Completely Regular Codes in Johnson graph

北海道大学・理学研究科 吉田瞳 (Hitomi Yoshida)
Graduate school of Mathematics,
Hokkaido University

1 Introduction

In this article, we study completely regular codes in some distance regular graphs. Completely regular codes were first studied by Biggs [2] and P. Delsarte [4], but there are not yet many articles on this subject. Recently, research of completely regular codes has been developing with research of Terwilliger algebra.

We consider completely regular codes in a distance regular graph. Martin [7] conjectured that for completely regular codes in a distance regular graph, $\gamma_i \leq \gamma_{i+1}$, $\beta_i \geq \beta_{i+1}$ hold. On the other hand, Koolen [6] showed $\gamma_i < \gamma_{i+1}$, $\beta_i > \beta_{i+1}$ in H(D,2). Furthermore, I conjectured $\gamma_i < \gamma_{i+1}$, $\beta_i > \beta_{i+1}$ in J(n,d). In order to study this conjecture, in this paper we first classify the completely regular codes in Johnson graph J(4,2), J(5,2), J(6,2), J(6,3).

2 Distance regular graphs

A graph is a pair $\Gamma = (V, E)$ consisting of a set V, referred to as the vertex set of Γ , and a set E of 2-subsets of V, referred to as the edge set of Γ . That is, our graphs are undirected, without loops or multiple edges. We write $\gamma \in \Gamma$ if γ is a vertex of Γ and $\gamma \sim \delta$ if $\{\gamma, \delta\}$ is an edge of Γ . The distance $d(\gamma, \delta)$ of two vertices $\gamma, \delta \in \Gamma$ is the length of a shortest path between γ and δ . $d = \max\{d(\gamma, \delta) \mid \gamma, \delta \in \Gamma\}$ is called the diameter of Γ . Given $\delta \in \Gamma$, we write $\Gamma_i(\delta)$ for the set of vertices γ with $d(\gamma, \delta) = i$. In particular, $\Gamma(\delta) = \Gamma_1(\delta)$ denotes the set of neighbours of δ . The valency $k(\gamma)$ of a vertex γ is the cardinality of $\Gamma(\gamma)$. A graph is called regular if each vertex has the same valency k.

Definition 2.1 A connected graph $\Gamma = (V, E)$ is said to be a distance regular graph (DRG) if the numbers

$$c_{i} = | \Gamma_{i-1}(\gamma) \cap \Gamma(\delta) |,$$

$$a_{i} = | \Gamma_{i}(\gamma) \cap \Gamma(\delta) |, and$$

$$b_{i} = | \Gamma_{i+1}(\gamma) \cap \Gamma(\delta) |$$

are independent of the choices of $\gamma, \delta \in \Gamma$ with $d(\gamma, \delta) = i$.

The numbers c_i , a_i and b_i are said to be the intersection numbers of Γ .

$$\iota(\Gamma) = \begin{cases} * & c_1 & \dots & c_{d-1} & c_d \\ a_0 & a_1 & \dots & a_{d-1} & a_d \\ b_0 & b_1 & \dots & b_{d-1} & * \end{cases}$$

is said to be an intersection array of Γ . Clearly,

$$b_0 = k, b_d = c_0 = 0, c_1 = 1.$$

By counting edges $\{\delta, \epsilon\}$ with $d(\gamma, \delta) = i, d(\gamma, \epsilon) = i + 1$, we see that $\Gamma_i(\gamma)$ contains k_i points, satisfying

$$k_0 = 1, k_1 = k, k_{i+1} = k_i b_i / c_{i+1}$$
 $(i = 0, ..., d-1);$

therefore, the total number of vertices is

$$\nu = 1 + k_1 + \cdots + k_d.$$

By counting edges $\{\delta, \epsilon\}$ with $d(\gamma, \delta) = 1$, we see that

$$k = a_i + b_i + c_i.$$

Examples. (i) The polygons; they have intersection array

$$\begin{cases} * & 1 \dots 1 & c_d \\ 0 & 0 \dots 0 & 0 \\ 2 & 1 \dots 1 & * \end{cases},$$

where $c_d = 2$ for the 2d-gon and $c_d = 1$ for the (2d + 1)-gon. (ii) The five Platnic solids; they have intersection array

$$\begin{cases} * & 1 \\ 0 & 2 \\ 3 & * \end{cases}$$
 (tetrahedron),
$$\begin{cases} * & 1 & 4 \\ 0 & 2 & 0 \\ 4 & 1 & * \end{cases}$$
 (octahedron),
$$\begin{cases} * & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 3 & 2 & 1 & * \end{cases}$$
 (cube),

3 Completely regular codes

A code C is a set of a non-empty subset of Γ . $C \ni x$ is said to be a codeword. The number

$$\delta(C) := \min\{d(x, y) \mid x, y \in C, x \neq y\}$$

is called the *minimum distance* of C. The distance of $x \in \Gamma$ to C is defined as

$$d(x,C) := \min\{d(x,y) \mid y \in C\},\$$

and the number

$$t = t_C = \max\{d(x, C) \mid x \in \Gamma\}$$

is called the *covering radius* of C. The *subconstituents* of Γ with respected to C are the sets

$$C_l := \{ x \in \Gamma \mid d(x, C) = l \};$$

in particular,

$$C_0 = C, \qquad C_l \neq \phi \Leftrightarrow l \leq t$$

Definition 3.1 A code C is said to be a completely regular code (CRC) if the numbers

$$\gamma_i = \mid C_{i-1} \cap \Gamma(x) \mid,$$

$$\alpha_i = \mid C_i \cap \Gamma(x) \mid, and$$

$$\beta_i = \mid C_{i+1} \cap \Gamma(x) \mid$$

are independent of the choices of $x \in C_i$.

The numbers $\gamma_i, \alpha_i, \beta_i$ are said to be an intersection numbers of C.

$$\iota(C) = \left\{ \begin{array}{ccccc} * & \gamma_1 & \dots & \gamma_{t-1} & \gamma_t \\ \alpha_0 & \alpha_1 & \dots & \alpha_{t-1} & \alpha_t \\ \beta_0 & \beta_1 & \dots & \beta_{t-1} & * \end{array} \right\}$$

is said to be an intersection array of C. Clearly,

$$\beta_t = \gamma_0 = 0.$$

By counting edges $\{\delta, \epsilon\}$ with $d(\delta, C) = i$, $d(\epsilon, C) = i + 1$, we see that C_i contains κ_i points, satisfying

$$\kappa_{i+1} = \kappa_i \beta_i / \gamma_{i+1} \qquad (i = 0, \dots, t-1);$$

therefore, the total number of vertices is

$$\nu = \kappa_0 + \kappa_1 + \dots + \kappa_t.$$

By counting edges $\{\delta, \epsilon\}$ with $d(\delta, C) = i$, we see that

$$k = \alpha_i + \beta_i + \gamma_i$$
.

Theorem 3.1 (Neumaier[8]) For a completely regular code C in a connected regular graph with intersection array

$$\iota(C) = \left\{ \begin{matrix} * & \gamma_1 & \dots & \gamma_{t-1} & \gamma_t \\ \alpha_0 & \alpha_1 & \dots & \alpha_{t-1} & \alpha_t \\ \beta_0 & \beta_1 & \dots & \beta_{t-1} & * \end{matrix} \right\},\,$$

the subset C_t is a completely regular code with intersection array

$$\iota(C_t) = \left\{ \begin{matrix} * & \beta_{t-1} & \dots & \beta_1 & \beta_0 \\ \alpha_t & \alpha_{t-1} & \dots & \alpha_1 & \alpha_0 \\ \gamma_t & \gamma_{t-1} & \dots & \gamma_1 & * \end{matrix} \right\}.$$

Theorem 3.2 (Suzuki[11,Proposition 2.1]) In distance-regular graph, a code $\{x\}$ is a completely regular code.

Proof. By definition of distance-regular graph, it is clear.

We say C_t is a reversal of C. So, we consider the case where $2 \le |C| \le \frac{\nu}{2}$. We say that a completely regular code C with covering radius t in a distance regular graph Γ is trivial if $|C| \le 1$, $|C_t| \le 1$ or all the vertices of Γ are in C.

Theorem 3.3 (Koolen[6,Theorem15]) Each completely regular codes C in Γ has $\gamma_i \leq \gamma_{i+1}$ and $\beta_i \geq \beta_{i+1}$, where Γ is a member of one of the following families.

- (i) The Hamming graphs, H(n,d),
- (ii) the Johnson graphs, J(n,d),
- (iii) the Grassmann graphs, $G_q(n, d)$,
- (iv) the symplectic dual polar graphs on $[C_d(q)]$,
- (v) the orthogonal dual polar graphs on $[B_d(q)]$,
- (vi) the orthogonal dual polar graphs on $[D_d(q)]$,
- (vii) the orthogonal dual polar graphs on $[{}^{2}D_{d+1}(q)]$,
- (viii) the unitary dual polar graphs on $[{}^{2}A_{2d}(r)]$,
- (ix) the unitary dual polar graphs on $[{}^{2}A_{2d-1}(r)]$,
- (x) the bilinear forms graphs, $H_q(n,d)$,
- (xi) the alternating forms graphs,
- (xii) the Hermitean forms graphs,
- (xiii) the symmetruc bilinear forms graphs,
- (xiv) the quadratic forms graphs,
- (xv) the folded Johnson graphs, $\bar{J}(2m, m)$,
- (xvi) the folded cubes,
- (xvii) the halved cubes,
- (xviii) the Doob graphs, the direct products of Shrikhande graphs and 4-cliques,
- (xix) the half dual polar graphs, $D_{m,m}(q)$,
- (xx) the Ustimenko graphs, which are the distance 1-or-2 graphs of dual polar graphs on $[C_d(q)]$, and
- (xxi) the Hemmeter graphs, the extended bipartite doubles of the dual polar graphs on $[C_d(q)]$.

4 Completely regular codes in Johnson graph J(n,d)

Let X be a finite set of cardinality n. The Johnson graph of the d-sets in X has vertex set $\binom{n}{d}$, the collection of d-sets of X. Two vertices γ, δ are adjacent whenever $\gamma \cap \delta$ has cardinality d-1. The Johnson graph J(n,d) has an intersection array given by

$$b_i = (n-i)(n-d-i), \quad c_i = i^2 \quad \text{for} \quad 0 \le i \le d.$$

4.1 Completely regular codes in J(n,2)

 \bullet A non-trivial CRC in Johnson graph J(4,2) :

has one of the following intersection arrays.

(ii)
$$\mid C \mid = 3$$

• A non-trivial CRC in Johnson graph J(5,2):

has, up to reversal, one of the following intersection arrays.

(ii) | C |= 5

• A non-trivial CRC in Johnson graph J(6,2) has up to reversal, one of the following intersection arrays.

(i)
$$\mid C \mid = 3$$
 $\begin{cases} * & 2 \\ 0 & 6 \\ 8 & * \end{cases}$, $\begin{cases} * & 2 & 6 \\ 2 & 4 & 2 \\ 6 & 2 & * \end{cases}$

(ii)
$$\mid C \mid = 5$$
 $\begin{cases} * & 2 \\ 4 & 6 \\ 4 & * \end{cases}$

(iii)
$$\mid C \mid = 6$$
 $\begin{cases} * & 4 \\ 2 & 4 \\ 6 & * \end{cases}$

Lemma 4.1 In Johnson graph J(n,2), if n is odd, then there is no non-trivial completely regular codes with |C|=2.

Proof. For n = 3, there is no non-trivial completely regular codes. So, we may consider the case $n \geq 5$. If $C = \{(i,j),(i,k)\}$, we can take (i,l),(j,m) in C_1 , where (i,l) is adjacent (i,j) and (i,k),(j,m) is adjacent (i,j), contradiction. So, C isn't a completely regular code. If $C = \{(i,l),(j,m)\}$, we can take (i,j),(i,n) in C_1 , where (i,j) is adjacent (i,l) and (j,m),(i,n) is adjacent (i,l), contradiction. So, C isn't a completely regular code. Therefore, there is no non-trivial completely regular code C with |C| = 2.

Lemma 4.2 In a Johnson graph J(n,2), let $C = \{(1,2), (2,3), \ldots, (n-1,n), (n,1)\}$. Then C is a completely regular code in J(n,2).

Proof. For n = 2 or 3, C is a trivial completely regular code. For n = 4, let (i,j) be in $J(n,2) \setminus C$. Since (i-1,i) or (i,i+1) is in C, d((i,j),C) = 1. Therefore (i,j) in C_1 . Then, the intersention array is

$$\begin{cases} * & 4 \\ 2 & 2(n-4) \\ 2(n-3) & * \end{cases},$$

so C is a non-trivial completely regular code.

4.2 Completely regular codes in J(n,3)

• A non-trivial CRC in Johnson graph J(6,3) has one of the following intersection arrays.

(i)
$$|C| = 2$$

$$\begin{cases} * & 1 \\ 0 & 8 \\ 9 & * \end{cases}$$

(ii)
$$\mid C \mid = 4$$
 $\begin{cases} * & 2 \\ 1 & 7 \\ 8 & * \end{cases}$, $\begin{cases} * & 2 & 6 \\ 3 & 5 & 3 \\ 6 & 2 & * \end{cases}$

(iii)
$$|C| = 6$$
 $\begin{cases} * & 3 \\ 2 & 6 \\ 7 & * \end{cases}$

(iv)
$$|C| = 8$$
 $\begin{cases} * & 4 \\ 3 & 5 \\ 6 & * \end{cases}$

(v)
$$\mid C \mid = 10$$
 $\begin{cases} * & 3 \\ 6 & 6 \\ 3 & * \end{cases}$, $\begin{cases} * & 5 \\ 4 & 4 \\ 5 & * \end{cases}$, $\begin{cases} * & 6 \\ 3 & 3 \\ 6 & * \end{cases}$

References

- [1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, California, 1984.
- [2] Biggs, N., Perfect codes in graphs, J. Combin. Th. (B) 15 (1973), 289-296.
- [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
- [4] Delsarte, Ph., An algebraic approach to the association scheme, Philips Res. Reports 32 (1977), 373-411.
- [5] A. Jurišić, and J. Koolen and P. Terwilliger, Tight distance-regular graphs, J. Alg. Combin. 12 (2000), 163-197.

- [6] J. H. Koolen, On a Conjecture of Martin on the Parameters of Completely Regular Codes and the Classification of the Completely Regular Codes in the Biggs-Smith Graph, Linear and Multilinear Algebra. 39 (1995), 3-17.
- [7] W. J. Martin, Completely regular designs, J. Combin. 6 (1998), 261-273.
- [8] A. Neumaier, Completely regular codes, Discrete Math, 106/107 (1992), 353-360.
- [9] H. Suzuki, The Terwilliger Algebra associated with a set of vertices in a distance-regular graph, preprint.
- [10] H. Suzuki, The geometric girth of a distance-regular graph having certain thin irreducible modules, preprint.
- [11] H. Suzuki, On Completely Regular Codes and Related Topics, preprint.