive (EGA; dataset identifier [ID]: EGAD00001003600) ${ }^{25}$ and found that its expression level was significantly higher in ABC-DLBCL than in GCB-DLBCL, as well as HOIL-1L and SHARPIN, that encode other subunits of LUBAC, although statistical significance was not observed in SHARPIN (Figure 1A; supplemental Figure 1B; supplemental Table 1). On the other hand, expression level of OTULIN, encoding a linear ubiquitin-specific deubiquitinase that negatively regulates LUBAC signaling, ${ }^{35,36}$ was lower in ABC-DLBCL (supplemental Figure 1B; supplemental Table 1). These results are compatible to the increased LUBAC activity in ABC-DLBCL.

Therefore, to investigate the role of LUBAC played in B-cell lymphomagenesis, we generated mice expressing high levels of HOIP specifically in B cells from the pre-B cell stage (CD19-cre-HOIP) (Figure 1B). Bicistronic expression of eGFP allowed us to confirm that transgenic HOIP was specifically expressed in CD19 ${ }^{+}$ B cells (supplemental Figure 1C). In CD19-cre-HOIP mice, elevated expression of

HOIP increased expression of the other LUBAC subunits, thereby increasing the amount of trimeric LUBAC in B cells (supplemental Figure 1D). As expected, high levels of LUBAC increased expression of NF-кB target genes in splenic B cells despite mildly (Figure 1C; supplemental Figure 1E). Although some of the CD19-cre-HOIP mice aged over 14 months showed splenomegaly, no lymphoma development was observed (supplemental Figure 1F).

The majority of ABC-DLBCLs with the LUBAC-activating HOIP SNPs also carry the oncogenic MYD88 L265P mutation. ${ }^{20}$ Consistent with this, we found that B cells with enforced HOIP expression proliferated more efficiently by TLR stimulation (CpG-DNA and Pam3CSK4) (Figure 1D), which suggested the synergistic effect of LUBAC and MYD88 signaling. To evaluate the combinatorial effect of LUBAC and MYD88 L265P, we generated mice in which Myd88 L252P, the equivalent to human $L 265 P$, was expressed specifically in B cells from the pre-B cell stage (CD19-cre-MYD88LP) (supplemental Figure 1G-I). MYD88 L252P increased proliferation and NF- KB activity of splenic B cells (supplemental Figure 1J-K). Hence, we assessed the synergistic effects of HOIP and MYD88 L252P on B-cell tumorigenesis in these mice. We evaluated the linear ubiquitin chains in B cells by using linear ubiquitin-specific tandem ubiquitin binding entity (M1-specific TUBE) (supplemental Figure 1 L),,37,38 and found that the amount of linear ubiquitin chains was higher in splenic B cells of CD19-cre-HOIP/MYD88LP mice than in those of CD19-cre-MYD88LP mice (Figure 1E). As reported previously, B cell-specific expression of MYD88 L252P led to decreased survival. ${ }^{39}$ We found that introduction of a HOIP transgenic allele significantly shortened the survival of CD19-cre-MYD88LP mice (Figure 1F).

Next, we examined pathological changes in CD19-cre-HOIP/MYD88LP and CD19-cre-MYD88LP mice. Mice with both genotypes developed marked
lymphosplenomegaly, and histological examination of spleens and lymph nodes revealed infiltrates of lymphoid cells in these organs (Figure 1G-H). In addition, human DLBCL-like eGFP and CD19-positive large abnormal B cells diffusely infiltrated into the affected organs in mice with both genotypes (Figure 1H; supplemental Figure 2A). Assessment of $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination of immunoglobulin heavy chain loci using a PCR-based method confirmed the presence of monoclonal B-cell populations in all involved tissues derived from 14 mice (4 CD19-cre-MYD88LP and 10 CD19-cre-HOIP/MYD88LP) (Figure 1I; supplemental Figure 2B; Table 1). Lymphomas developed in 4 CD19-cre-MYD88LP mice and those in 8 of the 10 CD19-cre-HOIP/MYD88LP mice were positive for CD19, B220, and IgM and negative for CD138 by flow cytometric analysis (DLBCL-like lymphomas). These tumors were Irf4 positive and Bcl6 negative by immunohistochemical staining (Figure 1 H). Moreover, sequence analysis of the variable regions of the clonally rearranged IgH gene revealed the presence of somatic hypermutations in most of the DLBCL-like lymphomas (supplemental Table 9). These results suggested that these tumors are mostly derived from post-germinal center B cells and are compatible with human ABC-DLBCL. ${ }^{40}$ Tumor cells of the remaining two CD19-cre-HOIP/MYD88LP mice exhibited a plasma cell-like phenotype of CD19 and B220-negative and CD138-positive expression (Table 1). These results indicated that elevated expression of LUBAC potentially has a function to facilitate MYD88-mediated B-cell tumorigenesis.

High LUBAC expression is associated with increased accumulation of AID-mediated somatic mutations

We did not find any significant macroscopic, histological, and immunophenotypic differences between DLBCL-like lymphomas developed in CD19-cre-MYD88LP and CD19-cre-HOIP/MYD88LP mice (Figure 1G-H; Table 1). To understand the biological
background of the accelerated MYD88-mediated lymphomagenesis in the condition of augmented LUBAC activity, we performed whole-exome sequencing analyses of genomic DNA isolated from 12 lymphomas derived from 12 different mice (eight from CD19-cre-HOIP/MYD88LP and four from CD19-cre-MYD88LP mice). Significantly more mutations were detected in the whole exons of lymphoma cells derived from CD19-cre-HOIP/MYD88LP mice than in those from CD19-cre-MYD88LP mice (Figure 2A; supplemental Figure 3A), indicating that elevated LUBAC expression increased the number of somatic mutations. Twenty-six genes were found to be recurrently mutated non-synonymously in two or more samples among 12 mice. Twenty-three of them were recurrently mutated among those from eight CD19-cre-HOIP/MYD88LP mice. Moreover, 6 of them, including Irf2bp2 and Pim1, were reported to be frequently mutated in human DLBCLs, especially in ABC-DLBCL (Figure 2B-C; supplemental Table 5). ${ }^{30}$ These results suggested that B-cell lymphomas generated in mice expressing HOIP with MYD88 mutant transgene share some genome mutations with human DLBCLs. ${ }^{25,30}$

Notably, a significant proportion of recurrently mutated genes in lymphomas from CD19-cre-HOIP/MYD88LP mice were identified as known or predicted targets of aberrant somatic hypermutation induced by activation-induced cytidine deaminase (AID) (Figures 2C and 3A; supplemental Table 6). ${ }^{25,30,31,41,42}$ AID plays essential roles in class-switch recombination and somatic hypermutation of the immunoglobulin genes during physiological B-cell maturation, ${ }^{43}$ and is also involved in the pathogenesis of human DLBCL by introducing aberrant somatic hypermutations in non-immunoglobulin genes. ${ }^{34,44-46}$ We found that somatic single-nucleotide variations (SNVs) within WRCY/RGYW motifs, or at C:G sites and transition mutations accumulated at higher levels in tumors derived from CD19-cre-HOIP/MYD88LP mice than in those from CD19-cre-MYD88LP mice (Figure 3B; supplemental Figure 3B-D;
supplemental Tables 7-8). Additionally, most of these mutations were located within 2 kb downstream of the transcription start site (TSS) of each target gene (Figure 3C; supplemental Figure 3E). Since all of these characteristics are known as hallmarks of AID-mediated somatic mutations, it is indicated that AID-mediated mutagenesis is involved in B-cell lymphoma development in CD19-cre-HOIP/MYD88LP mice. ${ }^{47-49}$ Meanwhile, in the analyses of the whole-exome sequencing and RNA-seq data from 48 human DLBCL samples (Project ID: TCGA-DLBC), ${ }^{27,28}$ we found that the frequency of AID-induced mutations positively correlated with the expression level of HOIP (Figure 3D-E; supplemental Table 4). Taken together, these results indicated that elevated expression of HOIP is associated with increased accumulation of somatic mutations of AID pattern, and augmented LUBAC activity is suspected to explain the facilitation of MYD88-mediated B-cell lymphomagenesis.

Augmented LUBAC activity overcomes cell death induced by DNA damage thereby accelerating accumulation of somatic mutations

Although AID has a strong preference for immunoglobulin genes, it produces off-target DNA damages as well, resulting in aberrant somatic mutations. ${ }^{34,44,46,50}$ As shown above, AID-mediated mutations accumulated more prominently in CD19-cre-HOIP/MYD88LP mice compared to CD19-cre-MYD88LP mice. However, the expression levels of AID and the percentages of germinal center B cells in mesenteric lymph nodes were comparable between CD19-cre-HOIP/MYD88LP and CD19-cre-MYD88LP mice (Figure 4A). In addition, no correlation was found in the expression level of AID and HOIP in human DLBCLs (data not shown). Therefore, the altered expression level of AID did not seem to be the main reason for increased somatic mutations in lymphomas derived from CD19-cre-HOIP/MYD88LP mice.

Previous studies showed that LUBAC has functions in protecting cells from
genotoxic damage-induced apoptosis, as well as mediating NF-кB activation via plasma membrane receptors. ${ }^{51,52}$ Therefore, we examined the cell protective effect of LUBAC against genotoxic stress. Enforced expression of HOIP protected HBL1, a human ABC-DLBCL-derived cell line, ${ }^{7}$ and murine splenic B cells from cisplatin-induced cell death (Figure 4B-D; supplemental Figure 4A-B). We also found that enforced expression of LUBAC protected Jurkat cells from cisplatin-induced cell death by suppressing apoptosis (Figure 4E-H). It has been indicated that LUBAC-mediated linear ubiquitination of NEMO is involved in genotoxic NF-кB activation and protects cells from DNA damage-induced cell death. ${ }^{52-55}$ Indeed, expression of NF- κ B target genes, including anti-apoptotic genes, was modestly but significantly higher in splenic B cells of the CD19-cre-HOIP/MYD88LP mice than in those of the CD19-cre-MYD88LP mice (supplemental Figure 5). Elevated levels of HOIP not only augmented activation of NF- KB and expression of several anti-apoptotic genes, but also enhanced linear ubiquitination of NEMO induced by cisplatin (Figure 4I-K; supplemental Figure 4C). In accordance with these results, RNA-seq analyses of human DLBCLs revealed that expression of HOIP positively correlated with expression of the genes involved in negative regulation of intrinsic apoptotic signaling, as well as those involved in the NF-кB pathway (Figure 4L). These results suggested that enhanced HOIP expression increases LUBAC activity and confers tumor cells resistance to cisplatin-induced DNA damage by modulating expression of genes associated with cell death.

On the other hand, AID-induced DNA alterations are repaired by the DNA double-strand break repair machinery, which also functions in repairing cisplatin-induced DNA damage. ${ }^{41,56}$ Based on the observation that somatic mutations of AID signature are increased in mouse lymphoma cells, it can be speculated that increased LUBAC activity would also promote the accumulation of oncogenic somatic
mutations caused by AID, and in turn, facilitate the MYD88-mediated B-cell lymphoma development.

LUBAC is an effective target for the treatment of DLBCL

Analysis of publicly available RNA-seq gene expression data ${ }^{25,30}$ suggested that the prognosis of primary refractory or relapsed DLBCL patients with high HOIP expression is worse than those with low HOIP expression (supplemental Figure 6A). Indeed, we showed that LUBAC is involved in B-cell lymphomagenesis by protecting cells from DNA damage-induced apoptosis (Figure 4D,G; supplemental Figure 4B), which may lead to resistance to cytotoxic chemotherapies. ${ }^{51}$ We have previously described that LUBAC represents a novel therapeutic target against this cancer because reduction of LUBAC suppresses NF-кB activation and proliferation of ABC-DLBCL cells in vitro cell culture. ${ }^{20,57}$ We then tried to establish a preclinical model for B-cell lymphomas using CD19-cre-HOIP/MYD88LP mice to evaluate whether LUBAC is a promising drug target for B-cell lymphomas in vivo.

A cell line HM876, derived from a B-cell lymphoma with plasma cell-like surface phenotype in a CD19-cre-HOIP/MYD88LP mouse, exhibited elevated expression of trimeric LUBAC and constitutive activation of NF- κ B, manifested by phosphorylation and reduced expression of $\mathrm{I} \mathrm{BB} \alpha$ (Figure 5A; supplemental Figure 6B; Table 1). Using HM876 cells, we established a mouse lymphoma model by secondary transplantation of HM876 cells for in vivo drug evaluation (Figure 5B).

We next sought for small compounds that can inhibit the activity of LUBAC. High-throughput screening (HTS) of 41,760 compounds in total using an AlphaScreen-based method (supplemental Figure 6C) identified aureothricin as a candidate LUBAC inhibitor (Figure 5C-D; supplemental Figure 6D-E). Because thiolutin is a molecular derivative of aureothricin, we examined both compounds in
subsequent experiments (Figure 5C-E; supplemental Figure 6E).
Ubiquitin ligases are classified into three groups, RING, HECT, and RING-IBR-RING (RBR). LUBAC is an RBR ligase, ${ }^{58}$ and thiolutin inhibited catalytic RBR domain of HOIP in LUBAC (Figure 5F). Thiolutin did not noticeably inhibit the activities of a HECT ligase (Nedd4) or a RING ligase (cIAP2) in vitro, and only slightly inhibited another RBR ligase (Parkin), when used in higher concentrations (supplemental Figure 6F), suggesting that its inhibitory function is specific for LUBAC. Thiolutin effectively suppressed CD40 ligand-mediated NF-кB activation, and decreased the protein expression levels of LUBAC subunits at concentration as low as $0.07 \mu \mathrm{M}$ in ABC-DLBCL-derived DLBCL2 cells and HM876 cells (Figure 5G-H). Thiolutin did not decrease the amount of LUBAC components in the in vitro ubiquitination assay, nor obviously altered the gene expression of LUBAC subunits in DLBCL cells (supplemental Figure 6G-H). Thiolutin decreased the amount of linear ubiquitin chains without affecting the amount of K48- or K63-ubiquitin chains in cells (Figure 5I; supplemental Figure 6I), and appeared to decrease survival of ABC-DLBCL-derived cell lines more effectively than GCB-DLBCL-derived cell lines (Figure 5J). Likewise, thiolutin suppressed NF- kB activation and exerted significant cytotoxicity in HM876 cells in vitro (Figure 5A,K). These results suggested that the cytotoxic effect of thiolutin is mainly caused by the inhibition of LUBAC and the blockade of NF- $\kappa \mathrm{KB}$ signaling. To validate whether LUBAC is an effective therapeutic target for B-cell lymphomas, we intraperitoneally administered thiolutin to mice inoculated with HM876 cells, and found that thiolutin significantly decreased the tumor burden (Figure 5L-M), indicating that inhibition of LUBAC represents an effective treatment for B-cell lymphomas with NF-кB activation. Moreover, our results demonstrate that our mouse model provides a valuable preclinical platform for the development of novel therapeutic approaches for B-cell lymphomas.

Discussion

Constitutive activation of NF- KB signaling is required for survival and proliferation of B cells and plays a crucial role in pathogenesis of ABC-DLBCL. Previously, we reported that rare germline SNPs in the gene encoding HOIP, which activates LUBAC ligase activity are accumulated in individuals with ABC-DLBCL. ${ }^{20}$ We also found that expression of HOIP is elevated in ABC-DLBCL compared to GCB-DLBCL (Figure 1A). According to these observations, it is suspected that HOIP plays important roles broadly in ABC-DLBCL, whereas the precise contribution of HOIP and its functional protein complex LUBAC to lymphomagenesis has been poorly understood. Hence, we established mice models that allow enhanced expression of HOIP in B cells and assessed the roles of LUBAC in the pathogenesis of ABC-DLBCL. Because the LUBAC activating SNPs of HOIP accumulate in patients with ABC-DLBCL with oncogenic MYD88 L265P mutation, ${ }^{20}$ we investigated the functional synergism of LUBAC and MYD88 in B-cell lymphomagenesis in mice. The results revealed that elevated expression of LUBAC accelerates MYD88-driven lymphomagenesis.

Our data showed that overexpression of HOIP increased NF-кB activation and enhanced proliferation of B cells upon MYD88 dependent signal activation (Figure 1CD; supplemental Figure 1E), although it could not induce lymphomas in mice by itself (Figure 1F). However, enforced HOIP expression with oncogenic MYD88 L252P signaling facilitates tumor formation in mice, of which phenotype is DLBCL-like. More importantly, whole-exome sequence analysis of lymphomas developed in mice revealed higher somatic mutations in lymphomas with co-expression of HOIP, many of which are of AID signature and partially resemble those often seen in DLBCL patient samples (Figures 2B-C and 3A-C; supplemental Figure 3A-E). This suggests that the mouse model expressing HOIP and MYD88 L252P shares biological features with human

DLBCL.
NF- $\kappa \mathrm{B}$ is known to be activated by genotoxic damages, including those triggered by AID, and it helps cell survival by inducing a variety of anti-apoptotic genes. ${ }^{53}$ We previously reported that LUBAC-mediated linear ubiquitination of NEMO plays a key role in transducing nuclear genotoxic signals to the cytoplasm, and in turn inducing genotoxic stress-induced NF- κ B activation. ${ }^{52}$ As no significant difference in the expression levels of AID could be observed in B cells between CD19-cre-HOIP/MYD88LP and CD19-cre-MYD88LP mice (Figure 4A), we assume that increased mutation burden in the tumors of CD19-cre-HOIP/MYD88LP mice is rather a result of higher tolerability to genotoxic stress in the condition of higher catalytic activity of LUBAC (Figure 4D,G,J; supplemental Figure 4B). Therefore, elevated expression of LUBAC is considered to facilitate MYD88-mediated B-cell lymphomagenesis by conferring B cells resistance to genotoxic stress and, in turn, augmenting the accumulation of oncogenic mutations. Our findings are compatible with the previous report that apoptotic pathway countered MYD88-driven B-cell proliferation ${ }^{59}$ and aberrant expression of anti-apoptotic protein Bcl-2 facilitated generation of oncogenic MYD88-driven DLBCL. ${ }^{39,60,61}$

In accordance with our mouse experiment, the expression level of HOIP appears to positively correlate with the number of somatic mutations of AID signature in human DLBCL (Figure 3E). Since no correlation was found in the expression level of AID and HOIP in human DLBCLs (data not shown), augmented protection of DNA damage-induced cell death by enhanced LUBAC expression might rather be a main cause for high mutation rates in human DLBCLs with high HOIP expression. Gene mutations recurrently found in human DLBCLs could barely be detected in lymphomas generated in mice with oncogenic MYD88 transgene alone. This could be simply due to the limited number of tumors that could be analyzed in CD19-cre-MYD88LP mice, or
the potential differences in B-cell developmental stage in which oncogenic MYD88 transgene are acquired between our model and human DLBCL.

We observed a population of mice with tumors of a more differentiated phenotype with CD138 and IgM expression (Table 1) and the presence of serum M proteins (data not shown). These tumors may possibly be the equivalent of lymphoplasmacytic lymphoma (LPL) in humans, another B-cell malignancy in which MYD88 L265P is closely involved. ${ }^{62,63}$ Considering that these tumors were observed only in CD19-cre-HOIP/MYD88LP mice (Table 1), augmented LUBAC activity may have played some roles in their development, whereas there is presently no data of the involvement of LUBAC in the pathogenesis of LPL.

Finally, we established a preclinical tumor transplantation model for human B-cell lymphomas using a cell line derived from a CD19-cre-HOIP/MYD88LP mouse. In this model, we showed that thiolutin, a specific inhibitor of LUBAC, suppressed the growth of lymphoma cells. Reduction or deletion of LUBAC counteracts resistance to cytotoxic chemotherapy, possibly by decreasing the expression of anti-apoptotic genes that are induced by NF- κ B activation. ${ }^{51}$

In summary, our results suggest that LUBAC has a function to accelerate B-cell lymphomagenesis by conferring B cells resistance to genotoxic stress. We have also shown that, as a direct regulator of NF-кB pathway, LUBAC is an effective treatment target for lymphoma. Considering that resistance to genotoxic cell death is the common feature of chemorefractory cancers, the inhibition of LUBAC would represent a promising strategy for the treatment of multiple types of cancers.

Acknowledgements

We thank Y. Fuseya and H. Fujita for insightful discussions, Y. Sugahara for assistance with animal cares, and I. Kuwahara for assistance with HTS for small-molecule inhibitors of LUBAC. We also thank A. Reddy and S.S. Dave (Duke University, Durham, NC) for providing DLBCL sequencing data. The results published here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. Preparation of paraffin-embedded sections was supported by the Anatomic Pathology Center of the Graduate School of Medicine of Kyoto University. This work was supported in part by P-DIRECT, a Grant-in-Aid to K.I. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; grants from AMED to S.O. (Grant Number 18cm0106501h0003) and A.T.-K. (Grant Numbers 18ck0106250h0002 and 17fk0108040h0002); and grants from KAKENHI from Japan Society for the Promotion of Science or MEXT to M.N. (Grant Number 15K09474), A.T.-K. (Grant Number 18H03992), M.Y. (Grant Number 18H05503), and K.I. (Grant Numbers 24112002, 25253019, 26670154, 17H06174, and 18H05499).

Authorship Contributions

T.J., M.N., Y.S., K.I., and A.T-K. conceived and designed the project. T.J. performed most of the experiments. S.M. provided essential experimental support. A.S. and H.K. supported generation of transgenic mice. Y.K., K.K., and S.O. performed whole-exome sequencing analyses of the lymphomas derived from transgenic mice. H.A. performed analyses of clinical RNA-seq data. N.K., T.O., K.S., M.Y. developed and performed the HTS for small-molecule inhibitors for LUBAC. T.N., and F.I. performed experiments on aureothricin and thiolutin. K.S. advised on experimental design. T.J., M.N., K.I., and A.T-K. wrote the manuscript with contributions from all other authors.

References

1. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: International Agency for Research on Cancer (IARC). 2017.
2. Lenz G, Staudt LM. Aggressive lymphomas. N Engl J Med. 2010;362(15):1417-1429.
3. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503-511.
4. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105(5):1851-1861.
5. Shaffer AL, 3rd, Young RM, Staudt LM. Pathogenesis of human B cell lymphomas. Аппи Rev Immunol. 2012;30:565-610.
6. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17):9991-9996.
7. Kelly PN, Romero DL, Yang Y, et al. Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med. 2015;212(13):2189-2201.
8. Nowakowski GS, LaPlant B, Macon WR, et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. J Clin Oncol. 2015;33(3):251-257.
9. Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v116-125.
10. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115-119.
11. Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev. 2012;246(1):95-106.
12. Fujita H, Rahighi S, Akita M, et al. Mechanism underlying IкB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol. 2014;34(7):1322-1335.
13. Ikeda F, Deribe YL, Skanland SS, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-кB activity and apoptosis. Nature. 2011;471(7340):637-641.
14. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor- $\kappa \mathrm{B}$ (NF- $\kappa \mathrm{B}$) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of $\mathrm{NF}-\kappa \mathrm{B}$. J Biol Chem.

2012;287(28):23626-23634.
15. Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006;25(20):4877-4887.
16. Kumari S, Redouane Y, Lopez-Mosqueda J, et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. Elife. 2014;3:e03422.
17. Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF- κB-activating linear ubiquitin chain assembly complex. Nature. 2011;471(7340):633-636.
18. Tokunaga F, Sakata S, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-кB activation. Nat Cell Biol. 2009;11(2):123-132.
19. Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471(7340):591-596.
20. Yang Y, Schmitz R, Mitala J, et al. Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms. Cancer Discov. 2014;4(4):480-493.
21. Sasaki Y, Sano S, Nakahara M, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 2013;32(18):2463-2476.
22. Satpathy S, Wagner SA, Beli P, et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol. 2015;11(6):810.
23. Yang Y, Kelly P, Shaffer AL, 3rd, et al. Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma. Cancer Cell. 2016;29(4):494-507.
24. Yang YK, Yang C, Chan W, Wang Z, Deibel KE, Pomerantz JL. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem. 2016;291(50):25921-25936.
25. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481-494 e415.
26. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25(6):1317-1318.
27. Grossman RL, Heath AP, Ferretti V, et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375(12):1109-1112.
28. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879-3884.
29. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304-1315.
30. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407.
31. Alvarez-Prado AF, Perez-Duran P, Perez-Garcia A, et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med. 2018;215(3):761-771.
32. Petri A, Dybkaer K, Bogsted M, et al. Long Noncoding RNA Expression during Human B-Cell Development. PLoS One. 2015;10(9):e0138236.
33. Dubois SM, Alexia C, Wu Y, et al. A catalytic-independent role for the LUBAC in NF- κ B activation upon antigen receptor engagement and in lymphoma cells. Blood. 2014;123(14):2199-2203.
34. Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood. 2018;131(21):2307-2319.
35. Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell. 2013;153(6):1312-1326.
36. Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 2013;498(7454):318-324.
37. Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009;10(11):1250-1258.
38. van Wijk SJ, Fiskin E, Dikic I. Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain-specific sensors. Nat Protoc. 2013;8(7):1449-1458.
39. Knittel G, Liedgens P, Korovkina D, et al. B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice. Blood. 2016;127(22):2732-2741.
40. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282.
41. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679-690.
42. Liu M, Duke JL, Richter DJ, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008;451(7180):841-845.
43. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553-563.
44. Lossos IS, Levy R, Alizadeh AA. AID is expressed in germinal center

616 45. Mlynarczyk C, Fontan L, Melnick A. Germinal center-derived lymphomas: The darkest side of humoral immunity. Immunol Rev. 2019;288(1):214-239. 618 46. Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple

B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity. Leukemia. 2004;18(11):1775-1779. proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341-346.
47. Khodabakhshi AH, Morin RD, Fejes AP, et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget. 2012;3(11):1308-1319.
48. Rada C, Milstein C. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J. 2001;20(16):4570-4576.
49. Storb U, Peters A, Klotz E, et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev. 1998;162:153-160.
50. Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci. 2017;18(9).
51. MacKay C, Carroll E, Ibrahim AFM, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res. 2014;74(8):2246-2257.
52. Niu J, Shi Y, Iwai K, Wu ZH. LUBAC regulates NF-кB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J. 2011;30(18):3741-3753.
53. McCool KW, Miyamoto S. DNA damage-dependent NF-кB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246(1):311-326.
54. Wang CY, Mayo MW, Baldwin AS, Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-кB. Science. 1996;274(5288):784-787.
55. Wu ZH, Miyamoto S. Induction of a pro-apoptotic ATM-NF-кB pathway and its repression by ATR in response to replication stress. EMBO J. 2008;27(14):1963-1973.
56. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1-22.
57. Fujita H, Tokunaga A, Shimizu S, et al. Cooperative Domain Formation by Homologous Motifs in HOIL-1L and SHARPIN Plays A Crucial Role in LUBAC Stabilization. Cell Rep. 2018;23(4):1192-1204.
58. Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 2012;31(19):3833-3844.
59. Wang JQ, Jeelall YS, Beutler B, Horikawa K, Goodnow CC. Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance. J Exp Med.

2014;211(3):413-426.
60. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large 655 B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA. 2008;105(36):13520-13525.
657 61. Monni O, Joensuu H, Franssila K, Klefstrom J, Alitalo K, Knuutila S. BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood. 1997;90(3):1168-1174.
62. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med. 2012;367(9):826-833. 63. Kapoor P, Paludo J, Vallumsetla N, Greipp PR. Waldenström macroglobulinemia: What a hematologist needs to know. Blood Rev. 2015;29(5):301-319.

Table 1. Surface phenotypes of lymphomas in transgenic mice

Tumor ID	Genotype	Surface phenotypes											Major site of involvement
		CD19	B220	IgM	Ig D	CD5	CD21	CD23	CD38	CD138	IgK	$\operatorname{Ig} \lambda$	
786	CD19-cre-HOIP/MYD88LP	$+$	$+$	+	-	-	-	-	$+$	-	$+$	-	Spleen
950	CD19-cre-HOIP/MYD88LP	+	+	+	-	-	-	-	+	-	$+$	-	Spleen
1032	CD19-cre-HOIP/MYD88LP	$+$	$+$	$+$	-	-	-	-	$+$	-	$+$	-	Extranodal (subcutaneous)
1074	CD19-cre-HOIP/MYD88LP	$+$	$+$	$+$	-	-	-	-	+	-	+	-	Mesenteric lymph nodes
1078	CD19-cre-HOIP/MYD88LP	$+$	$+$	$+$	-	-	-	-	$+$	-	-	+	Peripheral lymph nodes
1083	CD19-cre-HOIP/MYD88LP	+	$+$	$+$	-	-	-	-	$+$	-	+	-	Peripheral lymph nodes
1084	CD19-cre-HOIP/MYD88LP	+	$+$	$+$	-	-	-	-	$+$	-	$+$	-	Peripheral lymph nodes
1182	CD19-cre-HOIP/MYD88LP	+	$+$	$+$	-	-	NA	NA	NA	-	+	-	Mesenteric lymph nodes
1236	CD19-cre-MYD88LP	+	$+$	$+$	-	-	-	-	$+$	-	+	-	Mesenteric lymph nodes
1237	CD19-cre-MYD88LP	+	$+$	$+$	-	-	-	-	+	-	+	-	Extranodal (subcutaneous)
1289	CD19-cre-MYD88LP	$+$	$+$	$+$	-	-	-	-	$+$	-	+	-	Peritoneal
1385	CD19-cre-MYD88LP	+	$+$	$+$	-	-	-	-	+	-	$+$	-	Peripheral lymph nodes
876	CD19-cre-HOIP/MYD88LP	-	-	$+$	-	-	-	-	$+$	$+$	+	-	Peritoneal
1027	CD19-cre-HOIP/MYD88LP	-	-	+	-	-	-	-	-	+	+	-	Peritoneal

Figure Legends

Figure 1. Augmented LUBAC expression accelerates oncogenic MYD88-mediated B-cell lymphomagenesis in mice. (A) Association of HOIP (RNF31) expression with cell-of-origin in human DLBCL. Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points. (B) Schematic representation of conditional expression of HOIP in mice. (C) Transcript levels of NF-кB target genes in unstimulated splenic B cells from mice (10 weeks old), normalized against $A c t b$ mRNA; $\mathrm{n}=3$ per genotype. Data are means \pm SD. (D) Cell Trace Violet-labeled splenic B cells were cultured with or without stimuli. (E) Cell lysates of splenic B cells derived from CD19-cre, CD19-cre-MYD88LP, and CD19-cre-HOIP/MYD88LP mice were subjected to Halo-tagged linear ubiquitin-specific tandem ubiquitin binding entity (M1-specific TUBE) binding and Halo Tag based purification, and analyzed by immunoblotting. (F) Kaplan-Meier plots of survival of transgenic mice $(\mathrm{n}=18$, CD19-cre; $\mathrm{n}=36$, CD19-cre-HOIP; $\mathrm{n}=26$, CD19-cre-MYD88LP; and $n=33$, CD19-cre-HOIP/MYD88LP). (G-I) Representative tumor involvement of lymphoid organs isolated from 9-month-old CD19-cre-HOIP/MYD88LP mice. (G) Macroscopic appearance of spleens (left) and lymph nodes (right). (H) Representative H\&E and immunohistochemical staining for Irf4 and Bcl6 of spleens (CD19-cre mice) or tumors (CD19 cre-MYD88LP and CD19-cre-HOIP/MYD88LP mice). Scale bars: $200 \mu \mathrm{~m}$; inset $20 \mu \mathrm{~m}$. (I) Representative analyses of clonality. Tumor 1084-specific primers specifically amplified tumor 1084specific $V(D) J$, but did not amplify $V(D) J$ from genomic DNA of normal splenic B cells or tumor 786. (C and F) $* \mathrm{p}<0.05, * * \mathrm{p}<0.01$, ${ }^{* * *} \mathrm{p}<0.001$. (A and C), two-tailed unpaired Student's t-test; (F) log-rank test.

See also supplemental Figures 1-2 and supplemental Table 1.

Figure 2. LUBAC facilitates somatic mutations in genes frequently mutated in human DLBCL. (A-C) Mutations with variant allele frequency (VAF) >0.05 in tumor samples were selected and analyzed. (A) Numbers of total mutations including both synonymous and non-synonymous mutations in each tumor sample. Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points. (B) Venn diagram depicting the overlap between genes recurrently mutated non-synonymously in lymphoma cells derived from CD19-cre-HOIP/MYD88LP mice and those frequently detected in human DLBCL. ${ }^{30}$ (C) Mutational heatmap showing recurrently mutated genes across sequenced samples, color-coded according to five types of genetic alteration. Above the mutational heatmap, the bar graph indicates the number of non-synonymous mutations in each sample. To the right of the mutational heatmap, the stacked bar graph indicates the percentage of tumors that have each mutations, using the same five-color scheme. Target genes of aberrant somatic hypermutation induced by AID in human DLBCL are labeled in red. Black daggers indicates murine homologous genes frequently mutated in human DLBCL. ${ }^{30}$ Red and blue daggers indicate murine homologue of previously reported altered genes significantly enriched in human ABC-DLBCL and GCB-DLBCL, respectively. ${ }^{30}$
(A) $* * * \mathrm{p}<0.001$. (A) Brunner-Munzel test; (B) Fisher's exact test.

See also supplemental Figure 3 and supplemental Table 5.

Figure 3. LUBAC facilitates aberrant somatic hypermutations mediated by AID. (A-C) Mutations with VAF >0.05 in tumor samples were selected and analyzed. (A) Venn diagram depicting the overlap between genes recurrently mutated in lymphoma cells derived from CD19-cre-HOIP/MYD88LP mice and murine homologue of known or predicted targets of aberrant somatic hypermutation mediated by AID. ${ }^{30}$ (B) Numbers
of SNVs at C/G within the WRCY/RGYW motifs (left), and numbers of C:G (center) and transition mutations (right) in each tumor sample. (C) Mutation distribution in targeted genes observed in lymphoma cells derived from eight CD19-cre-HOIP/MYD88LP mice. Shadows indicate the 2 kb region downstream of the transcription start site (TSS). (D) Numbers of nonsynonymous mutations in each human DLBCL sample. (E) Numbers of SNVs at C/G within the WRCY/RGYW motifs (left), and numbers of C:G (center) and transition mutations (right) in each human DLBCL sample. (D and E) Average fold change of FPKM (high vs. low) $=1.36$. Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points.
(B, D, and E), * $\mathrm{p}<0.05$, $^{* *} \mathrm{p}<0.01$, *** $\mathrm{p}<0.001$. (A) Fisher's exact test; (B) Brunner-Munzel test; (D and E) two-tailed unpaired Student's t-test. See also supplemental Figure 3 and supplemental Tables 6-8.

Figure 4. Augmented LUBAC activity overcomes cell death induced by DNA damage thereby accelerating accumulation of somatic mutations. (A) Transcript levels of Aicda, normalized to Actb (left panel) and percentages of germinal center B cells (right panel) in mesenteric lymph nodes from 10 -week-old mice; $\mathrm{n}=3$ per genotype. Data are means \pm SD. (B) HOIP-overexpressing HBL1 cells were established, and immunoblot analyses were performed using lysates from WT, mock-transfected, or HOIP-overexpressing HBL1 cells. (C) Live cells were analyzed by FACS using TO-PRO-3 staining. HBL1 cells were treated with or without $10 \mu \mathrm{~g} / \mathrm{mL}$ cisplatin for $0-$ 24 hours. (D) Percentage of live cells (\pm SD); $\mathrm{n}=6$ per group in three independent experiments. (E) Immunoblot analyses were performed using lysates from WT, HOIP-knockout, or HOIP-overexpressing Jurkat cells. (F) Live cells were analyzed by FACS using FSC and TO-PRO-3 staining. Jurkat cells were treated with or without 0.5
$\mu \mathrm{g} / \mathrm{mL}$ cisplatin for $0-72$ hours. (G) Percentage of live cells ($\pm \mathrm{SD}$) in three independent experiments. (H-J) Jurkat cells were treated with $3 \mu \mathrm{~g} / \mathrm{mL}$ cisplatin for the indicated periods, followed by immunoblotting (H-I) or quantitative RT-PCR, normalized against Actb mRNA (J). (K) Jurkat cells were treated with $5 \mu \mathrm{~g} / \mathrm{mL}$ cisplatin for the indicated periods. Whole-cell lysates were analyzed by anti-NEMO immunoprecipitation, followed by immunoblotting using antibodies against linear polyubiquitin and NEMO.
(L) Correlation of expression of HOIP (RNF31) and negative regulation of intrinsic apoptotic signaling signature (left), and NF- $\kappa \mathrm{B}$ signaling signature (right).
(A, D, G and J), * $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$. (A) one-way ANOVA with Turkey's post hoc test; (D, G and J) two-way ANOVA with Bonferroni post hoc test; (L) Pearson's correlation.

See also supplemental Figures 4 and 5, and supplemental Tables 1-4.

Figure 5. LUBAC is an effective target for the treatment of DLBCL. (A) Elevated phosphorylation and degradation of $\mathrm{I} \mathrm{B} \alpha$ in unstimulated HM876 cells were suppressed by thiolutin. (B) Diagram of allogeneic transplantation model. (C) Chemical structure of aureothricin. (D) Inhibition of LUBAC ligase activity by aureothricin and thiolutin in vitro. (E) Chemical structure of thiolutin. (F) Thiolutin inhibited linear polyubiquitination mediated by HOIP (aa 699-1072). (G) Upon stimulation of DLBCL2 cells with CD40 ligand, thiolutin suppressed phosphorylation and degradation of $\mathrm{I} \mathrm{B} \boldsymbol{\mathrm { B }}$ in a dose-dependent manner. DLBCL2 cells were exposed to thiolutin or DMSO for 2 hours, and then stimulated with CD40 ligand ($30 \mathrm{ng} / \mathrm{mL}$) for the indicated times. (H) Levels of LUBAC components in DLBCL2 (upper panel) and HM876 (lower panel) cells treated with thiolutin were reduced in a dose-dependent manner. (I) Cell lysates of DLBCL2 (left panel) and HM876 (right panel) cells treated with or without thiolutin $(0.1 \mu \mathrm{M})$ for two hours were analyzed by immunoblotting. Samples were probed with
anti-linear ubiquitin specific antibody (LUB9). (J) Viability of DLBCL lines after 48 hours treatment with the indicated concentrations of thiolutin, normalized against that of control (DMSO-treated) cells. Data are means \pm SD from three experiments. (K) Viability of HM876 cells after 48 hours treatment with the indicated concentrations of thiolutin, normalized against that of control (DMSO-treated) cells. Data are means $\pm \mathrm{SD}$ from three experiments. (L and M) Thiolutin suppressed growth of lymphomas in vivo. (L) Gross appearance of engrafted tumors. (M) Tumor weight. Data are means \pm SD. (J, K and M) $* \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$. (J and K) two-tailed unpaired Student's t-test; (M) one-way ANOVA with Turkey's post hoc tests.

See also supplemental Figure 6.

C

D

F

G

1: CD19-cre
2: CD19-cre-MYD88LP
3: CD19-cre-HOIP/MYD88LP

Figure 2

C
lrf2bp2

2kb region downstream from TSS

Pim1

2 kb region downstream from TSS

D

E

D

G

H
E

J

C
HBL1

Jurkat cells

Figure 5

Supplemental Information

LUBAC accelerates B-cell lymphomagenesis by conferring B cells resistance to genotoxic stress

Tomoyasu Jo, Momoko Nishikori, Yasunori Kogure, Hiroshi Arima, Katsuhiro Sasaki, Yoshiteru Sasaki, Tomoko Nakagawa, Fumie Iwai, Shuji Momose, Aki Shiraishi, Hiroshi Kiyonari, Noritaka Kagaya, Tetsuo Onuki, Kazuo Shin-ya, Minoru Yoshida, Keisuke Kataoka, Seishi Ogawa, Kazuhiro Iwai, Akifumi Takaori-Kondo

Supplemental Methods

Generation of tissue specific HOIP transgenic and MYD88 L252P transgenic mice

 Tissue-specific HOIP transgenic mice (ROSA26-STOP-Hoip-ires-eGFP-pA) and MYD88 L252P transgenic mice (ROSA26-STOP-Myd88_L252P-ires-eGFP-pA) (Accession No. CDB 1320K: http://www2.clst.riken.jp/arg/mutant\ mice\ list.html) were established as follows: The cDNA encoding N-terminally HA-tagged murine HOIP or FLAG-tagged murine MYD88 L252P was subcloned into vector STOP-eGFP-ROSA26TV ${ }^{1}$. Bruce-4 ES cells derived from C57BL/6 embryos (for ROSA26-STOP-Hoip-ires-eGFP-pA) or TT2 ES cells derived from C57BL/6 \times CBA F1 embryos (for ROSA26-STOP-Myd88_L252P-ires-eGFP-pA) transfected with the targeting vector were screened for homologous recombination. Homologous recombination at the 5 ' and 3^{\prime} ends and single integration were confirmed by Southern blot analysis. The recombinant ES cells were injected into eight cell-stage Crl:ICR embryos to generate germline chimeras, and subsequentchimeric breeding yielded ROSA26-STOP-Hoip-ires-eGFP-pA or ROSA26-STOP-Myd88_L252P-ires-eGFP-pA transgenic mice, which were then crossed with CD19-Cre mice. ${ }^{2}$ Offspring were routinely genotyped by PCR with primers 5 '-ACT GGA CCC AGC TAC CTT GTA TG-3' and 5^{\prime} '-GCA ATA TGG TGG AAA ATA AC-3' for the ROSA26-STOP-Hoip-ires-eGFP-pA allele, yielding a 367 bp product, and with primers 5^{\prime} 'GAC TAT ACC AAC CCT TGC AC-3' and 5^{\prime} '-CCT TGC TCA CCA TGG TTG TG-3' for the ROSA26-STOP-Myd88_L252P-ires-eGFP-pA allele, yielding a 783 bp product. Littermates were used in all subsequent experiments.

In vitro B-cell culture

Splenic B cells were positively selected using anti-CD19 microbeads and a MACS Separation Column (Miltenyi Biotec); purity was $>90 \%$. Purified splenic B cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), $50 \mu \mathrm{M}$ 2-ME, 10 mM HEPES-KOH (pH 7.4), and penicillin/streptomycin, and then stimulated with CpG-DNA (100 nM) (cat. no. tlrl-1826; InvivoGen) or Pam3CSK4 ($1 \mu \mathrm{~g} / \mathrm{mL}$) (cat. no. tlrl-pms; InvivoGen) for the indicated times. For in vitro labeling, cells were incubated at $37^{\circ} \mathrm{C}$ for 10 minutes in RPMI1640 medium containing $5 \mu \mathrm{M}$ Cell Trace Violet (Life Technologies), and then washed with RPMI medium containing 10% FBS. Labeled cells were cultured and exposed to various stimuli. After 72 hours, cell proliferation was measured by flow cytometry.

Establishment of the HM876 cell line

Lymphoma cells derived from the peritoneal cavity (T876) were seeded on 10 cm dishes in DMEM supplemented with $10 \% \mathrm{FBS}, 50 \mu \mathrm{M} 2-\mathrm{ME}, 10 \mathrm{mM}$ HEPES-KOH (pH 7.4),
and penicillin/streptomycin, and then incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. The medium was changed every 3-4 days. Continuously growing cell cultures were further passaged; frozen samples were prepared regularly from low passages.

Cell lines

HOIP KO Jurkat cells were established in our laboratory. ${ }^{3}$ HBL1, OYB, DLBCL2, SUDHL2, KIS1, ${ }^{4-6}$ DLBCL1, FL518, and Jurkat cells were cultured at $37^{\circ} \mathrm{C}$ in humidified air containing $5 \% \mathrm{CO}_{2}$ in RPMI medium (SIGMA) containing 10% FBS, $100 \mathrm{U} / \mathrm{mL}$ penicillin G , and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin. OCI-Ly 7^{7} cells were cultured at $37^{\circ} \mathrm{C}$ in humidified air containing 5\% CO2 in Iscove's modified Dulbecco's medium (SIGMA) containing 10% FBS, $100 \mathrm{U} / \mathrm{mL}$ penicillin G , and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin.

Lentiviral transduction of HBL1 and Jurkat cells

Lentiviral transduction of HBL1 and Jurkat cells were performed as described previously. ${ }^{8}$ Wild-type human HOIP cDNA was ligated into pCSII-EF-MCS-IRES2Venus. The resultant plasmid was transfected into HEK293T cells along with pCMV-VSV-G-RSV-Rev and pMDLg/pRRE. After 12 hours, the culture medium was replaced with fresh DMEM containing $10 \mu \mathrm{M}$ forskolin and incubated for 72 hours. Lentivirus in the culture supernatant was concentrated using a Lenti-X concentrator (Takara), and lentiviral titer was determined by measuring Venus expression. HBL1 or Jurkat cells were infected with lentivirus (multiplicity of infection $=10$) in the presence of Polybrene (10 $\mu \mathrm{g} / \mathrm{mL}$). Infected Venus + HBL1 or Jurkat cells were enriched using a FACSAria III cell sorter (BD Biosciences).

Flow cytometry analysis

Single-cell suspensions prepared from various lymphoid organs were stained with fluorochrome-conjugated antibodies. Flow cytometry data were acquired on a FACSCanto II (BD Biosciences), and the results were analyzed using the FlowJo software (Tree Star, Inc.). Antibodies used for analysis are listed below.

BrdU proliferation assay

BrdU was administered intraperitoneally to animals at $50 \mathrm{mg} / \mathrm{kg}, 1.5$ hours prior to euthanasia. Splenocytes were stained with FxCycle Violet (Thermo Fisher) and fluorochrome-conjugated antibodies against BrdU (clone 3DE, cat. no. 364104; BioLegend), and then analyzed by FACSCanto II.

Antibodies

The following antibodies were used for flow cytometry analysis:
Biotinylated-anti-IgM (cat. no. 115-067-020; Jackson ImmunoResearch Laboratories), biotinylated-anti-CD21 (clone 7E9, cat. no. 123405; BioLegend), biotinylated-anti-Igא (clone RMK-12, cat. no. 407203; BioLegend), streptavidin-APC (cat. no. 17-4317-82; eBioscience), streptavidin-PerCP (cat. no. 405213; BioLegend), PE-Cy7-anti-CD19 (clone 6D5, cat. no. 115520; BioLegend), PerCP-anti-B220 (clone RA3-6B2, cat. no. 103234 or 103224; BioLegend), PE-anti-IgD (clone 11-26, cat. no. 12-5993-81; eBioscience), APC-anti-Ig (clone RML-42, cat. no. 407306; BioLegend), BV421-antiCD5 (clone 53-7.3, cat. no. 562739; BD Biosciences), PE-anti-CD23 (clone B3B4, cat. no. 12-0232-82; eBioscience), PE-Cy7-anti-CD38 (clone 90, cat. no. 102718; BioLegend), and PE-anti-CD138 (clone 281-2, cat. no. 553714; BD Biosciences).

The following antibodies were used for immunoblot analysis:
anti-mouse HOIP, ${ }^{9}$ anti-human HOIP, ${ }^{10}$ anti-HOIL-1L (clone 2E2, cat. no. MABC576; Merck Millipore), anti-SHARPIN (cat. no. ABF128; Merck Millipore), anti-MYD88 (cat. no. 4283; Cell Signaling Technology), anti-phospho-IкB α (cat. no. 9246; Cell Signaling Technology), anti-IкB α (cat. no. 4812; Cell Signaling Technology), anti-caspase-3 (cat. no. 9662; Cell Signaling Technology), anti-ubiquitin (clone P4D1, cat. no. sc-8017; Santa Cruz Biotechnology), anti-K48 polyubiquitin (clone Apu2, cat. no. 05-1307; Merck Millipore), anti-K63 polyubiquitin (clone Apu3, cat. no. 05-1308; Merck Millipore), anti-linear polyubiquitin (LUB9), ${ }^{11}$ anti-linear polyubiquitin (clone 1E3, cat. no. MABS199; Merck Millipore), anti-phospho-NF-кB p65 (cat. no. 3033; Cell Signaling Technology), anti-NF-кB p65 (cat. no. sc-109; Santa Cruz Biotechnology), anti- β-actin (cat. no. A5316; Sigma-Aldrich), anti-NEMO (cat. no. KO159-3; MBL), anti- β-tubulin (cat. no. CLT9002; CEDARLANE), and anti-HA (clone Tana2, cat. no. M180-3; MBL).

The following antibodies were used for immunohistochemical staining:
Anti-Irf4 (cat. no. 11247-2-AP; Proteintech), and anti-Bcl6 (clone D-8, cat. no. sc-7388; Santa Cruz Biotechnology).

Histology

Tissues were fixed with 4\% paraformaldehyde, followed by paraffin embedding. Sections were prepared and stained with hematoxylin and eosin (H\&E) and antibodies against Irf4, and Bcl6, as described previously. ${ }^{12}$

Molecular analysis of tumor clonality
Clonally rearranged $\mathrm{V}(\mathrm{D}) \mathrm{J}$ sequences of immunoglobulin heavy chains were amplified
from genomic DNA extracted from tumor tissue by nested PCR, as previously described. ${ }^{13}$ A total of 100 ng of genomic DNA was used as the starting template for the first round of nested PCR. Initial reactions consisted of $2.5 \mu \mathrm{l}$ of $10 \times$ Taq buffer (Qiagen), $2 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{nM} \mathrm{dNTP} \mathrm{mix}, 0.5 \mathrm{nM}$ VH-specific primer $1,0.5 \mathrm{nM} \mathrm{JH}$ universal primer ${ }^{13}$ (supplementary Table 10), 1.25 U of Taq DNA polymerase (Qiagen), $5 \mu \mathrm{l}$ of $5 \times$ Q-solution (Qiagen), and $\mathrm{H}_{2} \mathrm{O}$ to a total volume of 25μ l. Thermal cycler conditions were as follows: 5 minutes at $96^{\circ} \mathrm{C} ; 30$ cycles of $96^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 minute; 5 minutes at $72^{\circ} \mathrm{C}$; and $4^{\circ} \mathrm{C}$ hold. One microliter of the initial reaction was used as the template for the second round of PCR, which was conducted as described ${ }^{13}$ except that VH -specific primer 1 was replaced by VH -specific primer 2, and one of four JH -specific primers (supplementary Table 10) was used instead of the JH universal primer. Thus, four independent second-round PCR amplifications, using each JH-specific primer individually, were conducted to isolate $\mathrm{V}(\mathrm{D}) \mathrm{J}$ rearrangements. PCR products were purified by gel purification and sequenced using the Big Dye Terminator Cycle sequencing kit (Applied Biosystems). Sequence alignment was performed using IgBLAST (http://www.ncbi.nlm.nib.gov/igblast). Primers were designed to anneal to tumor-specific complement-determining region 3 (CDR3). If specific bands were detected after PCR with 30 cycles, the $\mathrm{V}(\mathrm{D}) \mathrm{J}$ rearrangement was considered clonal.

IgH somatic mutation analysis

IgH-V gene rearrangements were PCR amplified using the PrimeSTAR Max DNA Polymerase (Takara) and forward and reverse primers designed in the process of analysis of tumor clonality described above. PCR products were purified by gel purification and sequenced by the Big Dye Terminator Cycle sequencing kit (Applied Biosystems).

Sequence alignment was performed using IgBLAST (http://www.ncbi.nlm.nib.gov/igblast) to determine $\mathrm{V}_{\mathrm{H}} \mathrm{D}_{\mathrm{H}} \mathrm{J}_{\mathrm{H}}$ usage. The sequences were then aligned to their germline counterparts.

Cell death and viability assays

HBL1 cells and Jurkat cells were seeded at 5×10^{4} cells per well in 24 -well plates. Cells were pre-incubated for a minimum of 8 hours, and then exposed to the indicated concentration of cisplatin for 12,24 , or 36 hours (HBL1), or $12,24,48$, or 72 hours (Jurkat). Purified splenic B cells were seeded at 2×10^{5} cells per well in 96 -well plates, and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10\% fetal bovine serum (FBS), $50 \mu \mathrm{M}$ 2-ME, 10 mM HEPES-KOH (pH 7.4), and penicillin/streptomycin, stimulated with an anti-CD40 antibody ($10 \mu \mathrm{~g} / \mathrm{ml}$) (HM40-3) (eBioscience) for 24 hours, and then exposed to the indicated concentration of cisplatin for 24 hours. Dead cells were labeled with TO-PRO-3 (Thermo Fisher), and the proportion of live cells was calculated from the percentage of TO-PRO-3-negative cells, as determined on a FACSCanto II.

Quantitative RT-PCR (QPCR) analysis

Total RNA was isolated using the RNeasy Micro or Mini Kit (Qiagen). DNase-treated RNA (20-200 ng) was reverse-transcribed using the high-capacity RNA-to-cDNA Kit (Applied Biosystems). Real-time PCR was performed using Power SYBR Green PCR master mix (Applied Biosystems) on an ABI 7900 Real-time PCR system (Applied Biosystems). All gene expression levels were normalized against the corresponding levels of β-actin mRNA. qPCR primer sequences were shown in supplemental Table 8.

Immunoblotting

Cells were lysed in lysis buffer containing 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton X-100, 2 mM phenylmethylsulfonyl fluoride (PMSF), protease inhibitor cocktail (Sigma-Aldrich), and phosphatase inhibitor cocktail (Nacalai Tesque). Lysates were centrifuged at $15,000 \mathrm{rpm}$ for 20 minutes at $4^{\circ} \mathrm{C}$, and the supernatant was used in subsequent steps. Samples were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes. After blocking in Tris-buffered saline containing 0.1\% Tween 20 and 5\% (w/v) nonfat dry milk, the membranes were immunoblotted with the appropriate primary antibodies, followed by the corresponding secondary antibodies. The membranes were visualized by enhanced chemiluminescence and analyzed on LAS3000 or LAS4000mini instrument (GE Healthcare). The following antibodies were used in immunoblotting assays:

Tandem Ubiquitin Binding Entity (TUBE) assay

Halo-tagged linear ubiquitin chain specific Tandem Ubiquitin Binding Entity (M1specific TUBE) was purified as described previously. ${ }^{14,15}$ To measure linear ubiquitination in splenic B cells or Jurkat cells, $200 \mu \mathrm{~g}$ of cell lysates were subjected to incubation with $2 \mu \mathrm{~g}$ of M1-specific TUBE coupled with $20 \mu \mathrm{l}$ of equilibrated Magne Halo Tag beads (Promega) at $4^{\circ} \mathrm{C}$ for 4 hours in $300 \mu \mathrm{l}$ of buffer 50 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ $7.5), 150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton X-100. The precipitates were washed three times with the same buffer, boiled in sodium dodecyl sulfate sample buffer, and analyzed by immunoblotting.

Immunoprecipitation of NEMO

Jurkat cells were treated with cisplatin ($5 \mu \mathrm{~g} / \mathrm{mL}$) at $37^{\circ} \mathrm{C}$ for the periods indicated in Figure 3J and lysed on ice for 20 minutes in lysis buffer containing 50 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ 7.5), $150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton X-100, 2 mM PMSF, protease inhibitor cocktail (SigmaAldrich), phosphatase inhibitor cocktail (Nacalai Tesque), and $10 \mathrm{mM} N$-ethylmaleimide. Cysteine was added to a final concentration of 15 mM to neutralize the N-ethylmaleimide. The lysates were centrifuged at $15,000 \mathrm{rpm}$ for 20 minutes at $4^{\circ} \mathrm{C}$, and the supernatant was used in subsequent steps. Lysates were incubated with anti-NEMO antibody (Santa Cruz Biotechnology, sc-8330) for 60 minutes at $4^{\circ} \mathrm{C}$, and then immobilized on rmpProtein A-Sepharose beads (GE Healthcare). The beads were washed five times with lysis buffer. NEMO was eluted with sample buffer and analyzed by immunoblotting.

Analysis of European Genome-phenome Archive and The Cancer Genome Atlas datasets

Clinical and RNA sequencing (RNA-seq) gene expression data derived from the core set of 624 human DLBCL samples were obtained from EGA (dataset ID: EGAD00001003600). ${ }^{16}$ Gene expression was measured in terms of fragments per kilobase of exon per million fragments mapped (FPKM) and normalized using the Cufflinks package (version 2.2.1). Quantile normalization was performed, and the data were $\log _{2}$ normalized. The Cancer Genome Atlas (TCGA) whole exome sequencing and RNA-seq data of 48 DLBCL samples (project ID: TCGA-DLBC) were obtained from the Broad Institute Firehose (http://gdac.broadinstitute.org/). ${ }^{17,18}$ Mutation consequences were annotated using Oncotator (version 1.8.0), and single nucleotide polymorphisms (SNPs) that had minor allele frequency of 0.01 in the 1000 Genomes Phase 3 data were
removed.

Defining correlated gene signatures

Gene signatures were defined using a collection of widely used annotated gene set databases (BioCarta, Gene Ontology). To obtain better signal-to-noise estimates, genes whose expression data included FPKM value <0.01 in any samples were excluded. Subsequently, BIOCARTA_NFKB_PATHWAY signature, and NEGATIVE_REGULATION_OF_INTRINSIC_APOPTOTIC_SIGNALING_PATHWA Y signature were calculated as the geometric mean (log-average) of the expression of 22, and 66, as shown in supplemental Tables 2-4. Classification of DLBCL into ABC and GCB subtypes by RNA-seq were based on a previous report. ${ }^{16}$

Survival analysis

To assess the effects of HOIP expression on the survival of patients with DLBCL, we analyzed data from two independent cohorts of DLBCL patients with available clinical information and RNA-seq data on HOIP expression; Reddy, $2017(\mathrm{n}=604),{ }^{16}$ and Schmitz, $2018(\mathrm{n}=234) .{ }^{19}$ If two Kaplan-Meier curves crossed early ($\leqq 18$ months), differences between survival functions were examined by the log-rank test based on observations after the crossing point. For the cohort of Reddy, 2017, we analyzed overall survival following diagnosis of $\mathrm{n}=102$ patients who did not achieve complete response to the initial chemotherapy, and for the cohort of Schmitz, 2018, we analyzed survival after disease progression or relapse of $n=62$ patients.

B cell gene expression profiling

Gene expression profiling data of flow-sorted B-cell subsets in human bone marrow was obtained at the Gene Expression Omnibus at the National Center for Biotechnology Information, Bethesda, USA (https://www.ncbi.nlm.nih.gov, GEO profiles/DATA sets) (dataset ID: GSE68878), ${ }^{20}$ and analyzed using the integrated GEO2R tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/).

Preparation of purified recombinant proteins

Because it was difficult to obtain a sufficient quantity of LUBAC for high-throughput screening (HTS), two truncated subcomplexes of LUBAC were generated: Petit-LUBAC, which consists of residues 1-191 of human HOIL-1L and residues 474-1072 of human HOIP; and Petit-SHARPIN, which consists of residues 474-1072 of human HOIP (aa) and residues $172-346$ of human SHARPIN. ${ }^{3,10,21}$ Both Petit-LUBAC and Petit-SHARPIN can be expressed in a bacterial expression system and purified, and both proteins exhibit potent linear polyubiquitination activity. Recombinant Petit-LUBAC, Petit-SHARPIN, full-LUBAC (consisting of HOIP, HOIL-1L, SHARPIN, and HOIP [aa 699-1072]), E1, UbcH5c, UbcH7, and ubiquitin were prepared as described previously. ${ }^{3,10,21}$ Briefly, pT77 was used to purify recombinant N-terminally FLAG-His-tagged ubiquitin, C-terminally glutathione S-transferase (GST)-tagged ubiquitin, UbcH5c, and UbcH7. pET Duet1 was used to purify Petit-LUBAC and Petit-SHARPIN. pVL1393 was used to purify fullLUBAC. FAST Bac vector was used to purify recombinant E1.

Compound libraries

The following libraries were screened: NPDepo (19,449 compounds, RIKEN, Japan); the MyriaScreen chemical library (10,000 compounds, Sigma-Aldrich, St. Louis, MO, USA);

LOPAC library (713 compounds, Sigma-Aldrich), the SPECS synthetic compound library (10,000 compounds, Specs, Netherlands), the NAMIKI synthetic compound library (318 compounds, NAMIKI, Japan), and the Isolated Natural Compound Library (1280 compounds, AIST, Japan).

AlphaScreen binding assay for LUBAC inhibitors

To search for inhibitors of linear polyubiquitination, an AlphaScreen-based HTS system was established using N-terminally FLAG-His-tagged ubiquitin (FLAG-Ub), Cterminally glutathione S-transferase (GST)-tagged ubiquitin (Ub-GST), ubiquitinactivating enzyme E1, UbcH7 as the E2 ubiquitin-conjugating enzyme, and PetitLUBAC or Petit-SHARPIN as the E3 ubiquitin ligase. The candidate compounds were transferred to an AlphaPlate-384 (Perkin Elmer) with the following final concentrations: $10 \mu \mathrm{~g} / \mathrm{mL}$ for NPDepo, $20 \mu \mathrm{M}$ for MyriaScreen and LOPAC, $50 \mu \mathrm{M}$ for SPECS, and 20 $\mu \mathrm{g} / \mathrm{mL}$ for NAMIKI and the isolated natural compound library.

Ubiquitination reactions contained 100 ng of E1, 200 ng of E2/UbcH7, $1 \mu \mathrm{~g}$ of E3 (Petit-LUBAC or Petit-SHARPIN), $1 \mu \mathrm{~g}$ of FLAG-Ub, 250 ng of Ub-GST, and 2 mM ATP in $15 \mu \mathrm{l}$ of buffer containing 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mathrm{mM}$ DTT, and $0.01 \%(\mathrm{v} / \mathrm{v})$ Tween20. ATP was added last to minimize autocatalytic ubiquitination by the ubiquitination enzymes. Reactions were allowed to proceed at $30^{\circ} \mathrm{C}$ for 0.5 hours (Petit-LUBAC) or 2-6 hours (Petit-SHARPIN).

After the ubiquitination reactions, AlphaScreen Glutathione Donor Beads (Perkin Elmer) and FLAG Detection Kit (Perkin Elmer) (both at a final concentration of $16 \mu \mathrm{~g} / \mathrm{mL}$ for petit-LUBAC and $20 \mu \mathrm{~g} / \mathrm{mL}$ for petit-SHARPIN) in $10 \mu \mathrm{l}$ of $1 \times$ PBS buffer containing 5 mM EDTA-4Na were added. Plates were incubated at $23^{\circ} \mathrm{C}$ for 1 hour, laser
excitations were carried out at 680 nm , and readings were performed at $520-620 \mathrm{~nm}$ using the EnSpire Alpha plate reader (Perkin Elmer). Primary screening data from the AlphaScreen HTS assays were processed as follows: (1) Z^{\prime}, signal/background ratio (S/B), and coefficient of variation (CV) were calculated and compared with the minimum pass criteria ($\mathrm{Z}^{\prime}>0.5, \mathrm{~S} / \mathrm{B}$ ratio $>2, \mathrm{CV}<20 \%$); (2) the primary hits for the AlphaScreen assays were classified as compounds that led to a decrease in the normalized assay signal: $>60 \%$ (for Petit-LUBAC) or $>70 \%$ (for Petit-SHARPIN) for compounds from the NPDepo library; > 50\% (for Petit-LUBAC) or $>60 \%$ (for Petit-SHARPIN) for compounds from the MyriaScreen library, and $>80 \%$ (for Petit-LUBAC) or $>80 \%$ (for Petit-SHARPIN) for compounds from other libraries. Based on these criteria, 568 hit compounds (NPDepo: 291; MyriaScreen: 223; LOPAC: 1; SPECS: 34; NAMIKI: 0; isolated natural compounds: 19) were identified. These compounds were tested for falsepositive hits using the AlphaScreen TruHits kit (Perkin Elmer). Compounds with $\mathrm{IC}_{50}>$ $20 \mu \mathrm{M}$ were excluded. Finally, compounds that were immediately available were tested for inhibition of linear ubiquitination using in vitro ubiquitination assay.

In vitro ubiquitination assay

E1 $(5 \mu \mathrm{~g} / \mathrm{mL})$, E2/UbcH5 ($10 \mu \mathrm{~g} / \mathrm{mL}$), each E3 ($5 \mu \mathrm{~g} / \mathrm{mL}$ for full-LUBAC; $50 \mu \mathrm{~g} / \mathrm{mL}$ for Parkin, Nedd4, and cIAP2; and $60 \mu \mathrm{~g} / \mathrm{mL}$ for HOIP [aa 699-1072]), and $250 \mu \mathrm{~g} / \mathrm{mL}$ ubiquitin (SIGMA) were incubated at $37^{\circ} \mathrm{C}$ for 1 hour (full-LUBAC, HOIP [aa 699-1072], and cIAP2) or 3 hours (Parkin and Nedd4) in buffer containing Tris-HCl (pH 7.5) (50 mM for full-LUBAC, Parkin, Nedd4, and cIAP1/2; and 20 mM for HOIP [aa 699-1072]), $5 \mathrm{mM} \mathrm{MgCl}_{2}, 1 \mathrm{mM}$ DTT, and 2 mM ATP. Ubiquitination reaction products were probed with anti-ubiquitin antibody or anti-linear polyubiquitin monoclonal antibody.

Cell viability assay

Cells were seeded in 96-well flat-bottom plates at 5×10^{4} cells $/ \mathrm{mL}$ and treated with serial dilutions of the LUBAC inhibitor thiolutin or DMSO (as a solvent control). After incubation for 48 hours, cell viability was determined using the Cell Counting Kit- 8 (Dojindo Laboratories). Cell treatment and viability analyses were performed in triplicate.

Statistical analysis

Statistical analyses were performed using Prism 5 and R (https://www.r-project.org). Statistical tests included two-tailed unpaired Student's t-test, one-way ANOVA with Turkey's post hoc test, two-way ANOVA with Bonferroni post hoc test, the log-rank test, Fisher's exact test, binomial test, and the Brunner-Munzel test. Specific tests are identified in the respective figures. Differences are indicated as n.s. (not significant; p > $0.05),{ }^{*} \mathrm{p}<0.05, * * \mathrm{p}<0.01$, or ${ }^{* * *} \mathrm{p}<0.001$, unless indicated otherwise in the figures.

References

1. Sasaki Y, Derudder E, Hobeika E, et al. Canonical NF-kB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity. 2006;24(6):729-739.
2. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25(6):1317-1318.
3. Sakamoto H, Egashira S, Saito N, et al. Gliotoxin suppresses NF-кB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC). ACS Chem Biol. 2015;10(3):675-681.
4. Kamesaki H, Miwa H, Ohno Y, et al. A novel B cell line established from Ki-1positive diffuse large cell lymphoma. Jpn J Cancer Res. 1988;79(11):1193-1200.
5. Ohno H, Furukawa T, Fukuhara S, et al. Molecular analysis of a chromosomal translocation, $\mathrm{t}(9 ; 14)(\mathrm{p} 13 ; \mathrm{q} 32)$, in a diffuse large-cell lymphoma cell line expressing the Ki-1 antigen. Proc Natl Acad Sci USA. 1990;87(2):628-632.
6. Ohno H, Nakagawa M, Kishimori C, et al. Diffuse large B-cell lymphoma carrying $\mathrm{t}(9 ; 14)(\mathrm{p} 13 ; \mathrm{q} 32) / \mathrm{PAX} 5$-immunoglobulin heavy chain gene is characterized by nuclear positivity of MUM1 and PAX5 by immunohistochemistry. Hematol Oncol. 2020. 7. Mehra S, Messner H, Minden M, Chaganti RS. Molecular cytogenetic characterization of non-Hodgkin lymphoma cell lines. Genes Chromosomes Cancer. 2002;33(3):225-234.
7. Sasaki K, Himeno A, Nakagawa T, Sasaki Y, Kiyonari H, Iwai K. Modulation of autoimmune pathogenesis by T cell-triggered inflammatory cell death. Nat Commun. 2019;10(1):3878.
8. Tokunaga F, Sakata S, Saeki Y, et al. Involvement of linear polyubiquitylation of

NEMO in NF-кB activation. Nat Cell Biol. 2009;11(2):123-132.
10. Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006;25(20):4877-4887.
11. Sasaki Y, Sano S, Nakahara M, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 2013;32(18):24632476.
12. Toda Y, Kono K, Abiru H, et al. Application of tyramide signal amplification system to immunohistochemistry: a potent method to localize antigens that are not detectable by ordinary method. Pathol Int. 1999;49(5):479-483.
13. Kline GH, Hayden TA, Riegert P. The initiation of B cell clonal expansion occurs independently of pre-B cell receptor formation. J Immunol. 2001;167(9):5136-5142.
14. Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009;10(11):1250-1258.
15. van Wijk SJ, Fiskin E, Dikic I. Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain-specific sensors. Nat Protoc. 2013;8(7):1449-1458. 16. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481-494 e415.
17. Grossman RL, Heath AP, Ferretti V, et al. Toward a Shared Vision for Cancer Genomic Data. NEngl J Med. 2016;375(12):1109-1112.
18. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879-3884.
19. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse

Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407.
20. Petri A, Dybkaer K, Bogsted M, et al. Long Noncoding RNA Expression during Human B-Cell Development. PLoS One. 2015;10(9):e0138236.
21. Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF-кB-activating linear ubiquitin chain assembly complex. Nature. 2011;471(7340):633636.

Supplemental Tables

Supplemental Table 1. RNA-seq data derived from EGAD00001003600
Supplemental Table 2. Source of gene sets
Supplemental Table 3. Gene of BIOCARTA_NFKB_PATHWAY and NEGATIVE_REGULATION_OF_INTRINSIC_APOPTOTIC_SIGNALING_PATHWA Y

Supplemental Table 4. Whole-exome sequencing data and RNA-seq data derived from TCGA-DLBC

Supplemental Table 5. Murine homologue of previously reported driver genes in human DLBCL

Supplemental Table 6. Murine homologue of previously known and predicted hypermutated genes in human DLBCL

Supplemental Table 7. Previously reported AID target genes in mice
Supplemental Table 8. Enrichment of WRCY mutations in genes mutated in lymphomas derived from transgenic mice

Supplemental Table 9. Analysis of somatic mutations in clonal IgH rearrangements of DLBCL-like lymphomas derived from transgenic mice Supplemental Table 10. Primers for testing clonality of IgH V(D)J Supplemental Table 11. Primer sequences used for real-time PCR

Supplemental Table 1
LUBAC accelerates B-cell lymphomagenesis by conferring B cells resistance to genotoxic stress
T Jo et al.
Supplemental Table 1. RNA-seq data derived from EGAD00001003600
For each DLBCL patient sequenced, clinical features are shown. The "Signatures" section shows the geometric mean of the expression of genes involved in each pathway (see also supplemental Tables 2 and 3). Blank fields indicate that a measurement was not taken or was irrelevant to the patient.

Sample ID	Cell Of Origin by RNA-Seq	HOIP (RNF31) expression ($\log 2[f \mathrm{fpkm}+1])$	HOIL1L (RBCK1) expression (log2[fpkm+1])	SHARPIN expression (log2[fpkm+1])	OTULIN expression ($\log 2[f p k m+1])$	BIOCARTA_NFKB_P ATHWAY	atures NEGATIVE_REGULA TION_OF_INTRINSI C_APOPTOTIC_SIG NALING PATHWAY	COO
648	Unclassified	4.195717649	4.31519581	3.277641923	4.956514297	4.614161432	5ALING 5.087244089	2
658	GCB	4.092387126	3.898355631	3.100934845	5.342089921	4.443884255	5.147378636	0
683	ABC	5.004024657	4.921808994	3.46800145	4.57766278	4.395643052	5.073229173	1
684	GCB	3.763522925	3.707060358	2.787447028	5.519449818	4.318039406	5.16707185	0
689	ABC	4.384255027	4.252816353	2.735319439	5.513209754	4.4557751	5.002923748	1
690	Unclassified	4.005425217	3.898355631	2.92274059	5.883301336	4.070451909	5.05442557	2
695	GCB	4.739987864	5.08722852	2.997202359	5.222936525	4.516688257	4.897774993	0
702	GCB	3.469948533	3.690909115	2.867809935	4.968035071	4.06139149	5.010415253	0
704	ABC	3.704276839	3.770049876	3.109557367	5.136238378	4.368531662	5.041074611	1
705	GCB	3.676195688	4.118120389	3.250321036	6.266936066	3.922399202	4.630682268	0
759	ABC	4.724882154	4.992352289	3.818200628	3.724416657	4.539771007	5.193364216	1
787	ABC	3.858287194	3.932834051	3.327465928	4.854269929	4.111559511	5.070042274	1
793	ABC	3.201302555	3.601592665	3.012642894	4.731683197	4.291487947	4.976847885	1
799	Unclassified	3.361162098	2.922018394	3.304065558	4.943040856	3.688718846	4.856810953	2
800	ABC	3.791105901	3.886273142	2.817437442	5.04368148	4.408336728	4.884653479	1
813	ABC	3.909467611	4.386568773	2.829095917	4.412480107	4.561161571	5.02626163	1
816	ABC	5.206608081	4.944309794	4.599632141	4.226338935	4.630389193	5.142343577	1
823	ABC	4.803982209	4.572335379	4.267855087	5.271658475	4.593382271	5.219421893	1
829	ABC	4.424910334	4.515693734	3.562500405	5.612903283	3.825286912	4.871292938	1
830	ABC	4.077833144	4.61063381	3.308286428	4.735105773	4.534273467	5.071999236	1
831	GCB	3.564386475	3.580399279	3.043617231	4.744531962	4.269243128	5.040704604	0
1008	GCB	3.400851219	3.475116413	2.837774914	6.061943906	4.116286614	4.989077553	0
1016	GCB	3.451793152	3.835169616	2.802980803	5.14881689	4.370900222	5.170748226	0
2043	GCB	5.052482388	4.788924404	4.212810172	5.79812658	4.276528485	4.872723623	0
2044	ABC	5.01380854	4.955677489	4.586447377	5.857875643	4.068806649	5.053505628	1
2045	GCB	4.224045569	4.820167832	3.496950094	5.203682858	4.310011749	4.853711449	0
2046	Unclassified	4.420214608	4.676746017	3.790473173	5.487265113	4.414159889	5.065319985	2
2047	GCB	4.288595033	4.546087557	3.941239784	5.984761383	4.373861161	4.801339811	0
2048	GCB	4.873401354	4.797385513	3.786090824	5.9770724	4.434605644	5.067935478	0
2057	GCB	4.781318677	5.064831481	3.808528441	5.074649601	4.535576642	5.352719476	0
2060	GCB	4.872152713	4.960800222	3.778063863	6.778105628	4.221656273	5.107111867	0
2072	Unclassified	4.840459425	5.808458312	3.838297801	5.972307807	4.57493274	4.936889033	2
2074	ABC	4.270693637	4.10831842	3.200650522	6.618631543	4.117870754	4.986115237	1
2075	GCB	4.682662876	5.482388672	5.146528312	4.330507022	4.562921307	4.921871084	0
2076	GCB	4.827167061	5.592195874	4.367302062	5.92430143	4.648262495	5.162684013	0
2078	Unclassified	4.095183016	4.786635557	3.855179987	4.137964507	4.234166871	4.947964946	2
2079	GCB	4.061624264	4.197258663	3.004287375	5.246849507	4.535740571	5.20118803	0
2080	GCB	4.360340965	4.708384743	3.772532367	4.49726199	4.348586048	5.067459855	0
2081	ABC	3.492202499	3.881289201	3.302094252	5.363927327	3.85914941	4.917344835	1
2084	GCB	3.984409398	3.445409	2.737599776	6.368712923	4.500009492	5.046654019	0
2085	ABC	3.2411119	3.991879203	2.282110364	5.979924179	3.878403093	4.616291747	1
2087	ABC	4.305376149	5.165925437	3.806987067	5.020316576	4.108682704	4.921288973	1
2088	ABC	3.166365158	4.263565685	3.317701231	4.934042802	3.995994794	4.664630489	1
2089	Unclassified	4.882975353	4.70978644	3.65477259	6.094017109	4.51460595	5.112486785	2
2091	GCB	4.078604791	4.041997226	3.368602846	5.957217133	4.318144805	5.043265305	0
2092	GCB	3.73300487	3.94991838	3.052886148	5.720174737	4.11430249	5.087951525	0
2093	ABC	3.648250318	4.241074585	2.894748459	5.189012409	4.395900744	4.954370233	1
2095	Unclassified	3.630010348	3.759158788	2.905950836	5.442321234	4.052617699	5.122827141	2
2097	GCB	3.71051805	4.104241445	2.918107457	5.981880481	4.245796801	5.080369296	0
2110	GCB	4.526718447	4.648788793	3.737727173	6.274733118	4.601314054	5.082345587	0
2112	ABC	4.746083244	4.322697373	3.573756472	5.258534024	4.590030272	5.220053807	1
2115	ABC	4.511175399	4.191219895	3.724416657	6.226341193	4.074984502	4.730955257	
2122	ABC	3.428095667	3.978185584	3.034967696	6.290208883	4.191567621	4.936708015	1
2125	GCB	4.459943869	4.579059532	3.663858652	5.630217963	4.25523799	4.779373821	0
2126	ABC	4.27162497	4.56147475	4.331152529	5.201259568	4.318184549	5.029297736	1
2127	Unclassified	4.281446986	4.413146788	4.185881167	6.061943906	4.54772804	5.060628585	2
2128	GCB	5.134316748	4.787413284	4.367617312	5.137212562	4.241101193	4.914477494	0
2130	GCB	3.639180094	3.541263026	2.781471543	6.333516965	4.337611261	5.141039346	0
2141	Unclassified	4.42624329	4.759696639	3.09888476	4.622377455	4.648903636	4.939897509	2
2142	GCB	3.592034285	3.887869226	3.086599656	5.540666836	4.386661944	5.118110493	0
2147	GCB	4.333059477	4.849936944	3.626283426	5.601994529	4.728293014	5.071908877	
2148	ABC	3.915418308	4.286353339	3.478321834	4.911183902	4.524358298	5.193710006	1
2149	ABC	3.866406497	4.588539878	3.275347265	4.670793182	4.299921218	5.164643059	
2150	ABC	4.732067115	4.523976149	3.408235623	4.853463978	4.514378867	4.947765012	1
2153	ABC	4.26618951	3.943379427	3.184268699	5.252376895	4.114658524	5.046788368	1
2155	ABC	3.680181959	3.458236209	2.776588845	5.193444197	4.182282928	4.968581078	1
2156	ABC	3.497912317	3.388017347	2.415514368	6.708262699	3.997463784	4.832996513	,
2160	ABC	4.591017582	4.830633415	3.689025851	4.948062995	4.107513537	5.033980494	1
2191	Unclassified	4.546087557	4.710144652	4.087308038	5.119069315	4.54913414	5.135472264	$\stackrel{2}{1}$
2192	ABC	5.090344067	5.060883367	4.217271139	4.524663199	4.838161184	5.074063813	1
2193	GCB	4.276841004	4.831415658	3.255988684	6.086820979	4.309796314	4.872515965	0
2194	ABC	4.825186019	5.178328473	3.894621858	4.277168269	4.678047718	4.95406674	1
2195	Unclassified	4.966788376	5.612220989	4.512494324	4.519804673	4.596622837	5.208835238	,
2196	GCB	4.228917949	4.439976544	3.632240913	5.962846013	4.396469309	5.157322913	0
2199	GCB	4.300540073	4.054740766	3.244079307	4.995409873	3.827119194	4.941544193	0
2204	ABC	4.388904968	4.909957799	4.34088847	4.444041841	4.500530066	5.071401301	1
2205	GCB	4.214074615	4.628765016	3.380986739	5.619738687	4.472319262	5.134225566	0
2206	ABC	4.543990739	4.921808994	3.674934739	4.848380505	4.688335684	5.14345233	,
2209	GCB	4.307667577	2.96078718	3.876574227	6.537494635	4.104039011	5.025009939	0
2210	ABC	4.844028747	4.966346952	3.967291964	4.600660539	4.650999512	5.091176828	1
2211	GCB	4.351793714	4.434324282	4.15356604	5.034785816	4.182227022	5.080235675	0
2212	ABC	3.601592665	4.140106628	3.074100116	4.430290828	4.431782405	5.171829416	1
2213	GCB	4.730560109	5.176324895	4.783652516	5.580772162	4.529873697	5.090032966	0
2214	ABC	5.011641946	5.60399668	4.688916293	4.112097007	4.718743335	5.368719608	1
2215	ABC	4.740381169	4.970979726	4.162665783	5.589501341	4.361314164	4.919285936	1
2217	GCB	3.926314422	4.773763753	2.79634776	6.399766232	4.708544342	5.220224458	0
2219	Unclassified	4.481883564	4.630148904	3.719457032	6.534006812	4.61748658	5.074449136	2
2221	ABC	5.020744672	4.781318677	3.511659678	6.858805548	4.545684875	5.038220942	1
2224	GCB	4.568564369	4.54225418	3.745430063	6.303125109	4.62258162	5.072073488	0
2225	ABC	4.217590661	3.878793581	3.214294992	6.14734604	3.958093189	5.043934754	,
2226	ABC	4.495212983	4.472020492	3.59840924	4.336094867	4.452091235	5.12342685	1
2228	Unclassified	4.432299145	4.508803493	4.031296235	4.707645174	4.555330821	5.217066281	2
2229	GCB	4.065733257	4.963352138	4.945532397	4.908744762	3.658995093	4.800840102	0
2230	ABC	4.353560909	3.91006968	2.986373447	6.166566865	4.266278155	5.039940962	1
2231	GCB	4.097077255	3.99467065	3.143789183	6.177877073	4.699551597	5.133924567	0
2232	ABC	5.071191366	5.591520285	4.596417541	4.338954149	4.534439021	5.087880451	1

4.805490394	4.891732918	5.29376686	4.32054909	4.917211356
4.529827542	3.346261803	5.735905743	4.458950386	5.115199154
4.619838187	3.500071526	4.854669563	4.604825443	4.996400106
4.560750036	3.281905125	5.879779652	4.659196065	4.949500373
4.74532918	3.881289201	5.961954199	4.383328206	5.096239776
4.495212983	3.208999113	5.093033038	4.609716431	5.13879843
5.468474787	4.018850077	4.401807313	4.168252179	5.007029235
4.460618695	3.272426428	4.79003569	4.244506095	5.121210184
4.246633472	3.065844157	6.026416112	4.539529419	5.137399181
3.899296346	3.333335973	6.414033021	3.733349852	4.763041098
4.3613209	3.798897491	5.634383441	4.199483596	4.931686688
5.36662781	4.611663466	4.583267659	4.612015524	5.092090479
4.682310723	3.395774936	4.99191136	4.017229321	4.859373411
4.927157955	3.888789955	5.225925908	4.332748451	4.850200794
4.807769984	3.802005015	4.216954665	4.541599418	5.083001595
5.222936525	4.102027307	5.394569539	4.263746043	4.837636147
3.860509889	3.232840438	7.608797991	4.529536303	5.093249507
4.755857673	4.063523832	5.315430426	4.512203386	4.950764482
4.657215821	4.107070554	5.060883367	4.381890435	4.982899942
3.311524663	2.399633593	6.28118692	3.803967525	4.725732894
5.069824639	4.281766765	4.625242001	4.537403252	5.10088347
4.233356898	3.323552727	5.682036326	4.554486645	4.883901162
4.948475433	4.737374398	5.29642338	4.167078439	4.891417386
4.379266364	3.704276839	4.948062995	4.686371233	5.115180716
4.553066036	3.443230082	5.138613414	4.265664785	4.889111158
5.152116827	3.948359469	4.386568773	4.175259397	4.959681343
3.389624273	2.684927819	5.151643532	3.915450279	5.014244085
4.132543674	3.392575893	6.139724179	4.081341098	5.010479382
4.10831842	2.344013424	6.14734604	4.205227154	4.730411932
4.09798529	2.96007024	5.789173731	4.363472807	5.073409932
4.592830275	3.36667034	5.778933682	4.47897892	5.064720693
4.127269914	3.773777519	4.773388491	4.292715851	4.928699478
4.161072128	3.271452579	6.174502524	4.057990038	4.998495573
4.164844655	3.248995462	5.711340338	4.533835567	5.107572025
3.580722371	2.93922517	6.754705024	3.955001479	4.982195051
3.46800145	3.298548432	7.188955957	4.200907876	5.026599532
4.238137121	3.332033336	5.068935779	4.168737912	4.990536404
5.020744672	4.364985179	4.780174712	4.831839415	5.265785208
4.570546097	3.54157521	4.915696221	4.403980285	4.997927519
4.470281656	3.639180094	6.345704514	4.21751865	4.849799356
4.572335379	3.233170979	6.578109873	4.095717996	4.805938501
3.623118569	2.800753891	6.957057741	4.312623088	5.161011443
4.448051058	3.901747778	5.85368771	4.491359835	5.006372438
4.441007421	3.032253569	5.130214609	4.907774761	5.249245232
4.557240416	4.173687694	5.844423989	4.482997297	4.88376408
4.637276818	3.422335004	5.664896823	4.544928507	5.106042156
4.890912792	3.699956859	4.668589271	4.284800995	5.069204793
5.264078774	4.538117881	4.739987864	4.697861857	5.018732118
3.702101959	3.018878261	4.789675329	4.034089822	4.918374602
3.865478171	3.208672052	4.982108115	4.22996694	5.017835297
4.175586116	3.391278674	5.236358749	3.621608409	4.692582336
4.404150507	4.009179685	5.36662781	4.669240779	5.117507919
4.526036148	3.76257925	5.336790202	4.726315423	5.077628691
5.240805823	3.639796623	5.891902988	4.61189039	5.175383322
3.713946377	3.37223222	5.709900189	4.0731452	5.06457089
3.360522849	3.21826972	4.715313905	3.775410194	4.66196419
3.924459994	3.232840438	5.210082552	4.463605658	4.997443692
4.303481151	3.325829649	4.872950431	4.377987227	5.074224411
4.42624329	3.08961835	5.33248901	4.932702307	5.304418166
3.86912421	2.660019801	4.524311436	4.244312985	4.910272574
4.386897921	3.423897497	5.578762961	4.565504241	4.885731786
4.480497589	3.034628096	5.426980075	4.235017375	4.929246752
4.519464395	2.952361824	5.088561668	4.662494606	5.212586993
3.878163699	2.81223166	4.53081904	3.959654106	4.958501156
4.185881167	4.003259703	5.373251875	3.992158059	5.053078018
4.487645868	3.468980479	6.269496395	4.344240231	4.879640233
4.559681811	3.886273142	5.109397972	3.916129617	4.817854407
3.917615953	3.428095667	5.662826564	4.251358656	4.726860026
4.107070554	3.10921261	7.138441122	3.95385876	4.885723721
4.151027281	3.137344028	5.421830343	3.792747332	4.841999295
4.4455061	3.093403116	5.187592172	4.471218761	5.214959375
3.927574232	3.271452579	6.686977493	4.374854543	5.059847806
3.940301717	3.18629839	4.919756559	3.993889557	5.055249624
4.231773274	2.776188177	5.073326746	4.589015711	5.025212837
3.99373492	3.333980842	5.093033038	4.087985976	4.69767176
4.601029431	3.188334464	5.267601292	4.570427438	5.204097108
4.953166703	3.961612292	4.653177993	4.497086677	5.249113673
4.255403565	3.584477801	6.46353184	4.297428818	5.171726484
4.187109072	3.760077584	5.07868456	4.576377703	5.101595412
3.854223094	3.089966597	5.821580526	3.568389287	4.584002217
3.626587094	2.837427849	5.464367234	4.093449468	4.980457264
3.837361041	3.04669545	6.253287137	4.355974519	4.85422393
3.744820972	2.893007219	6.269496395	4.405231754	5.226098065
4.383607434	3.980375842	5.262083814	4.660321346	5.326293448
3.93346037	3.207284076	6.542518914	4.203372408	4.93365687
4.28078678	3.59297822	3.721638814	4.275547143	4.891313956
4.429950454	3.451175954	5.288644512	4.311376912	5.258179522
4.150407845	3.275347265	5.520067712	4.080777066	4.95622579
4.194748863	3.405342108	5.841993034	4.356871566	4.851352641
4.115231431	2.992981109	4.542950891	4.472628028	4.876462286
3.622126617	2.727156786	5.214510166	4.265193297	4.932932141
4.473014939	3.91006968	5.318655647	4.201254178	4.725711334
4.569126211	3.698402993	4.853063362	4.479436227	5.053978913
4.24010824	3.284842542	5.543206451	4.284421263	5.036575522
5.629504997	4.440634091	4.287649687	4.828531299	5.115210775
5.557242939	5.457175008	5.258534024	4.272677706	4.793121211
4.055683109	2.757139482	6.647759598	3.879509809	4.731421431
5.387235672	3.979109776	4.659377602	4.593369804	5.158640582
4.149132732	3.101269293	4.730914219	4.328940218	4.85598851
5.126948276	3.127958372	4.642617261	4.443737203	4.949084197
4.863380649	3.322247291	5.403480661	4.011213157	4.658100021
4.45752803	3.05353141	5.016005227	4.509536938	4.99468899
4.821283125	3.750118499	4.278780467	4.454662226	5.076814517
4.817855907	3.488680931	5.879779652	4.400741624	5.079627396
3.862056674	3.039119268	7.72658048	4.23126813	4.960701377
4.811691989	3.163015093	4.480497589	4.336160922	4.714530221
4.005125667	3.018188395	5.42527199	4.244641037	5.057198957
6.377193417	4.403801211	4.020259732	4.655864972	5.21766581
4.193783278	3.318970755	5.132942269	4.607715967	5.135231173
4.691109655	3.232168692	5.236358749	4.066902559	5.071224812
3.638852862	3.074100116	5.36932053	3.903119128	4.867439477
3.725925438	3.011251776	7.375214642	4.100441626	5.032785696
3.572493685	3.564705177	6.268255991	4.351917313	5.015269424
5.091693237 3.673371506	4.007639137 3.469645234	4.357062745 5.677705897	4.415210327 4.254411499	5.032465694 5.074174635

4.129426101 3.710829151 3.643889671 5.137212562 5.137212562
4.90064288 4.964577209
4.9291883 4.9291883
3.73362622
3.590409022 3.590409022
3.650374627
3.463869502 3.463869502
3.620925411 4.053797722 3.52697659 4.7836525 3.86141309
3.4505116 3.993116034 4.651720653 3.66602574
3.6693662 3.66936622
4.10018557 4.337706678

 4.156123287 3.97134210 4.418878002
3.61189572
3 3.974183529
4. 4.565986318
4.74532918 4.359667319

4.003877184 | 4.003877184 |
| :--- |
| 4.547834902 |
| 3.89803618 | 3.89

4.7105
3.8 3.89
3.890
3.87
3 3.81
3.924
3.83 3.83
4.14
3.474

GCB	4.1
GCB	3.4
ABC	3.8
ABC	4.24
Unclassified	4.7
ABC	5.04
Unis	

6.208579348
3.055946345 6.702
6.718
5.050
6 6.7180
5.0507
6.071
5.2463
4.3938
6.902

4.927
4.7822
5.29692
1448
16123
.17280
.86755
.78211
5.107689
5.04248
4.73731
4.84793
4.86739
5.28647
4.9418
4.9728
5.1127
4.878
4.4847
4.8777
5.0920
5.1133
4.9056
4.8966
4.9693
5.0030
5.1325
5

4.763076 5.06904499 5.06904499
5.098158331 5.250634637 5.250634637
5.042459396 5.121865886 5.064736477
5.072316639 5.072316639
5.117464187 4.583188253
5.081758687 5.037186077 4.983106935
4.979872693 4.942485686 4.820279201 5.013811832 5.012746907 5.084203193 4.535654398 5.080166798 5.073191675 4.919354311 5.072847058
4.873666573 4.873666573
5.174049829 4.930252654 4.8316246
4.808249226 4.808249226
4.925039587 5.30498669
4.96097483 4.96097483
5.136146315 5.1361704098
5.14023 5.144704098
5.126223974 5.126223974
5.126500197 5.253405593 4.992004384 5.159415946
5.095060538 5.095060538
5.112281096 5.135494672
5.058670582 5.103447907 4.828632541 4.913424976
4.941580766 4.941580766
5.217667162 5.217667162
5.066706035 5.066706035
4.869958833 5.044831306 4.756531471 5.144164202 4.658230785
4.67229631 4.67229631
5.144771288
5 5.256869377
5.32711801 5.3271801
4.428743284 4.428743284
5.089527227 5.089527227 5.042411547
4.737917991 5.737917991
5.145754383 5.145754383
5.03486 5.034838766
4.8369129 4.796206997 4.796206997
5.081665814 4.933714245 5.165565826
5.126238253 5.126238253 5.018272333 5.036858915 4.919874357 5.232701957 4.98713206 5.041746914 5.239156279 4.910503239 4.709069438 4.8915854 4.725281754 \circ

3.6721588

6.640401743 $\begin{array}{r}3.237 \\ 3.466 \\ 2.809 \\ 2.69 \\ 3.303 \\ 3.402 \\ 3.442 \\ 2.84 \\ 3.309 \\ 3.481 \\ 2.839 \\ 3.191 \\ 3.707 \\ 3.109 \\ 3.23 \\ 4.11 \\ 3.525 \\ 3.12 \\ 2.58 \\ 3.75 \\ 3.30 \\ 3.8 \\ 3.41 \\ 3.21 \\ 2.71 \\ 4.50 \\ 2.59 \\ 2.93 \\ 2.80 \\ \hline\end{array}$ 5.29
5.156
7.356

4.267996791	5.070263971
4.400889132	5.099483169
4.217429511	4.878937488
4.326746711	5.08172305
4.080586021	4.966299266
4.411734152	4.908445142
4.013757297	4.892697356
4.057492088	4.757324068
4.360898007	5.443165997
4.497460337	5.153058509
4.369621661	5.005619078
3.257990585	4.664912287
4.296740144	5.256584463
4.562701272	5.116332568
4.347992888	5.041518178
4.652164325	5.239637779
4.176650058	5.114551186
4.518297041	5.070294443
4.219634881	4.780948232
4.062566386	5.008730302
4.338496235	4.937867
4.183820074	5.095526463
4.125978569	5.163073594
3.914792444	4.820731504
4.554432652	5.196505053
4.451148981	4.946947668
3.88504911	4.878154791
4.609733857	5.002712131
4.012747391	4.94313741
4.520232005	5.172880495
3.939303035	4.822680949
4.29127111	5.075914032
4.169911545	5.023434651
4.64683222	5.311697636
4.500138176	4.985293364
4.11105729	5.103419502
4.67417861	5.28279086
4.516129985	5.125408729
4.219839622	5.172925459
4.401604109	5.348497592
4.454300284	5.015022008
4.104562424	5.008769103
4.583175384	5.197606778
4.553489613	5.327075607
4.35187481	5.195057049
4.07314827	4.992268303
4.003285165	5.077471556
4.223245628	5.082414772
4.162698496	4.825652328
4.064434819	5.133130425
4.367770993	4.946592768
4.18240702	5.122073274
4.138852435	4.820846301
3.891126383	4.768389633
3.926805523	4.85367512
4.574833145	5.006235141
4.436033813	5.114075166
4.509626493	5.199940043
4.222859627	5.023283956
4.200557406	4.990074847
4.048293886	4.900268749
4.341256581	4.854289297
3.622255239	4.609179162
4.575627783	5.213190437
4.15046975	5.03369059
3.792551034	4.956712374
4.19147031	4.992196472
3.856003598	4.765185537
3.986797931	4.967997711
4.272967319	4.987919814
3.719255027	4.898327119
3.825823206	5.121550363
4.584473128	5.024924525
4.146318209	4.892976537
3.426256809	4.666230435
3.649619569	4.829651395
4.372369568	4.947807387
4.106531678	4.811088935
4.535666574	5.117820079
4.069088636	4.73483127
4.431642929	4.958350513
4.183736877	4.870623339
4.187362275	5.134701314
4.489792856	5.001155565
4.120883307	4.996020772
4.432603985	5.054229951
3.992915686	4.971960552
4.033775109	4.975534309
4.075661711	5.106739208
4.174034522	5.134947086
4.125341749	5.065280559
4.095930426	5.141611497
4.101437991	5.027116094
4.644419224	5.152190278
4.364766073	5.144107472
4.39233122	5.024577768
4.291567434	4.963812322
4.672150136	5.131244496
4.811659348	5.345141402
4.49163525	4.915464553
4.423646908	5.120953049
4.552347104	5.126505411
4.263125125	4.856034071
3.764655662	4.832078047
4.44803547	5.216527556
4.799202357	5.104792201
4.530542106	5.157147382
4.836078446	5.156736517
4.84436841	5.078252105
4.434455773	5.119906963
4.259649313	5.04752205
4.528907439	5.298950927
4.297392446	5.220403698
4.279066295 4.487872216	5.238292067 5.199947093

3883	ABC	3.880971315	3.756642178	3.176856281	5.097062197	4.396210639	5.152325757	1
3886	Unclassified	4.213446016	4.522571422	3.681455765	6.415387588	4.642608902	5.181141744	2
3887	GCB	4.703642875	4.473338663	3.928479232	5.177811014	4.13918068	4.830625795	0
3888	ABC	4.418204384	4.679365699	3.522275287	4.812815092	4.562341923	5.192790741	
3891	GCB	3.468337085	3.589796417	2.605910842	5.951491438	4.317084927	4.962680107	0
3892	Unclassified	4.179794818	4.069193684	3.511352507	5.6330052	4.736810496	5.131351833	2
3893	GCB	3.648250318	3.926652575	3.640757811	4.575901754	3.952484399	4.889262025	0
3894	ABC	4.465270782	4.751331283	3.794558604	4.509845323	4.550225367	5.109131401	1
3895	GCB	4.277805579	4.25839043	3.542498084	5.352395247	4.296457556	5.022739132	0
3896	GCB	4.099859078	3.952417921	4.009500529	4.523976149	3.805321193	4.885963204	0
3898	GCB	4.059777871	4.337079141	3.356920532	4.905104579	4.474140021	5.193104887	0
3900	Unclassified	3.536912539	4.671162195	4.170489057	2.751559553	4.306757487	5.034724775	2
3902	GCB	3.908854762	4.093627491	2.982555503	5.987520088	4.443200131	5.200063421	0
3903	ABC	3.658797203	4.329866538	3.33492745	6.758935343	4.15542868	5.051866226	1
3904	GCB	3.315451029	3.903282364	2.750416237	7.292089549	4.157729951	4.893404472	0
3905	ABC	3.950240011	3.961154307	2.778447715	5.849456869	4.214776541	5.140723073	1
3908	GCB	3.556842356	4.146562463	2.928862007	7.202122613	4.141914459	5.068475169	0
3910	ABC	3.78108047	4.595688028	3.216563999	4.554114605	4.258791372	5.053333258	1
3911	GCB	4.06513671	4.458912573	2.91991401	6.096109599	4.563656935	5.191885329	0
3914	ABC	3.437480941	3.835169616	2.263627849	5.641296762	4.270508597	4.906165237	1
3915	Unclassified	3.666913298	3.595806893	2.542909953	6.346964331	4.111363203	4.895130382	2
3918	ABC	4.516368635	4.200124283	2.992285909	5.033416951	4.229688625	5.040564425	1
3919	ABC	4.028209386	4.245016848	2.71887082	5.62254902	4.274800672	4.843853425	1
3922	ABC	4.242079247	4.106752731	3.318970755	4.026649105	3.944657774	4.780905677	1
3925	GCB	4.112716031	4.21952447	2.110658977	7.254644157	4.333888794	4.978752237	0
3928	ABC	4.274833051	4.366635325	3.374914956	5.034785816	4.500821824	5.230066397	1
3929	GCB	4.086380168	4.020415447	2.542909953	6.827025381	4.239298761	4.907587306	0
3930	GCB	4.199481319	3.697776704	3.272426428	6.675750511	4.107429735	4.895509317	0
3932	GCB	4.593895862	4.460956141	3.602243072	5.946127729	4.293542508	4.97242303	0
3933	ABC	3.450163381	3.641387913	3.18629839	5.949717129	4.2026754	5.054824304	1
3936	GCB	4.35309559	5.011232632	3.271452579	5.751850538	4.537377176	4.953949754	0
3937	Unclassified	3.888170844	3.89803618	2.612813311	5.105733581	4.357897662	5.172007691	2
3940	GCB	3.372551852	2.879464552	2.702235769	6.922084478	3.93714801	4.745024139	0
3944	ABC	4.512858235	4.148810961	3.504137376	5.135764408	4.018941862	5.0709639	
3945	ABC	4.568735284	5.330444398	3.375877304	5.326578681	4.53848076	5.086550018	1
3948	GCB	3.709855176	4.284392679	3.12559996	4.849161554	4.343346561	5.055502919	0
3949	GCB	3.738779943	3.898668777	2.725605337	5.881546187	4.242403765	5.100059052	0
3950	ABC	3.738633057	4.075004712	2.837427849	5.455982766	4.303992475	4.817845913	1
3951	GCB	3.667516603	3.862682275	2.567263431	6.688892279	4.294598916	5.054145882	0
3952	Unclassified	3.791741968	4.579733613	2.92237668	5.212040703	4.393124526	5.092325959	2
3954	Unclassified	4.093627491	4.92879602	3.063764179	5.176848007	4.702077895	5.07038631	2
3956	GCB	3.860812799	4.575203088	3.728095949	7.43360276	4.240417895	4.939168885	0
3957	ABC	4.113057101	3.612205112	3.321598011	5.397878199	4.199483787	5.101009878	1
3958	ABC	3.831757463	3.983443907	2.610150469	5.566920152	4.06644462	4.834416078	1
3959	ABC	3.842711173	4.270043866	3.537235661	4.727124222	4.143295868	5.018581997	1
3960	GCB	3.263258232	3.482086247	2.885096234	6.12984053	3.819023791	4.785977533	0
3963	GCB	3.717960159	4.437963907	2.928862007	7.465573521	4.091541033	4.610146435	0
3964	ABC	4.668223081	4.553066036	3.34984433	5.045470204	4.113270365	5.056098591	1
3965	ABC	3.612854989	3.851713898	2.835981242	5.809296151	4.112157959	4.993313395	1
3966	GCB	3.779864356	4.03376207	2.821440182	5.648980304	4.208717472	5.08954604	0
3967	Unclassified	3.886607349	4.302177405	3.075477759	6.624010061	4.171285415	5.061776604	2
3968	Unclassified	3.935050703	4.357393798	3.332357622	6.732311968	4.182738418	5.064611533	2
3969	GCB	3.222573676	3.18629839	2.274090493	5.753354715	3.911227382	4.737652063	0
3971	GCB	3.455340999	3.795179674	2.426883273	8.095517141	4.226232803	4.9156315	0
3972	GCB	4.049770921	4.270693637	2.898711802	7.757309548	4.302683356	4.92014803	0
3974	GCB	3.78950792	4.348815968	3.361162098	5.856249304	4.140378804	5.060379396	0
3975	GCB	3.971034898	4.109929049	3.291363091	6.716032087	4.052584549	4.986225535	0
3976	ABC	4.198533996	4.702491733	2.913161045	5.83626283	4.44865637	4.986589592	1
3977	GCB	4.376004437	4.783652516	3.576659141	5.885004778	4.516840335	5.139289829	0
3980	GCB	3.678059856	4.163898839	2.799282764	5.071191366	4.221734552	5.08815788	0
3981	ABC	4.888509492	5.620439858	4.043548879	4.889730899	4.757577537	5.089092934	1
3983	GCB	3.904508978	4.348815968	3.120791188	5.677705897	4.058043055	4.715617974	0
3985	ABC	3.963294739	4.233356898	3.120791188	5.008304761	4.329455903	5.086926611	1
3987	Unclassified	3.811626951	3.638537584	2.564456763	6.692764837	4.486289232	5.22528798	2
3989	GCB	3.874459581	3.45209844	3.029790241	5.289661332	3.964155135	4.876499274	0
3990	ABC	4.117802001	4.34813777	2.87981132	4.917716995	4.365672399	5.077681001	1
3992	ABC	3.342691019	3.895532441	2.908110017	5.462563582	4.016654471	4.84903993	,
3997	Unclassified	3.759760351	3.947424166	2.466152853	5.489039813	4.156284189	4.962608688	2

Supplemental Table 2. Source of gene sets

Signature	Pathway Collection	Original Pathway Source
BIOCARTA_NFKB_PATHWAY	Biocarta	http://cgap.nci.nih.gov/Pathways/BioCarta/h_nfkbPathway
NEGATIVE_REGULATION_OF_INTRINSIC_APOPTOTIC_SIGNALING_PATHWAY	Gene Ontology	http://www.geneontology.org/

Supplemental Table 3. Gene of BIOCARTA_NFKB_PATHWAY and NEGATIVE_REGULATION_OF_INTRINSIC_APOPTOTIC_SIGNALING_PA THWAY

BIOCARTA_NFKB_PATHWAY	NEGATIVE_REGULATION_OF_INTRINSIC_APOPTOTIC_SIGNA LING_PATHWAY
CHUK	AKT1
FADD	ARHGEF2
IKBKB	BAG5
IKBKG	BCL2
IL1R1	BCL2L1
IRAK1	BCL2L12
MAP3K1	BCL2L2
MAP3K14	CD44
MAP3K7	CD74
MYD88	CLU
NFKB1	CREB3
NFKBIA	CXCL12
RELA	DDX3X
RIPK1	ELL3
TAB1	FIGNL1
TLR4	GPX1
TNF	GRINA
TNFAIP3	HERPUD1
TNFRSF1A	HIF1A
TNFRSF1B	HSPA1A
TRADD	HSPB1
TRAF6	HSPH1
	HTRA2
	HYOU1
	ING2
	IVNS1ABP
	KDM1A
	LRRK2
	MAPK7
	MCL1
	MIF
	MMP9
	NDUFA13
	NDUFS3
	NFE2L2
	NOC2L
	NONO
	OPA1
	PARK7
	PARL
	PGAP2
	PINK1
	PPIF
	PTPN1
	PTTG1IP
	RRM2B
	RRN3
	SIRT1
	SNAI2
	SOD2
	SRC
	SYVN1
	TAF9
	TAF9B
	TMBIM6
	TMEM161A
	TPT1
	TRAP1
	TRIAP1
	TRIM32
	TXNDC12
	USP47
	VDAC2
	WFS1
	XBP1
	ZNF385A

Supplemental Table 4. Whole-exome sequencing data and RNA-seq data derived from TCGA-DLBC

Sample ID	RNF31 expression (log2[fpkm+1])	RNF31 level	Number of non-synonymous mutations	Number of SNVs at C/G within WRCY/ RGYW motifs	Mutations related to AID Number of SNVs at C:G pairs	Number of transition SNVs
TCGA_FA_8693	3.433192779	Iow	139	16	89	117
TCGA_FA_A4BB	3.378465047	low	60	7	63	62
TCGA_FA_A4XK	3.605882128	low	57	13	56	53
TCGA_FA_A6HN	3.923326525	high	147	38	156	135
TCGA_FA_A6HO	4.088918093	high	38	4	39	36
TCGA_FA_A7DS	3.749852318	low	66	17	72	63
TCGA_FA_A7Q1	3.407832607	low	115	17	122	108
TCGA_FA_A82F	3.525318585	low	126	19	124	104
TCGA_FA_A86F	4.025166318	high	63	9	56	49
TCGA_FF_8041	3.96908928	high	158	20	164	159
TCGA_FF_8042	4.335474524	high	222	20	191	172
TCGA_FF_8043	3.73604922	low	92	10	90	92
TCGA_FF_8046	3.734145124	low	67	11	60	57
TCGA_FF_8047	4.015725016	high	101	11	107	115
TCGA_FF_8061	3.260872087	low	138	15	112	125
TCGA_FF_8062	3.615960329	low	120	21	110	103
TCGA_FF_A7CQ	4.015156781	high	101	21	100	94
TCGA_FF_A7CR	3.828972878	high	143	32	140	128
TCGA_FF_A7CW	3.902906089	high	36	4	37	33
TCGA_FF_A7CX	3.824814506	high	98	11	99	91
TCGA_FM_8000	3.724454855	low	113	6	104	111
TCGA_G8_6324	4.024117965	high	1116	118	1373	1456
TCGA_G8_6325	3.793983219	high	436	47	509	515
TCGA_G8_6326	4.151311915	high	373	38	405	449
TCGA_G8_6906	3.925795544	high	469	52	534	521
TCGA_G8_6907	3.78420038	high	389	42	440	456
TCGA_G8_6909	3.788774811	high	677	84	667	651
TCGA_G8_6914	3.71859885	low	400	45	465	486
TCGA_GR_7351	3.738807949	low	583	76	567	569
TCGA_GR_7353	4.538902117	high	414	47	441	480
TCGA_GR_A4D4	3.755117882	low	76	5	55	44
TCGA_GR_A4D5	3.52981948	low	49	6	59	51
TCGA_GR_A4D6	4.039498559	high	28	2	31	31
TCGA_GR_A4D9	3.510295565	low	62	6	52	40
TCGA_GS_A9TQ	3.582656442	low	67	5	60	54
TCGA_GS_A9TT	3.478160411	low	131	21	136	118
TCGA_GS_A9TU	3.797060331	high	41	3	39	40
TCGA_GS_A9TV	4.358108537	high	55	4	33	43
TCGA_GS_A9TW	3.835903844	high	180	21	174	144
TCGA GS A9TX	3.727934043	low	20	- 1	14	16
TCGA_GS_A9TY	3.442669245	low	109	8	106	89
TCGA_GS_A9TZ	3.812335231	high	294	36	304	259
TCGA_GS_A9U3	3.739806669	low	62	5	61	60
TCGA_GS_A9U4	3.923842062	high	16	2	23	17
TCGA_RQ_A68N	4.078441915	high	155	19	161	145
TCGA_RQ_A6JB	3.577042044	low	58	3	46	44
TCGA_RQ_AAAT	3.691684788	Iow	111	19	108	99
TCGA VB A8QN	3.488698312	low	117	15	139	129

For each DLBCL patient sequenced, clinical features are shown. ${ }^{1,2}$ The "Mutations related to AID" section shows number of single nucleotide variations (SNVs) at C/G within WRCY/RGYW motifs, and at C:G pairs and number of transition mutations. Blank fields indicate that a measurement was not taken or was irrelevant to the patient.

1. Grossman RL, Heath AP, Ferretti V, et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375(12):1109-1112.
2. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879-3884.

Supplemental Table 5. Murine homologue of previously reported driver genes in human DLBCL

Actb	Bcor	Dazap11	Gna13	Itpkb	Nfkbie	Setd1b	Tnfaip3	Zeb2
Actg1	Btg1	Dtx1	Gnai2	Klf2	Notch2	Sgk1	Tnfrsf14	Zfp3611
Ankrd11	Btg2	Dusp2	Grhpr	Klhl14	Osbpl10	Socs1	Tox	
Arid1a	Card11	Ebf1	Hist1h1b	KIhl6	Pax5	Spen	Triobp	
Arid1b	Ccnd3	Ep300	Hist1h1c	Kmt2d	Pde4dip	Stat3	Trp53	
B2m	Cd70	Ets1	Hist1h1d	Ltb	Pim1	Syne2	Ttn	
Bcl10	Cd79b	Etv6	Hist1h1e	Mef2b	Pim2	Tbl1xr1	Ube2a	
Bcl2	Cdkn2a	Ezh2	Irf2bp2	Mpeg1	Plec	Tet2	Vmp1	
Bcl6	Ciita	Fas	Irf4	Myc	Pou2f2	Tmem30a Wdfy4		
Bcl7a	Crebbp	Foxo1	Irf8	Myd88	Prdm1	Tmsb4x	Zc3h12a	

Among 90 genes mutated with frequency greater than 5% in human DLBCL, ${ }^{1}$ eight genes lacking a murine homologue were excluded. Genes non-synonymously mutated in lymphomas derived from CD19-cre-HOIP/MYD88LP mice are bold.

1. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407.

Supplemental Table 6. Murine homologue of previously known and predicted hypermutated genes in human DLBCL

Actb	Cd74	Ets1	Hist1h2ab	Hist2h2ab	Itpkb	Ms4a1	Prrt2	Tcl1
Actg 1	Cd83	Etv6	Hist1h2ao	Hist2h2ac	KIf2	Myc	Rcc1	Tmsb4x
Arid5b	Cdkn1b	Fam102a	Hist1h2bc	Hist2h2bb	Klhl14	Ncoa3	Rftn1	Tnf
Atxn2	Ciita	Fcgr4	Hist1h2be	Hist2h2be	Klhl21	Nol9	Rhoh	Tnfrsf14
Bach2	Cxcr4	Foxc1	Hist1h2bg	Hist2h3b	Limd2	Osbpl10	Rnf144b	Ube2j1
Bcl2	Dmd	Foxo1	Hist1h2bk	Id3	Lrmp	Pax5	S1pr2	Ube3c
Bcl6	Dtx1	Gadd45b	Hist1h2bm	lg ll 1	Lst1	Pim1	Serpina9	Vmp1
Bcl7a	Dtx4	Grhpr	Hist1h3b	Il10ra	Lta	Pim2	Sgk1	Wee1
Birc3	Dusp2	H2afj	Hist1h3c	1116	Ltb	Pou2af1	Socs1	Zfp3611
Btg1	Egr1	Hist1h1b	Hist1h3h	Irf2bp2	Map3k3	Ppp1r9b	Spred2	Zfp3612
Btg2	Ehd1	Hist1h1c	Hist1h4d	Irf4	Mcl1	Pramef25	St6gal1	Zfp608
Cd44	Eif4a2	Hist1h1e	Hist2h2aa2	Irf8	Mpeg1	Pramef8	Tas1r1	Zfp804a

Among the previously reported 126 genes, ${ }^{1} 18$ genes lacking a murine homologue were excluded.
Genes non-synonymously mutated in lymphomas derived from CD19-cre-HOIP/MYD88LP mice are bold.

1. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407.

Supplemental Table 7. Previously reported AID target genes in mice

1810065E05Rik	Cd79a	Fas	Jchain	Pik3ap1	Rpl3	Tcf4
Aatk	Cd79b	Fchsd2	Junb	Pim1	Rpl32	Terc
Abl2	Cd83	Fen1	Kpna2	Plac8	Rpl35	Tet2
Ablim1	Cdk11b	Fli1	Kpnb1	Plcb2	Rpl4	Tex14
Acot7	Cdk4	Fnbp1	Lmo1	Pms2	Rpl41	Tfap4
Actb	Chd2	Foxo4	Lrmp	Pola1	Rplp0	Tfdp1
Ada	Chek1	Fth1	Lsp1	Pold1	Rps12	Tmsb4x
Adar	Ciita	Ftl1	Ltb	Pold4	Rps14	Tnf
Agk	Clk1	Gadd45b	Ly6e	Pou2af1	Rps5	Tnfaip3
Aicda	Cnbp	Gadd45g	Lyn	Pou2f1	Rps6	Top1
Akap8	Cox4i1	Galnt1	Man1a	Pou2f2	Rps9	Top2a
Apex1	Cox6a1	Gas5	Mcm2	Ppard	Rrm1	Topors
Apobec1	Cox8a	Gdi2	Mcm6	Ppia	Rrm2	Tra2b
Apoe	Cradd	Gna13	Mcm7	Ppp1r15b	Runx1t1	Ttf1
Atf5	Csk	Grap	Mdfi	Ppp1r16b	Safb	U2af2
Atp5b	Csnk1d	Gsta3	Mdh2	Prdx1	Vimp	Uba3
Atp5e	Cyth1	H2afx	Mef2b	Psmc3	Serinc3	Ubac2
Atp5o	Daxx	H3f3b	Mir142b	Ptbp2	Sf3b1	Ubb
B2m	Ddb2	Hdac1	MIh3	Pten	Sh3bp5	Ube2b
Bad	Ddx20	Hdac9	Mlst8	Ptma	Sipa1	Ube2n
Bcl11a	Ddx5	Hdgf	Mrpl51	Ptprc	Sirt6	Ube4b
Bcl6	Dnmt1	Hells	Ms4a1	Rac1	Slbp	Ubox5
Bid	Dok1	Hist1h1a	Msh2	Rad23a	Slc30a6	Ubtf
Blk	Dsg4	Hist1h1b	Msh5	Rad51	Snx5	Uhmk1
Bmp2k	Dusp6	Hnrnpa2b1	Msh6	Rad9a	Sod1	Vav1
Brca1	Dyrk3	Hnrnpf	Mtor	Ranbp1	Sp3	Vav2
Btg1	E2f1	Hsf4	Mtss1	Rbm15	Spib	Vcl
Btg2	E2f2	Hven1	Mybbp1a	Rbm19	Sra1	Vdac1
C2cd3	E4f1	Id3	Myc	Rbm39	Srsf10	Xbp1
Cacng4	Ebf1	Ikzf1	Mycbp2	Recql4	St6gal1	Zc3h15
Calm1	Eef1a1	Il21r	Ncl	Rel	Stau1	Zcchc7
Cat	Eif2a	II4ra	Nfkb2	Rev3l	Stx3	
Ccne2	Eif3a	Ildr2	Ntan1	Rfc2	Sv2b	
Cd19	Eif3d	Ipmk	Parp1	Rgsi3	Swap70	
Cd22	Eif4a2	Ipo7	Pax5	Rhoh	Syk	
Cd24a	Eif5a	Irf4	Pena	Rims1	Taf4	
Cd37	Ell	Irf8	Pex13	Rnf2	Taf9	
Cd48	Erh	Itga4	Phip	Rpa1	Tapbp	
Cd53	Eri1	Itgal	Pias1	Rpia	Tcea1	
Cd74	Ets1	Itgb2	Pick1	Rpl29	Tcf3	

Among the previously reported 291 genes, ${ }^{1} 20$ genes duplicated or with no correspondence in the current database were excluded. Genes non-synonymously mutated in lymphomas derived from CD19-cre-HOIP/MYD88LP mice are bold.

1. Alvarez-Prado AF, Perez-Duran P, Perez-Garcia A, et al. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med. 2018;215(3):761-771.

Supplemental Table 8. Enrichment of WRCY mutations in genes mutated in lymphomas derived from transgenic mice

Mouse genotype group	Gene	No. of SNVs at C in WRCY in the indicated gene	No. of WRCY motifs in the indicated gene	No. of all WRCY motifs in the whole exome	No. of samples in the indicated genotype group	No. of SNVs at C in total WRCY among the indicated genotype group	Rate of SNVs in WRCY motifs	p value (Binomial test)	Gene sets	
									AlvarezPrado, 2018	$\begin{gathered} \text { Schmitz, } \\ 2018 \end{gathered}$
CD19-cre-HOIP/MYD88LP	Irf2bp2	23	109	2254406	-8	145	8.04E-06	1.52E-94	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Pim1	11	56	2254406	-8	145	8.04E-06	$1.35 \mathrm{E}-45$	TRUE	TRUE
CD19-cre-HOIP/MYD88LP	Hist1h1e	8	54	2254406	-8	145	$8.04 \mathrm{E}-06$	1.82E-32	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Klf2	7	55	2254406	-8	145	8.04E-06	$4.40 \mathrm{E}-28$	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Bhlhe41	7	84	2254406	-8	145	8.04E-06	$9.83 \mathrm{E}-27$	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Nfkbia	6	70	2254406	-8	145	8.04E-06	$3.54 \mathrm{E}-23$	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	H2-Ab1	5	47	2254406	-8	145	$8.04 \mathrm{E}-06$	5.15E-20	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Fgl2	3	102	2254406	-8	145	$8.04 \mathrm{E}-06$	8.92E-11	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Man1a	3	127	2254406	-8	145	8.04E-06	1.73E-10	TRUE	FALSE
CD19-cre-HOIP/MYD88LP	Tap1	3	167	2254406	-8	145	8.04E-06	$3.96 \mathrm{E}-10$	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Cd83	2	47	2254406	-8	145	$8.04 \mathrm{E}-06$	6.99E-08	TRUE	TRUE
CD19-cre-HOIP/MYD88LP	Hes5	2	49	2254406	-8	145	8.04E-06	7.60E-08	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Mcl1	2	51	2254406	-8	145	8.04E-06	8.24E-08	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Socs3	2	53	2254406	-8	145	$8.04 \mathrm{E}-06$	8.90E-08	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Hist1h1b	2	59	2254406	-8	145	8.04E-06	1.11E-07	TRUE	TRUE
CD19-cre-HOIP/MYD88LP	Eef1a1	2	75	2254406	-8	145	8.04E-06	1.79E-07	TRUE	FALSE
CD19-cre-HOIP/MYD88LP	Dusp2	2	86	2254406	-8	145	$8.04 \mathrm{E}-06$	2.36E-07	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Gm21948	2	87	2254406	-8	145	8.04E-06	2.42E-07	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Myc	2	89	2254406	-8	145	8.04E-06	2.53E-07	TRUE	TRUE
CD19-cre-HOIP/MYD88LP	Sgpp1	2	93	2254406	-8	145	8.04E-06	2.76E-07	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Ehd1	2	116	2254406	-8	145	8.04E-06	4.31E-07	FALSE	TRUE
CD19-cre-HOIP/MYD88LP	Sik1	2	176	2254406	-8	145	8.04E-06	9.95E-07	FALSE	FALSE
CD19-cre-HOIP/MYD88LP	Tlr9	2	254	2254406	-8	145	8.04E-06	$2.07 \mathrm{E}-06$	FALSE	FALSE
CD19-cre-MYD88LP	Irf2bp2	5	109	2254406	- 4	15	$1.66 \mathrm{E}-06$	1.49E-21	FALSE	TRUE

The "No. of SNVs at C in WRCY in the indicated gene" shows total number of SNVs at C/G within WRCY/RGYW motifs observed in the indicated genes among all the lymphomas derived from the indicated genotype group. The "No. of SNVs at C in WRCY in the indicated gene" shows the total number of WRCY/RGYW motifs in the indicated gene. The "No. of all WRCY motifs in the whole exome" shows total number of WRCY/RGYW motifs in the whole exome. The "No. of samples in the indicated genotype group" shows the number of samples in the indicated genotype (8 CD19-cre-HOIP/MYD88LP, 4 CD9-cre-MYD88LP). The "No. of SNVs at C in total WRCY among the indicated genotype group" shows the total number of SNVs at C/G within WRCY/RGYW motifs observed in lymphomas derived from the indicated genotype (145 CD19-cre-HOIP/MYD88LP, 15 CD9-cre-MYD88LP). The "Rate of SNVs in WRCY motifs" were calculated as follows: Rate of SNVs in WRCY motifs $=[$ No. of SNVs at C in total WRCY among the indicated genotype group/ (No. of all WRCY motifs in the whole exome \times No. of samples in the indicated genotype group)]. The "Gene set" section shows whether the indicated gene is included in each gene set (yes ="TRUE", no = "FALSE").

Supplemental Table 9. Analysis of somatic mutations in clonal IgH rearrangements of DLBCL-like lymphomas derived from transgenic mice

Tumor ID	Genotype	IGHV usage	No. of nucleotides analyzed	No. of mutations	Frequency of mutations (\%)
786	CD19-cre-HOIP/MYD88LP	IGHV1-39*01	267	8	3.00
950	CD19-cre-HOIP/MYD88LP	IGHV1-72*01	192	23	11.98
1032	CD19-cre-HOIP/MYD88LP	IGHV1-81*01	233	1	0.43
1074	CD19-cre-HOIP/MYD88LP	IGHV1-55*01	195	3	1.54
1083	CD19-cre-HOIP/MYD88LP	IGHV1-63*01	248	1	0.40
1084	CD19-cre-HOIP/MYD88LP	IGHV1-80*01	195	3	1.54
1182	CD19-cre-HOIP/MYD88LP	IGHV1-87*01	184	40	21.74
1236	CD19-cre-MYD88LP	IGHV2-2*01	221	0	0.00
1237	CD19-cre-MYD88LP	IGHV1-59*01	196	0	0.00
1289	CD19-cre-MYD88LP	IGHV1-87*01	205	9	4.39
1385	CD19-cre-MYD88LP	IGHV1-69*02	198	2	1.01

Supplemental Table 10. Primers for testing clonality of $\operatorname{lgH} \mathrm{V}(\mathrm{D}) \mathrm{J}$

Primer	Sequence (5'-3')
VH-specific primers 1	
$36-60$	CCTGGCCTCGTGAAACCTTCTCAG
81X	GGAGGCTTAGTGCAGCCTAGAGAG
J558	CTTCAGTGAAGATATCCTGCAAGG
Q52	CCCAGGTGCAGCTGAAGCAGTCAG
VH-specific primers 2	
$36-60$	GTCTCTCAGGCGCGCCGTCACTGG
81X	TCCCTGAGGCGCGCCTGTGAATCC
J558	GGCTTCTGGCGCGCCATTTACTGG
Q52	AGCCTGTCCATCACCTGCACAGTC
JH universal primer	GAAAACTCCATAACAAAGG
JH-specific primers	
JH1	AGCTTCTGCAGCATGCAGAGTGTG
JH2	GGCCAGGATCCCTATAAATCTCTG
JH3	ACAAAGGGGTTGAATCTTGATTCC
JH4	AAAATAAAGACCTGGAGAGGC

Supplemental Table 11. Primer sequences used for real-time PCR

	Forward primer sequence (5^{\prime} - 3^{\prime})	Reverse primer sequence (5' 3^{\prime})
Mouse		
Aicda	TCTGCTACGTGGTGAAGAGGAG	CCAGTCTGAGATGTAGCGTAGG
Bcl2	CCTGTGGATGACTGAGTACCTG	AGCCAGGAGAAATCAAACAGAGG
Bcl211	GCCACCTATCTGAATGACCACC	AGGAACCAGCGGTtGAAGCGC
Bcl2a1a	TCCACAAGAGCAGATTGCCCTG	GCCAGCCAGATTTGGGTTCAAAC
Birc2	GATACGGATGAAGGGTCAGGAG	GGGTCAGCATTTTCTTCTCCTGG
Birc3	GGACATTAGGAGTCTTCCCACAG	GAACACGATGGATACCTCTCGG
Cflar	GCTCTACAGAGTGAGGCGGTTT	caccaatctccatcagcaggac
116	taccacttcacaigicgagagc	CTGCAAGTGCATCATCGTTGTTC
1110	CGGGAAGACAATAACTGCACCC	CGGTTAGCAGTATGTTGTCCAGC
Mcl1	AGCTTCATCGAACCATTAGCAGAA	CCTTCTAGGTCCTGTACGTGGA
Myc	TCGCTGCTGTCCTCCGAGTCC	GGTTTGCCTCTTCTCCACAGAC
Nfkbia	GCCAGGAATTGCTGAGGCACTT	GTCTGCGTCAAGACTGCTACAC
Nfkbid	GTGGAGGATCTGTTGAACCTGG	TCTCTGGCTTCCAGGTCAACCT
Tnfaip3	AGCAAGTGCAGGAAAGCTGGCT	GCTTTCGCAGAGGGAGTAACAG
Xiap	GGCAGAATATGAAGCACGGATCG	CACTTGGCTTCCAATCCGTGAG
β-Actin	CATTGCTGACAGGATGCAGAAGG	TGCTGGAAGGTGGACAGTGAGG
Human		
BCL2	ATCGCCCTGTGGATGACTGAGT	GCCAGGAGAAATCAAACAGAGGC
BCL2L1	GCCACTTACCTGAATGACCACC	AACCAGCGGTtGAAGCGTTCCT
BIRC2	CAGACACATGCAGCTCGAATGAG	cacctcaagccaccatcacaac
BIRC3	GCTTTTGCTGTGATGGTGGACTC	CTtGACGGATGAACTCCTGTCC
HOIP	CTGGATCGTCATGGCAACCTTG	ACATCACCTCCGTGCTGGAACA
HOILIL	TGACAACACCTACTCGTGCTCG	CACTGCGGTTTTCAGCAATGGAG
MCL1	CCAAGAAAGCTGCATCGAACCAT	CAGCACATTCCTGATGCCACCT
NFKBIA	TCCACTCCATCCTGAAGGCTAC	CAAGGACACCAAAAGCTCCACG
SHARPIN	tGGCTGTGAGATGTGTAGCACC	CCTGGAGATGTCGGACTTGTGA
XIAP	tGGCAGATTATGAAGCACGGATC	AGttagccctcctccacagtga
β-ACTIN	CACCATTGGCAATGAGCGGTTC	AGGTCTTTGCGGATGTCCACGT

Supplemental Figure 1

Supplemental Figure 1. Generation of a mouse strain expressing HOIP or MYD88 L252P specifically in B cells. (A) Expression profiles of HOIP in B-cell subsets in human bone marrow. (B) Association of HOIL-1L (RBCK1), SHARPIN, and OTULIN expression with cell-of-origin in human DLBCL. Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points. (C) B cell-specific expression of eGFP reporters in splenocytes from CD19-cre-HOIP mice. (D) B cell-specific expression of HOIP was confirmed by immunoblot analysis using MACS-purified splenic B or T cells. Expression of HOIL-1L and SHARPIN was also specifically elevated in B cells. β-actin was used as a loading control. (E) Transcript levels of NF-кB target genes in unstimulated splenic B cells from mice (10 weeks old), normalized against Actb mRNA; n = 3 per genotype. Data are means \pm SD. (F) Macroscopic appearance of spleens in 14-month-old CD19-cre-HOIP mice. (G) Schematic representation of conditional expression of MYD88 L252P (the mouse equivalent of the human L265P mutation) in a Cre recombinase-dependent manner. (H) B cell-specific expression of eGFP reporters in splenocytes from CD19-cre-MYD88LP mice. (I) B cell-specific expression of transgenic MYD88 was confirmed by immunoblot analysis using MACS-purified splenic B or T cells. β-actin was used as a loading control. (J) In vivo BrdU analyses of splenic B cells. BrdU was administered by bolus intraperitoneal injection ($50 \mathrm{mg} / \mathrm{kg}$) 1.5 hours before dissection. (K) Immunoblots of MACS-purified splenic B cells from control and CD19-cre-MYD88LP transgenic mice (10 weeks old). (L) Cell lysates of HOIP KO or wild type Jurkat cells with or without TNF α stimulation were subjected to Halo-tagged linear ubiquitin-specific tandem ubiquitin binding entity (M1-specific TUBE) binding and Halo Tag based purification, and analyzed by immunoblotting. (E) ${ }^{* *} \mathrm{p}<0.01$. (B and E), two-tailed unpaired Student's t-test.

Supplemental Figure 2

Supplemental Figure 2. Surface immunophenotypes of lymphomas derived from transgenic mice and clonality analysis of the tumors. (A) Representative data of FACS analysis for surface immunophenotypes of lymphoma cells. Large cells (G2) in tumor-affected organs were positive for eGFP, and eGFP-positive cells were analyzed for surface antigens. (B) Analyses for clonality of 13 cases (except for T1084, which is shown in Figure 1I).
CD19-cre-HOIP/MYD88LPCD19-cre-MYD88LP

VAF >0.2

C
D

Pim1

Supplemental Figure 3. LUBAC facilitates aberrant somatic hypermutations mediated by AID. (A, B, and E) Mutations with variant allele frequency (VAF) >0.2 in tumor samples were selected and analyzed. (A) Numbers of mutations in each tumor sample. (B) Numbers of SNVs at C/G within the WRCY/RGYW motifs (left), and numbers of C:G (center) and transition mutations (right) in each tumor sample. (C-D) Mutations with VAF > 0.05 in tumor samples were analyzed. (C) Proportion of SNVs at C/G within the WRCY/RGYW motifs to total SNVs in each tumor samples. (D) Ratio of the number of SNVs at C/G within the WRCY/RGYW motifs to the number of WRCY/RGYW motifs in indicated genes among tumors derived from CD19-creHOIP/MYD88LP mice (upper panel) and CD19-cre-MYD88LP mice (lower panel). (E) Mutation distribution in targeted genes observed in lymphoma cells derived from eight CD19-creHOIP/MYD88LP mice. Shadows indicate the 2 kb region downstream of the transcription start site (TSS). (A, B, and C) Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points. * p < 0.05, ** p < 0.01, *** p < 0.001 . Brunner-Munzel test.

Supplemental Figure 4

Supplemental Figure 4. Augmented LUBAC activity overcomes cell death induced by DNA damage thereby accelerating accumulation of somatic mutations. (A) Live cells were analyzed by FACS using TO-PRO-3 staining. Mouse splenic B cells derived from indicated genotypes were cultured with anti-CD40 antibody ($10 \mu \mathrm{~g} / \mathrm{mL}$) for 24 hours and then were treated with or without cisplatin for 24 hours. (B) Percentage of live cells ($\pm \mathrm{SD}$); $\mathrm{n}=6$ per group in three independent experiments. (C) Jurkat cells were treated with $3 \mu \mathrm{~g} / \mathrm{mL}$ cisplatin for the indicated periods, followed by quantitative RT-PCR, normalized against $A C T B$ mRNA; $\mathrm{n}=3$ per genotype. Data are means \pm SD. (B and C) two-way ANOVA test.

Supplemental Figure 5. Enforced LUBAC expression augments expression of NF-кB target genes. Transcript levels of NF-кB target genes in MACS-purified unstimulated splenic B cells from CD19-cre, CD19-cre-HOIP/MYD88LP, and CD19-cre-MYD88LP mice (10 weeks old), normalized against Actb mRNA; $\mathrm{n}=3$ per genotype. Data are means \pm SD. * $\mathrm{p}<0.05$, ** $\mathrm{p}<$ $0.01,{ }^{* * *} \mathrm{p}<0.001$ (one-way ANOVA with Turkey's post hoc tests).

Supplemental Figure 6

A

Survival after disease progression or relapse

Schmitz, 2018)

F

D

Supplemental Figure 6. LUBAC is an effective target for the treatment of DLBCL. (A) Overall survival of DLBCL cases following diagnosis who did not achieve complete response to initial therapy (Upper panels). Survival rate of DLBCL cases after disease progression or relapse (lower panels). If two Kaplan-Meier curves crossed early ($\leqq 18$ months), differences between survival functions were examined by the log-rank test based on observations after the crossing point. (B) Immunoblot analyses were performed using lysates from splenic B cells of the indicated mouse genotypes and HM876 cells. (C) A schematic diagram of the AlphaScreen-based HTS system. Linear di-ubiquitin is formed in an enzymatic process that utilizes FLAG-Ub and Ub-GST, and Petit-LUBAC or Petit-SHARPIN as the E3 ubiquitin ligase enzyme, as well as E1, E2, and ATP. Anti-GST donor and anti-FLAG acceptor beads simultaneously capture linear di-ubiquitin. Proximity of acceptor and donor beads, induced by the production of linear di-ubiquitin, generates a luminescent signal upon irradiation at 680 nm . LUBAC inhibitors block formation of linear diubiquitin, thereby decreasing signal intensity. (D) In vitro ubiquitination assay confirmed that aureothricin (arrowhead) inhibited linear polyubiquitination mediated by LUBAC. Samples were probed with anti-linear ubiquitin antibody (LUB9). (E) In vitro Ubiquitination assay of LUBAC. Samples were probed with anti-ubiquitin antibody (P4D1). (F) In vitro ubiquitination assay of other types of E3 ligases, such as Parkin (left panel), Nedd4 (center panel), and cIAP2 (right panel). (G) In vitro Ubiquitination assay of LUBAC. Samples were probed with anti-HOIP, anti-HOIL-1L, and anti-SHARPIN antibody. (H) DLBCL2 cells were treated with or without thiolutin $(0.1 \mu \mathrm{M})$ for the indicated periods, followed by quantitative RT-PCR, normalized against $A C T B$ mRNA in three independent experiments. (I) Cell lysates of DLBCL2 and HM876 treated with or without thiolutin $(0.1 \mu \mathrm{M})$ for 2 hours were analyzed by immunoblotting. Samples were probed with anti-K48 specific antibody (leftmost panel for DLBCL2, and middle right panel for HM876) or K63 specific antibody (middle left panel for DLBCL2, and rightmost panel for HM876). (A), log-rank test; (H) two-way ANOVA test.

