<table>
<thead>
<tr>
<th>Title</th>
<th>Completely Regular Codes in Johnson graph (Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoshida, Hitomi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1394: 35-46</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25903</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Completely Regular Codes in Johnson graph

Hitomi Yoshida
Graduate school of Mathematics, Hokkaido University

1 Introduction

In this article, we study completely regular codes in some distance regular graphs. Completely regular codes were first studied by Biggs [2] and P. Delsarte [4], but there are not yet many articles on this subject. Recently, research of completely regular codes has been developing with research of Terwilliger algebra.

We consider completely regular codes in a distance regular graph. Martin [7] conjectured that for completely regular codes in a distance regular graph, $\gamma_i \leq \gamma_{i+1}$, $\beta_i \geq \beta_{i+1}$ hold. On the other hand, Koolen [6] showed $\gamma_i < \gamma_{i+1}$, $\beta_i > \beta_{i+1}$ in $H(D, 2)$. Furthermore, I conjectured $\gamma_i < \gamma_{i+1}$, $\beta_i > \beta_{i+1}$ in $J(n, d)$.

In order to study this conjecture, in this paper we first classify the completely regular codes in Johnson graph $J(4, 2)$, $J(5, 2)$, $J(6, 2)$, $J(6, 3)$.

2 Distance regular graphs

A graph is a pair $\Gamma = (V, E)$ consisting of a set V, referred to as the vertex set of Γ, and a set E of 2-subsets of V, referred to as the edge set of Γ. That is, our graphs are undirected, without loops or multiple edges. We write $\gamma \in \Gamma$ if γ is a vertex of Γ and $\gamma \sim \delta$ if $\{\gamma, \delta\}$ is an edge of Γ. The distance $d(\gamma, \delta)$ of two vertices $\gamma, \delta \in \Gamma$ is the length of a shortest path between γ and δ. $d = \max\{d(\gamma, \delta) | \gamma, \delta \in \Gamma\}$ is called the diameter of Γ. Given $\delta \in \Gamma$, we write $\Gamma_i(\delta)$ for the set of vertices γ with $d(\gamma, \delta) = i$. In particular, $\Gamma(\delta) = \Gamma_1(\delta)$ denotes the set of neighbours of δ. The valency $k(\gamma)$ of a vertex γ is the cardinality of $\Gamma(\gamma)$. A graph is called regular if each vertex has the same valency k.
Definition 2.1 A connected graph $\Gamma = (V, E)$ is said to be a distance regular graph (DRG) if the numbers

\[c_i = |\Gamma_{i-1}(\gamma) \cap \Gamma(\delta)|, \]
\[a_i = |\Gamma_i(\gamma) \cap \Gamma(\delta)|, \text{ and} \]
\[b_i = |\Gamma_{i+1}(\gamma) \cap \Gamma(\delta)| \]

are independent of the choices of $\gamma, \delta \in \Gamma$ with $d(\gamma, \delta) = i$.

The numbers c_i, a_i and b_i are said to be the intersection numbers of Γ.

\[\iota(\Gamma) = \begin{bmatrix} * & c_1 & \hdots & c_{d-1} & c_d \\ a_0 & a_1 & \hdots & a_{d-1} & a_d \\ b_0 & b_1 & \hdots & b_{d-1} & * \end{bmatrix} \]

is said to be an intersection array of Γ. Clearly,

\[b_0 = k, b_d = c_0 = 0, c_1 = 1. \]

By counting edges $\{\delta, \epsilon\}$ with $d(\gamma, \delta) = i, d(\gamma, \epsilon) = i + 1$, we see that $\Gamma_i(\gamma)$ contains k_i points, satisfying

\[k_0 = 1, k_1 = k, k_{i+1} = k_i b_i / c_{i+1}, \quad (i = 0, \ldots, d - 1); \]

therefore, the total number of vertices is

\[\nu = 1 + k_1 + \cdots + k_d. \]

By counting edges $\{\delta, \epsilon\}$ with $d(\gamma, \delta) = 1$, we see that

\[k = a_i + b_i + c_i. \]

Examples. (i) The polygons; they have intersection array
where $c_d = 2$ for the $2d$-gon and $c_d = 1$ for the $(2d + 1)$-gon.

(ii) The five Platonic solids; they have intersection array

\[
\begin{pmatrix}
 * & 1 & * \\
 0 & 2 & 0 \\
 3 & * & *
\end{pmatrix}
\text{(tetrahedron)},
\begin{pmatrix}
 * & 1 & 4 \\
 0 & 2 & 0 \\
 4 & 1 & *
\end{pmatrix}
\text{(octahedron)},
\begin{pmatrix}
 * & 1 & 2 & 3 \\
 0 & 0 & 0 & 0 \\
 3 & 2 & 1 & *
\end{pmatrix}
\text{(cube)},
\begin{pmatrix}
 * & 1 & 2 & 5 \\
 0 & 2 & 2 & 0 \\
 5 & 2 & 1 & *
\end{pmatrix}
\text{(icosahedron)},
\begin{pmatrix}
 * & 1 & 1 & 1 & 2 & 3 \\
 0 & 0 & 1 & 1 & 0 & 0 \\
 3 & 2 & 1 & 1 & 1 & *
\end{pmatrix}
\text{(dodecahedron)}.
\]

3 Completely regular codes

A code C is a set of a non-empty subset of Γ. $C \ni x$ is said to be a codeword. The number

$$\delta(C) := \min \{d(x, y) \mid x, y \in C, x \neq y\}$$

is called the minimum distance of C. The distance of $x \in \Gamma$ to C is defined as

$$d(x, C) := \min \{d(x, y) \mid y \in C\},$$

and the number

$$t = t_C = \max \{d(x, C) \mid x \in \Gamma\}$$

is called the covering radius of C. The subconstituents of Γ with respected to C are the sets

$$C_l := \{x \in \Gamma \mid d(x, C) = l\};$$

in particular,
\[C_0 = C, \quad C_i \neq \phi \iff l \leq t \]

Definition 3.1 A code \(C \) is said to be a completely regular code (CRC) if the numbers

\[
\begin{align*}
\gamma_i &= |C_{i-1} \cap \Gamma(x)|, \\
\alpha_i &= |C_i \cap \Gamma(x)|, \text{ and} \\
\beta_i &= |C_{i+1} \cap \Gamma(x)|
\end{align*}
\]

are independent of the choices of \(x \in C_i \).

The numbers \(\gamma_i, \alpha_i, \beta_i \) are said to be an *intersection numbers* of \(C \).

\[
\iota(C) = \left\{ \begin{array}{cccc}
* & \gamma_1 & \cdots & \gamma_{i-1} & \gamma_i \\
\alpha_0 & \alpha_1 & \cdots & \alpha_{i-1} & \alpha_i \\
\beta_0 & \beta_1 & \cdots & \beta_{i-1} & * \\
\end{array} \right\}
\]

is said to be an *intersection array* of \(C \). Clearly,

\[\beta_i = \gamma_0 = 0. \]

By counting edges \(\{\delta, \epsilon\} \) with \(d(\delta, C) = i, \ d(\epsilon, C) = i + 1 \), we see that \(C_i \) contains \(\kappa_i \) points, satisfying

\[\kappa_{i+1} = \kappa_i \beta_i / \gamma_{i+1} \quad (i = 0, \ldots, t - 1); \]

therefore, the total number of vertices is

\[\nu = \kappa_0 + \kappa_1 + \cdots + \kappa_t. \]

By counting edges \(\{\delta, \epsilon\} \) with \(d(\delta, C) = i \), we see that

\[k = \alpha_i + \beta_i + \gamma_i. \]
Theorem 3.1 (Neumaier[8]) For a completely regular code C in a connected regular graph with intersection array

$$\iota(C) = \left\{ \begin{array}{lllll} * & \gamma_1 & \ldots & \gamma_{t-1} & \gamma_t \\ \alpha_0 & \alpha_1 & \ldots & \alpha_{t-1} & \alpha_t \\ \beta_0 & \beta_1 & \ldots & \beta_{t-1} & * \end{array} \right\},$$

the subset C_t is a completely regular code with intersection array

$$\iota(C_t) = \left\{ \begin{array}{lllll} * & \beta_{t-1} & \ldots & \beta_1 & \beta_0 \\ \alpha_t & \alpha_{t-1} & \ldots & \alpha_1 & \alpha_0 \\ \gamma_t & \gamma_{t-1} & \ldots & \gamma_1 & * \end{array} \right\}.$$

Theorem 3.2 (Suzuki[11,Proposition 2.1]) In distance-regular graph, a code $\{x\}$ is a completely regular code.

Proof. By definition of distance-regular graph, it is clear. \square

We say C_t is a reversal of C. So, we consider the case where $2 \leq |C| \leq \frac{\nu}{2}$.

We say that a completely regular code C with covering radius t in a distance regular graph Γ is trivial if $|C| \leq 1$, $|C_t| \leq 1$ or all the vertices of Γ are in C.

Theorem 3.3 (Koolen[6,Theorem15]) Each completely regular codes C in Γ has $\gamma_i \leq \gamma_{i+1}$ and $\beta_i \geq \beta_{i+1}$, where Γ is a member of one of the following families.

(i) The Hamming graphs, $H(n,d)$,
(ii) the Johnson graphs, $J(n,d)$,
(iii) the Grassmann graphs, $G_q(n,d)$,
(iv) the symplectic dual polar graphs on $[C_d(q)]$,
(v) the orthogonal dual polar graphs on $[D_d(q)]$,
(vi) the orthogonal dual polar graphs on $[\mathbb{P} D_{d+1}(q)]$,
(vii) the unitary dual polar graphs on $[\mathbb{P} A_{2d-1}(r)]$,
(viii) the bilinear forms graphs, $H_q(n,d)$,
(ix) the alternating forms graphs,
(x) the Hermitean forms graphs,
(xi) the symmetric bilinear forms graphs,
(xii) the quadratic forms graphs,
(xiii) the folded Johnson graphs, $\overline{J}(2m,m)$,
(xiv) the folded cubes,
(xv) the halved cubes,
(xvi) the Doob graphs, the direct products of Shrikhande graphs and 4-cliques,
(xvii) the half dual polar graphs, $D_{m,m}(q)$,
(xviii) the Ustimenko graphs, which are the distance 1-or-2 graphs of dual polar graphs on $[C_d(q)]$, and
(xix) the Hemmeter graphs, the extended bipartite doubles of the dual polar graphs on $[C_d(q)]$.

4 Completely regular codes in Johnson graph $J(n,d)$

Let X be a finite set of cardinality n. The Johnson graph of the d-sets in X has vertex set $\binom{X}{d}$, the collection of d-sets of X. Two vertices γ, δ are adjacent whenever $\gamma \cap \delta$ has cardinality $d - 1$. The Johnson graph $J(n,d)$ has an intersection array given by
\[b_i = (n - i)(n - d - i), \quad c_i = i^2 \quad \text{for} \quad 0 \leq i \leq d. \]

4.1 Completely regular codes in \(J(n, 2) \)

- A non-trivial CRC in Johnson graph \(J(4, 2) \):

\[
\begin{array}{c}
(1,2) \quad (1,3) \\
(2,3) \quad (2,4) \\
(1,4) \\
(3,4)
\end{array}
\]

\[
\{ \begin{array}{c}
* \quad 1 \quad 4 \\
0 \quad 2 \quad 0 \\
4 \quad 1 \quad * \\
\end{array}
\}
\]

has one of the following intersection arrays.

(i) \(|C| = 2 \)

\[
\begin{array}{c}
(1,2) \quad (1,3) \\
(3,4) \quad (2,3) \\
(1,4) \\
(2,4)
\end{array}
\]

\[
\{ \begin{array}{c}
* \quad 2 \\
0 \quad 2 \\
4 \quad * \\
\end{array}
\}
\]
(ii) $|C| = 3$

\[
\begin{array}{c}
(1,2) \quad (1,4) \quad (2,3) \quad (2,4) \\
(1,3) \quad (2,3) \quad (3,4)
\end{array}
\]

\[
\begin{array}{c}
 \{* & 2 \\
 2 & 2 \\
 2 & *
\end{array}
\]

- A non-trivial CRC in Johnson graph $J(5,2)$:

\[
\begin{array}{c}
(1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad (2,3) \quad (2,4) \\
(2,5) \quad (3,4) \quad (3,5) \quad (4,5)
\end{array}
\]

\[
\begin{array}{c}
 \{* & 1 & 4 \\
 0 & 3 & 2 \\
 6 & 2 & *
\end{array}
\]

has, up to reversal, one of the following intersection arrays.
(i) $|C| = 4$

(ii) $|C| = 5$

(i) $|C| = 4$

(ii) $|C| = 5$
A non-trivial CRC in Johnson graph $J(6,2)$ has up to reversal, one of the following intersection arrays.

(i) $|C| = 3$
\[
\begin{array}{ll}
* & 2 \\
0 & 6 \\
8 & *
\end{array},
\begin{array}{ll}
* & 2 \\
2 & 4 \\
6 & 2 \\
\end{array}
\]

(ii) $|C| = 5$
\[
\begin{array}{ll}
* & 2 \\
4 & 6 \\
4 & *
\end{array}
\]

(iii) $|C| = 6$
\[
\begin{array}{ll}
* & 4 \\
2 & 4 \\
6 & *
\end{array}
\]

Lemma 4.1 In Johnson graph $J(n,2)$, if n is odd, then there is no non-trivial completely regular codes with $|C| = 2$.

Proof. For $n = 3$, there is no non-trivial completely regular codes. So, we may consider the case $n \geq 5$. If $C = \{(i,j),(i,k)\}$, we can take $(i,l),(j,m)$ in C_1, where (i,l) is adjacent (i,j) and $(i,k),(j,m)$ is adjacent (i,j), contradiction. So, C isn't a completely regular code. If $C = \{(i,l),(j,m)\}$, we can take $(i,j),(i,n)$ in C_1, where (i,j) is adjacent (i,l) and $(j,m),(i,n)$ is adjacent (i,l), contradiction. So, C isn't a completely regular code. Therefore, there is no non-trivial completely regular code C with $|C| = 2$. \(\square\)

Lemma 4.2 In a Johnson graph $J(n,2)$, let $C = \{(1,2),(2,3),\ldots,(n-1,n),(n,1)\}$. Then C is a completely regular code in $J(n,2)$.

Proof. For $n = 2$ or 3, C is a trivial completely regular code. For $n = 4$, let (i,j) be in $J(n,2) \setminus C$. Since $(i-1,i)$ or $(i,i+1)$ is in C, $d((i,j),C) = 1$. Therefore (i,j) in C_1. Then, the intersection array is
\[
\begin{array}{ll}
* & 4 \\
2 & 2(n-4) \\
2(n-3) & *
\end{array},
\]
so C is a non-trivial completely regular code. \(\square\)
4.2 Completely regular codes in $J(n, 3)$

- A non-trivial CRC in Johnson graph $J(6, 3)$ has one of the following intersection arrays.

(i) $|C| = 2$
$$\begin{array}{l}
\{ * 1 \} \\
\{ 0 8 \} \\
\{ 9 * \}
\end{array}$$

(ii) $|C| = 4$
$$\begin{array}{l}
\{ * 2 \} \\
\{ 1 7 \} \\
\{ 8 * \} \\
\{ * 2 6 \} \\
\{ 3 5 3 \} \\
\{ 6 2 * \}
\end{array}$$

(iii) $|C| = 6$
$$\begin{array}{l}
\{ * 3 \} \\
\{ 2 6 \} \\
\{ 7 * \}
\end{array}$$

(iv) $|C| = 8$
$$\begin{array}{l}
\{ * 4 \} \\
\{ 3 5 \} \\
\{ 6 * \}
\end{array}$$

(v) $|C| = 10$
$$\begin{array}{l}
\{ * 3 \} \\
\{ 6 6 \} \\
\{ 3 * \} \\
\{ * 5 \} \\
\{ 4 4 \} \\
\{ 3 3 \} \\
\{ * 6 \} \\
\{ 5 * \} \\
\{ 6 * \}
\end{array}$$

References

